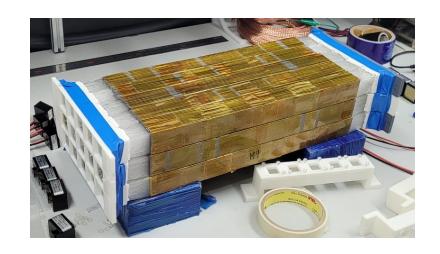
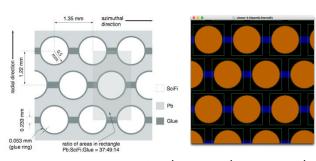
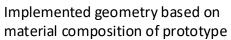
BIC prototype test at CERN PS and plan for KEK

Jan 14th 2025

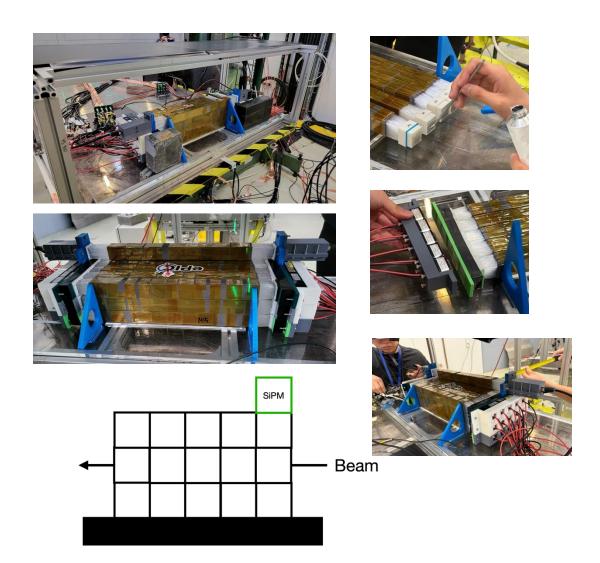

BIC System Testing Meeting

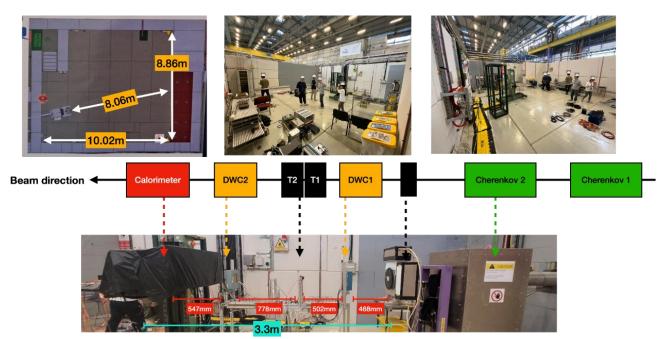

Jeongsu Bok (Pusan National University)

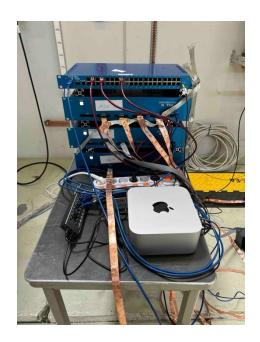

Outline

- Beam test at CERN PS in Aug. 2024
 - Production
 - Experimental Setup
 - Results
- Future beam test plan
 - At KEK in Mar. 2025
 - Future options

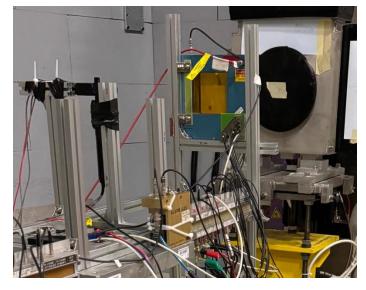
Prototype


M11	M12	M13	M14	M15
0.22%	0.84%	1.55%	1.64%	1.17%
M6	M7	M8	M9	M10
8.98%	29.10%	27.71%	16.07%	7.46%
M1	M2	M3	M4	M5
0.21%	0.81%	1.50%	1.58%	1.16%


Previous Pb/SciFi - SiPM

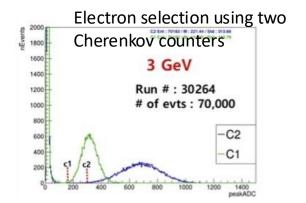

- 3x5 stacking of 32x3x3 cm³ unit modules
 - 32x9x15cm³
 - Fiber is bundled, glued, and polished
 - Connected to glass PMT
 - Power supply in additional board, connected to DAQ module and trigger board using USB and LAN
- Additional module with SiPM

