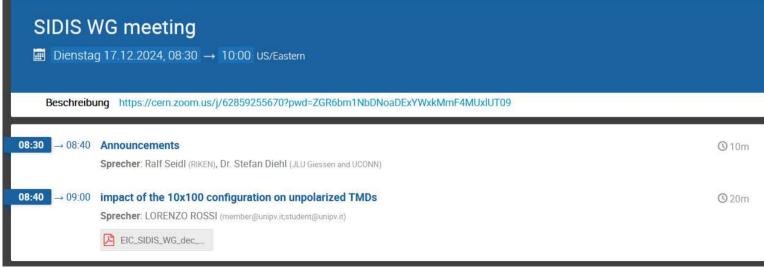
Analysis Coordination Meeting

01 / 14 / 2025

S. Diehl (JLU Giessen and UConn)

R. Seidl (Riken)

Wiki of the SIDIS PWG: https://wiki.bnl.gov/EPIC/index.php?title=SIDIS


PWG meetings: Tuesday 2.30 pm (~ every 2 weeks)

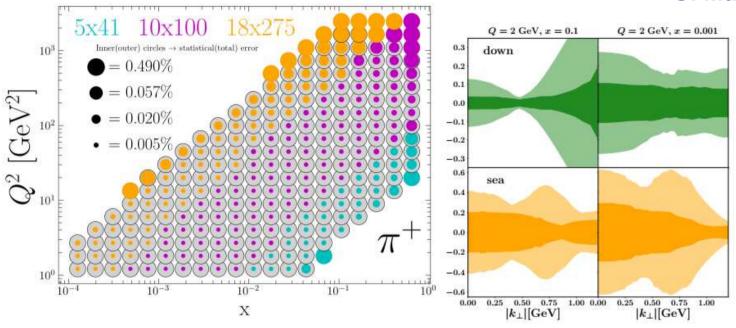
next meeting: 01/28/2025

SIDIS Working Group

Next SIDIS WG meeting on January 28th: Contribution of Italian INFN groups

→ Several Italien groups (from INFN) will join the SIDIS activities

Simulations:

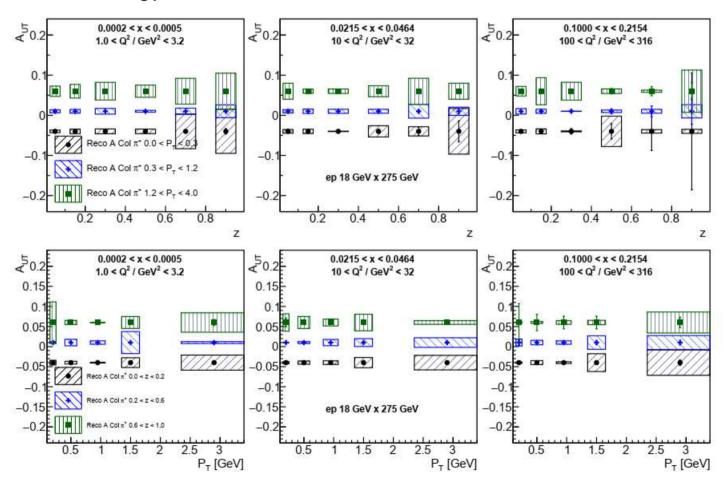

We are still waiting for the e+n pull request

Data Inputs and Requirements for Physics Analysis:

- Pythia8 simulation output at the defined enegies
- Statistics should match the expected data

Projections for unpolarized TMDs:

L. Rossi M. Radici G. Matousek


Figure 2.8: Left: Expected statistical and total uncertainty of un-polarized TMD PDFs for π^+ in the Q^2-x_B plane. The inner (colored) circle shows the statistical uncertainty, while the outer circle provides the total uncertainty for each Q^2-x_B bin. The color shows the beam energy configuration which provides the highest statistics in a specific bin. Right panel: Expected uncertainties of valence down (green) and sea quark (orange) TMD PDFs at x=0.1 (left) and x=0.001 (right) as obtained based on the MAP24 [1] global TMD fit. The lighter shaded regions show the uncertainties based on existing data while the darker shaded regions show the expected uncertainties after including ePIC data.