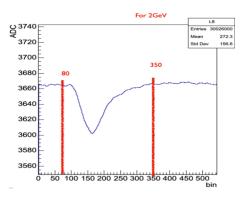
Beam Test Setup at CERN PS T10



Beam Test Setup at CERN PS T10

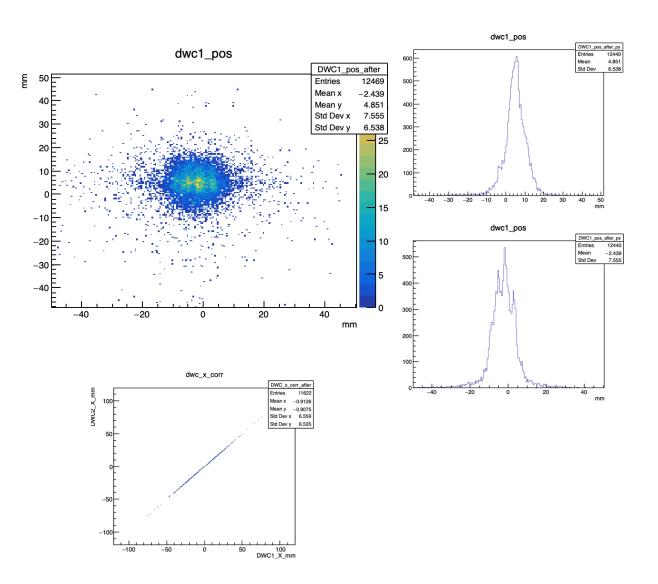
DWC Trigger

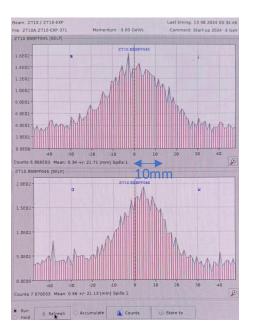

DAQ: DRS4-DAQ 3x36ch from 30ch PMT(R11265-100) DWC


Cherenkov

Trigger scintillator

Pulse Height Adjustment and Calibration

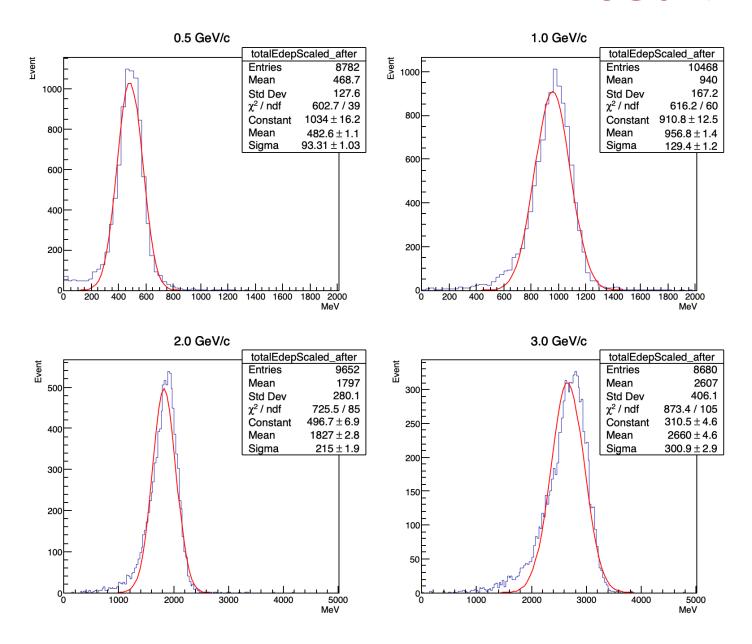

- Starting from beam position confirmation
 - Moving beam position (table) from end to end to confirm the beam position
 - Pulse height drops at the edge
- Pulse height adjustment
 - Based on energy deposit in GEANT4 simulation
 - Adjust PMT HV to make module response similar
 - Also to prevent saturation at 5 GeV/c
- Calibration
 - 2million events to center of prototype.
 - Compare integrated ADC and energy deposit in simulation for each module
 - After summing the signals from all modules, apply additional scale factor for the total energy deposit
- PID using Cherenkov Counter
- Beam position using Delay Wire Chamber

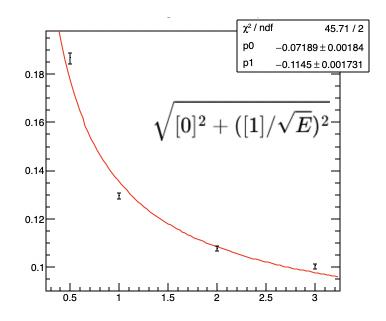


Determine integral range in time structure

Beam profile at T10

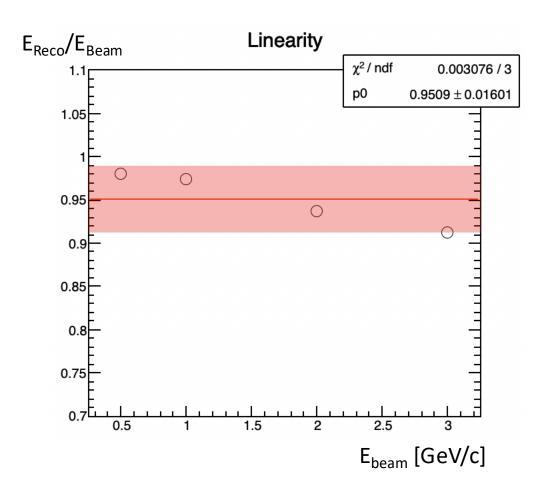
- After electron selection
- Position using Delay Wire Chamber
- Triggered area 10x10mm² smaller than beam size
- Almost straight, according to DWC1-2 correlation

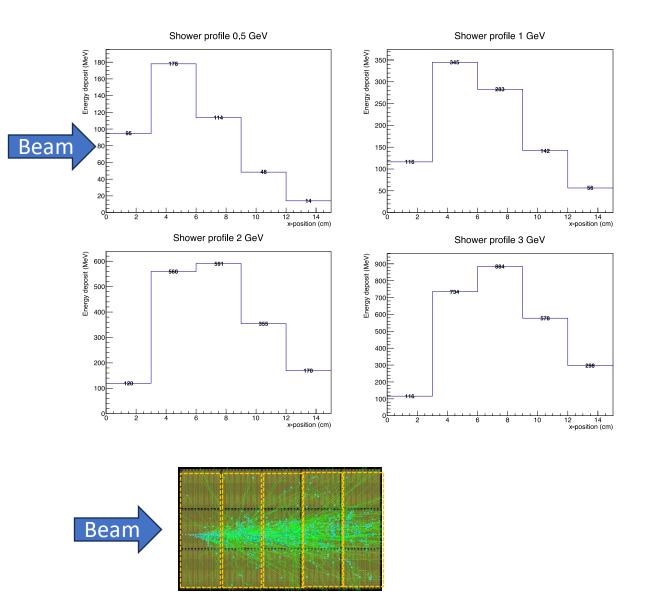



3 GeV/c depends on collimator setup and beam energy

Experimental Program

- Energy response using 0.5, 1, 2, 3 GeV/c electron beam
- Horizontal position scan for time resolution
- SiPM module
- Additional tests


Result

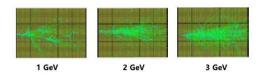

- Stochastic term: 11.5%
- Constant term: 7.2%

Result: Linearity

- The result is linear within 4%
 - Function: constant
 - Band: 4%
- However, little bit larger than energy deposit in simulation due to Gaussian fit.

Result: Longitudinal shower profile

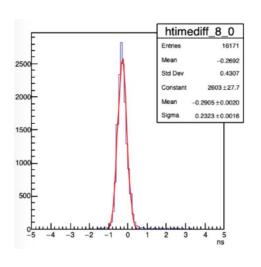
3x5 각 모듈 별 Edep 비율 (0.5 ~ 5 GeV)

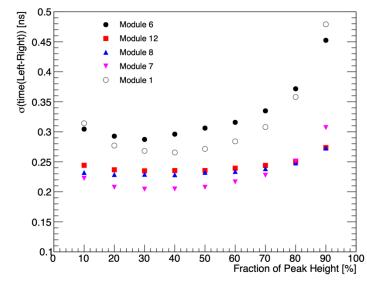

• 3x5 구조 결과

Energy Deposit [%]