→ Further stduies, also including Kaon data are ongoing / planed

SIDIS Working Group

Projections of A_{UT}:

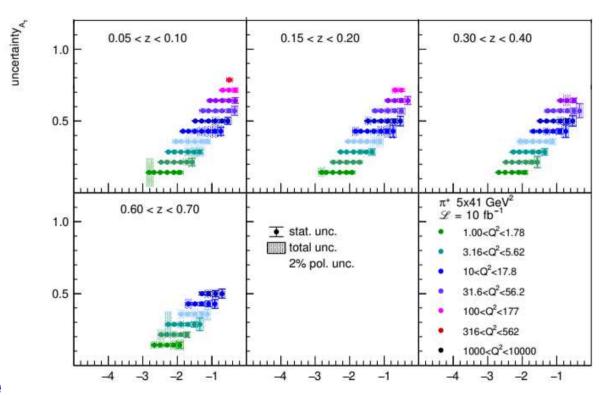
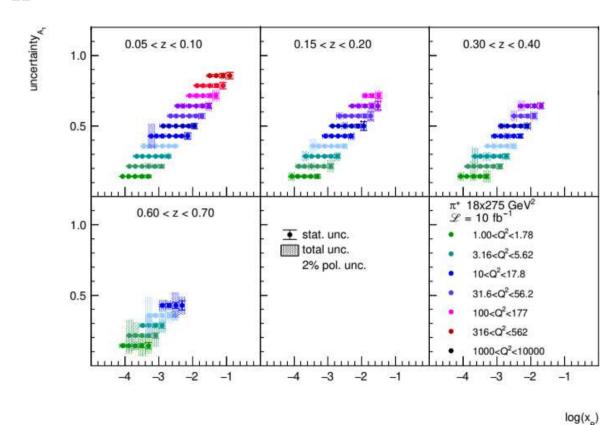


Figure 2.9: Top: Expected uncertainties in three example x- Q^2 bins for the Collins asymmetries for positive pions as a function of the momentum fraction z and in three bins of hadron transverse momentum relative to the virtual photon direction assuming a luminosity of 10 fb⁻¹. Bottom, the same but as a function of the hadron transverse momentum in bins of z.

R. Seidl

Projections for A_{LL} :


C. van Hulse

log(x_B)

Figure 2.7: Statistical (error bars) and total (error bands) uncertainty for each selected bins in x_B and Q^2 and for selected ranges in z, for positive-pion A_1 asymmetries at $5 \times 41 \text{ GeV}^2$ (top two rows) and $18 \times 275 \text{ GeV}^2$ (bottom two rows). An additional global scale uncertainty of 2% accounts for the uncertainty in the beam polarizations, as indicated in the figure. The central value on the vertical axis of the data points has no meaning.

SIDIS Working Group

Projections for A_{LL}:

C. Van Hulse

Figure 2.7: Statistical (error bars) and total (error bands) uncertainty for each selected bins in x_B and Q^2 and for selected ranges in z, for positive-pion A_1 asymmetries at 5×41 GeV² (top two rows) and 18×275 GeV² (bottom two rows). An additional global scale uncertainty of 2% accounts for the uncertainty in the beam polarizations, as indicated in the figure. The central value on the vertical axis of the data points has no meaning.

EIC Early Science

- → Perspective for year 1: [10 GeV elec. on 115 GeV/u heavy ion (Ru or Cu)]
 - Nuclear PDFs and nuclear FFs are poorly known in the EIC kinematic domain
 - → Even with very low statistics (0.9 fb⁻¹), 1D (nPDF)/2D(nFF) studies would be usefull first results
 - → Scale projection on eA from yellow report?
- → Perspective for year 2: [10 GeV electrons on 130 GeV/u Deuterium]
 - Proton and neutron PDFs and FFs can be studied, improvement on strange and d PDFs (based on deuterium target)?
 - early unpol. TMD measurements (first look at TMD evolution?)
- → Perspective for year 3: [transversely (linearly) polarized protons]
 - SIDIS structure functions with target polarzation (depeding on luminosity): early look at A_{UT} asymmetries
 - Early A_{LL} asymmetries?