E (GeV)	M1	M2	M3	M4	M5	M6	M7	M8	М9	M10	M11	M12	M13	M4	M15
0.5	0.44	1.39	1.80	1.40	0.81	23.39	35.22	18.76	8.00	3.15	0.44	1.35	1.72	1.35	0.78
1	0.34	1.14	1.73	1.52	0.95	16.26	34.05	23.08	10.98	4.48	0.33	1.11	1.68	1.44	0.91
2	0.25	0.94	1.61	1.59	1.10	11.18	31.29	26.27	14.13	6.29	0.25	0.90	1.57	1.54	1.07
3	0.21	0.81	1.50	1.58	1.16	8.98	29.10	27.71	16.07	7.46	0.22	0.84	1.55	1.64	1.17
4	0.19	0.77	1.50	1.64	1.23	7.66	27.50	28.50	17.41	8.39	0.19	0.74	1.44	1.61	1.21
5	0.18	0.72	1.45	1.65	1.28	6.75	26.19	28.92	18.6	9.16	0.17	0.70	1.40	1.61	1.25

• 모듈 배치도

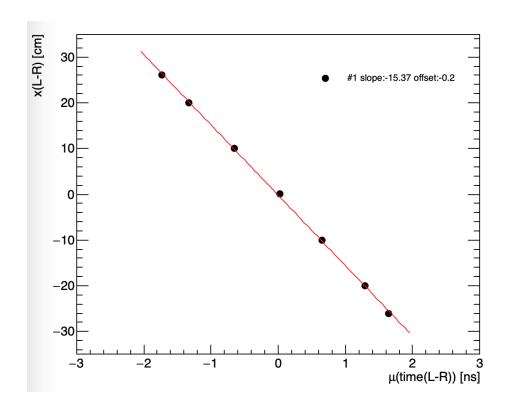




* 빔 에너지가 높을수록 샤워가 뒤에 모듈들까지 전달되어 모듈 별 energy deposit 비율이 달라지는 것으로 보인다.

Energy deposit is maximum at 2nd module in 0.5,1 GeV/c 3rd module in 2,3 GeV/c

Result: Time resolution

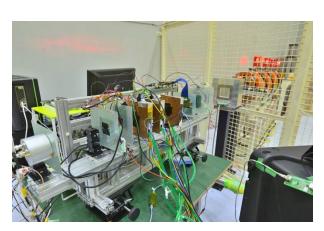


- σ of Time(Left-Right)
- Using constant fraction 30%
- Most upstream module σ ~ 280ns
 - Depends on module and light yield
 - More energy deposit in downstream

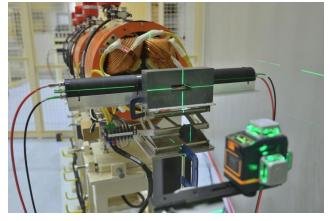
 SiPM module showed comparable performance in time resolution and energy resolution.

Result: Effective Speed

- -13,-10,-5,0,+5,+10,+13cm
- Then, horizontal length difference: +26,+20,+10,0,-10,-20,-26 cm
- Checked $\mu(t_{L-R})$
- Most upstream module
- Without reflection
 - n = 1.59(core) 1.49(clad)
 - v = c/n = 18.8 cm/ns
- Data: 15.4 cm/ns
- Checking simulation


Future Testbeam Plan

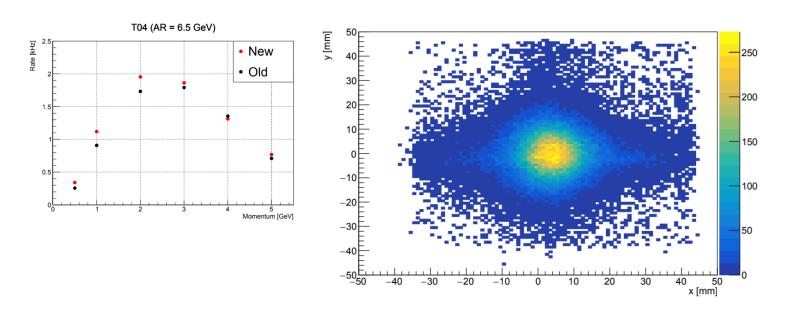
Schedule

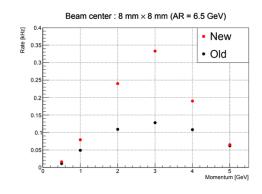

- KEK (1~5 GeV/c electron)
 - March 2025: proposal submitted on Jan. 8th
 - Beam period: March 6th ~ 24th
 - May-June 2025
 - Oct-Dec 2025
- CERN PS (0.5~5 GeV/c electron, muon, pion)
 - Submitted proposal on Oct. 21st, aiming August 2025
 - 0.5~5 GeV/c electron beam, muon possible
 - https://ps-sps-coordination.web.cern.ch/ps-sps-coordination/

KEK beam line

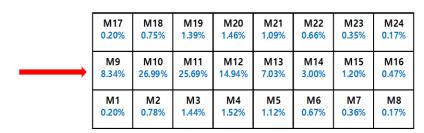
Trigger Counters

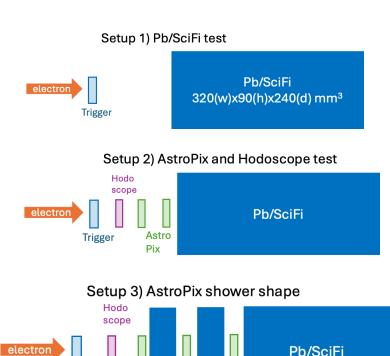
Counting Room




Beam Shutter

KEK beam rate and profile

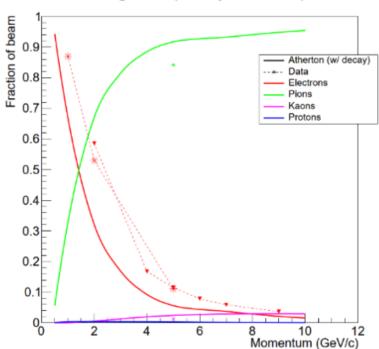


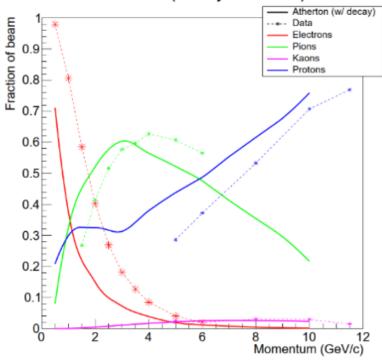


- Rate: Overall rate is 2~2.5 kHz, Highest rate ~ 3 GeV. Δp/p: 10%
- At 3 GeV, σ ~4mm, wide in x-direction, Beam rate with 8mm x 8mm: 350 Hz
- Naive estimation for 8x8mm2 trigger area: 87,255,350,203,63 Hz at 1,2,3,4,5 GeV/c
- At CERN PS using 10x10mm2 trigger area (+DWC,Cherenkov)
 - 0.73, 2.9, 5.6, 6 Hz at 0.5,1,2,3 GeV/c

Plan for the KEK beamtest in March

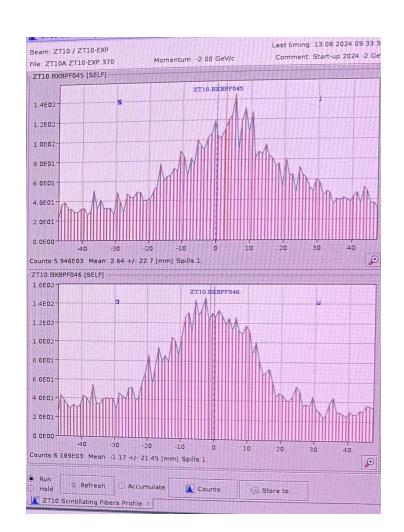
- If we get beam time, programs are
 - Energy scan for 3x8 or larger
 - 95% energy deposit for 3 GeV electrons
 - AstroPix test
 - Calibration of separated Pb/SciFi
 - Hodoscope operation
 - If possible, AstroPix shower shape
- Goals in intermediate term
 - PMT → SiPM comparison
 - Build a bulk sector (70cm)
 - AstroPix+ Pb/SciFi

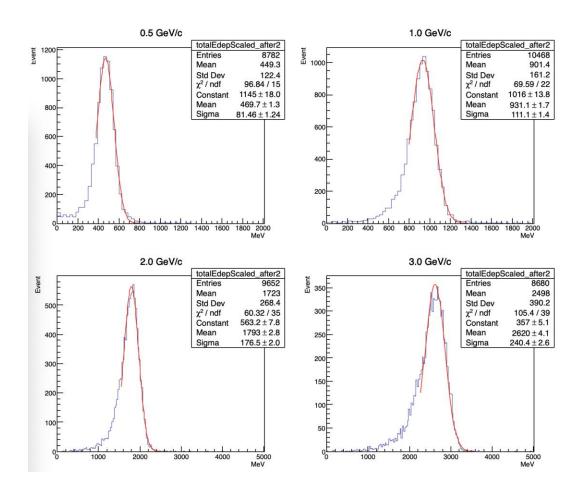


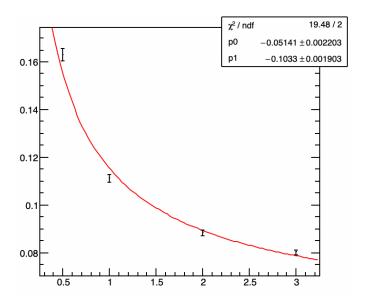

backup

CERN PS Beam info

Negative (decay included)

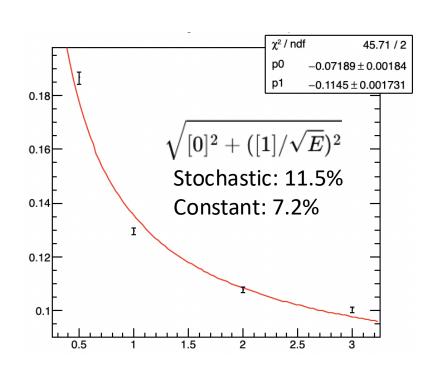

Positive (decay included)

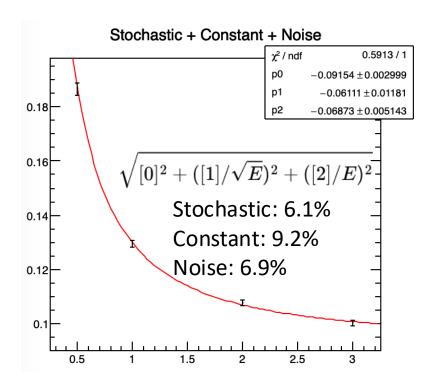

Characteristics of the beams


Parameter	T09	T10	T11
$p_{ m max}$ of secondary beam in $^{ m GeV}/_c$	16	12	3.5
$\Delta p/p$ in %		± 0.7 to ± 15	
Maximum intensity/spill (hadrons/electrons)		10 ⁶	
Available particle types	Pure electrons (T09 onl	ly) or mixed electrons	(T10) or

Pure electrons (T09 only) or mixed electrons (T10) or mixed/pure hadrons or pure muons

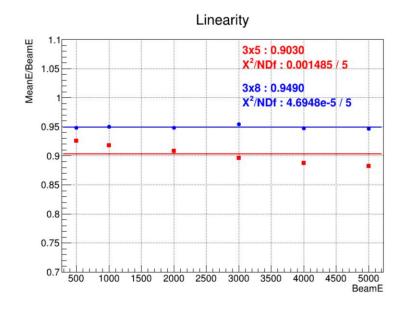
Expected result in future measurements

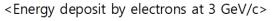


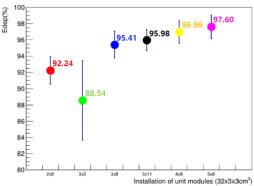

- Future measurements with larger volume, tail due to leakage will shrink
 - If we narrow the fit range, it becomes 10.3%⊕5.1%

Backup: expected stochastic term

$$egin{aligned} rac{\sigma}{E} &= rac{a}{\sqrt{E}} \oplus b \ a_{
m stoch} &= \sqrt{a_{
m SF}^2 + a_{
m LY}^2} \ a_{
m SF} &= 2.7\% \sqrt{rac{d}{f}} \sim 8.9\% \ a &= 1mm \ f &= rac{2MeV/cm imes V_{poly}}{dE/dx(Pb) imes V_{Pb} + 2MeV/cm imes V_{poly}} \ {
m LY} &\sim 1000 \ {
m p. \ e. / GeV} \ \Rightarrow a_{
m stoch} &= \sqrt{0.089^2 + (1/\sqrt{1000})^2} = 0.09445 \end{aligned}$$


Backup: Fitting with Noise Term

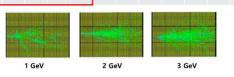




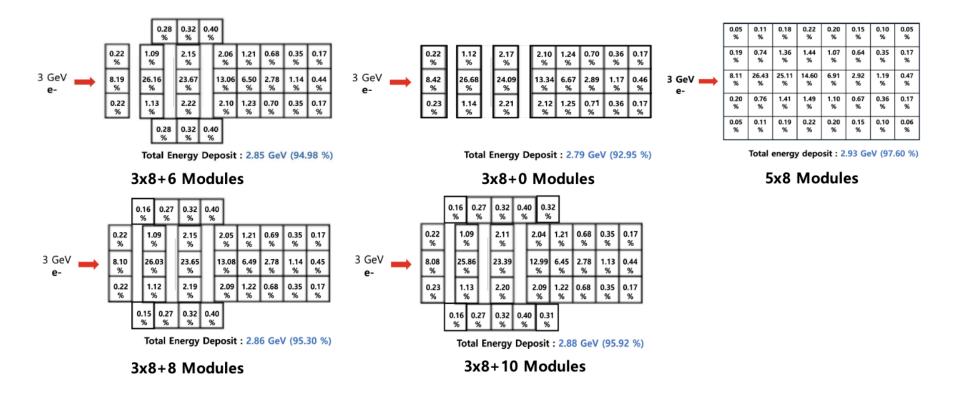
- In case of limited fitting range (not the official result)
- 3 parameters for 4 datapoints
- For the fit with 3 parameters, 6.1% of stochastic term does not make sense in this setup
- We will include more points in future testbeam

Backup: Simulation of prototype

- Value: Edep mean *100 / Beam E
- Err: Edep Std Dev *100 / Beam E

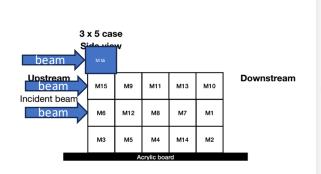

(%)

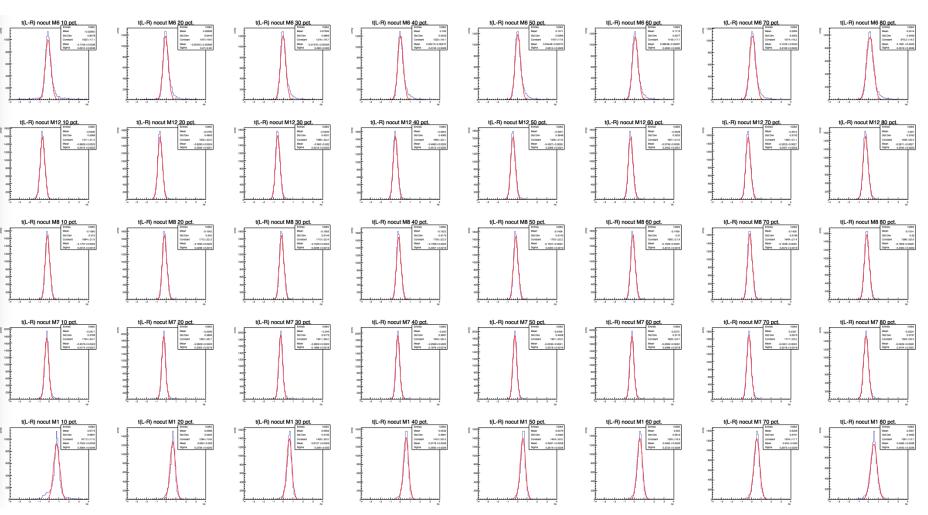
• 3x8 구조 결과

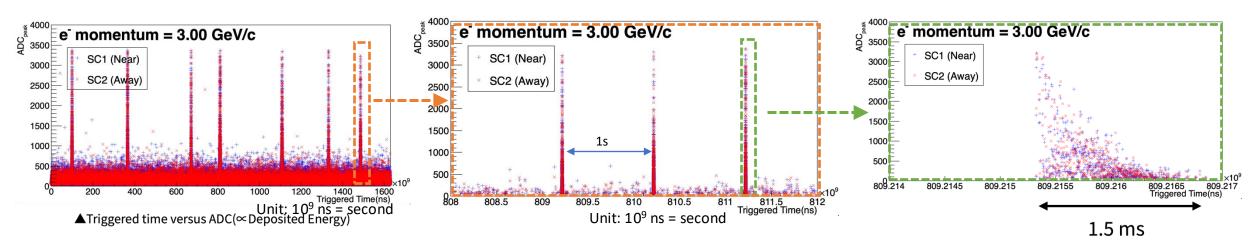

E (GeV)	M 1	M 2	M 3	M 4	M 5	M 6	M 7	M 8	M 9	M 10	M 11	M 12	M 13	M 14	M 15	M 16	M 17	M 18	M 19	M 20	M 21	M 22	M 23	M 24
0.5	0.5	1.7	2.0	1.5	0.8	0.4	0.2	0.1	22.5	33.3	17.7	7.6	3.0	1.2	0.4	0.2	0.5	1.6	1.9	1.4	0.8	0.4	0.2	0.1
1	0.4	1.4	1.9	1.6	1.0	0.5	0.3	0.1	15.6	32.3	21.3	10.0	4.2	1.7	0.6	0.3	0.4	1.3	1.9	1.5	0.9	0.5	0.2	0.1
2	0.3	1.1	1.8	1.7	1.1	0.6	0.3	0.1	10.5	29.0	24.0	13.0	5.8	2.4	0.9	0.4	0.3	1.1	1.7	1.6	1.1	0.6	0.3	0.1
3	0.2	8.0	1.4	1.5	1.1	0.7	0.4	0.2	8.3	27.0	25.7	14.9	7.0	3.0	1.2	0.5	0.2	0.8	1.4	1.5	1.1	0.7	0.4	0.2
4	0.2	0.9	1.7	1.7	1.3	0.8	0.4	0.2	7.0	24.9	25.6	15.6	7.6	3.3	1.4	0.5	0.2	8.0	1.6	1.7	1.2	0.7	0.4	0.2
5	0.2	8.0	1.6	1.7	1.3	8.0	0.4	0.2	6.2	23.7	25.9	16.5	8.2	3.6	1.5	0.6	0.2	8.0	1.5	1.7	1.3	8.0	0.4	0.2

• 모듈 배치도

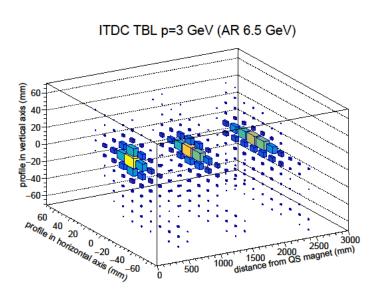
	17	18	19	20	21	22	23	24
\longrightarrow	9	10	11	12	13	14	15	16
	1	2	3	4	5	6	7	8


Backup: simulation for various geometry



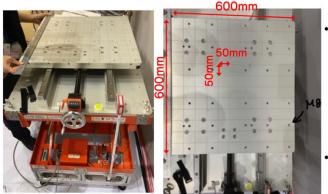

1 GeV beam 5 GeV beam 5 GeV beam

Backup: fit result for PMT


Backup: KEK Beam structure (2024 March)

- 2024 March setup using two triggers of SciFi-MPPC
- Additional injection ~ms in every ~100s
 - 3 peaks in an additional injection
 - VETO out is prepared in the control room.
 - · need to consider how to include veto in our DAQ and reject signal
- Otherwise, rate seemed stable

Backup: KEK Beam profile along beam axis


Momentum and AR operation Beam energy	Direction	Z = 0.65 m	Z= 1.50 m	Z=2.50 m
3 GeV @ AR 6,5 GeV	Horizontal	10.0 mm	12.9 mm	14.8 mm
3 GeV @ AR 5.0 GeV	Horizontal	10.2 mm	12.8 mm	
3 GeV @ AR 6,5 GeV	Vertical	8.9 mm	7.1 mm	5.2 mm
3 GeV @ AR 5.0 GeV	Vertical;	8.9 mm	7.0 mm	

- Beam width in sigma (gaussian fit) in beam axis direction
- Z=0 is at the edge of the last quadrupole magnet.

Table

Table for the setup

- Table at test area
 - Height adjustable in 555-1275mm
 - Beam position: 1185mm
 - Movable horizontally too
 - See the attached drawing for more detailed geometry
- Laser for alignment available

- Movable stool on the table
 - Horizontal move: wheel counter
 - Vertical move: tape ruler
 - Table itself is movable
- Table dimension
 - Only one table: Aluminum profile should be prepared if we need more space.
 - Stool size match to the Telescope
 - $550(x) \times 550(y) \times 700(z)$ mm3
- A frame+stool, a desk for power supply and others.
- If we need more ancillary detectors out of table, we have to consider Aluminum profile.