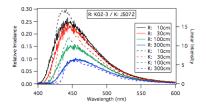
The ePIC Barrel Imaging Calorimeter

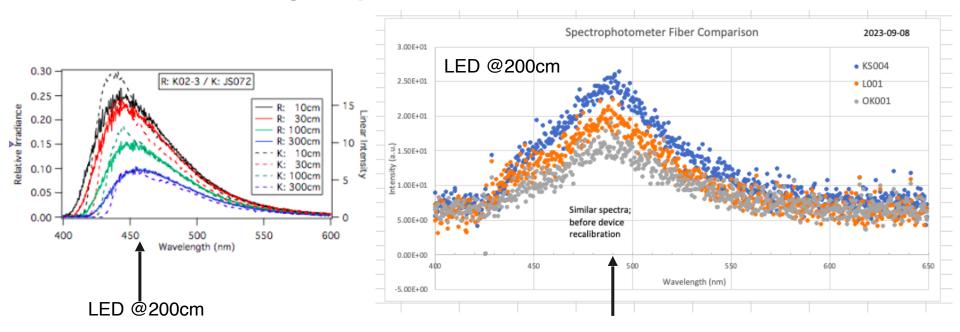
ScFi Testing Procedures

Zisis Papandreou University of Regina BIC Systems Testing February 11, 2025

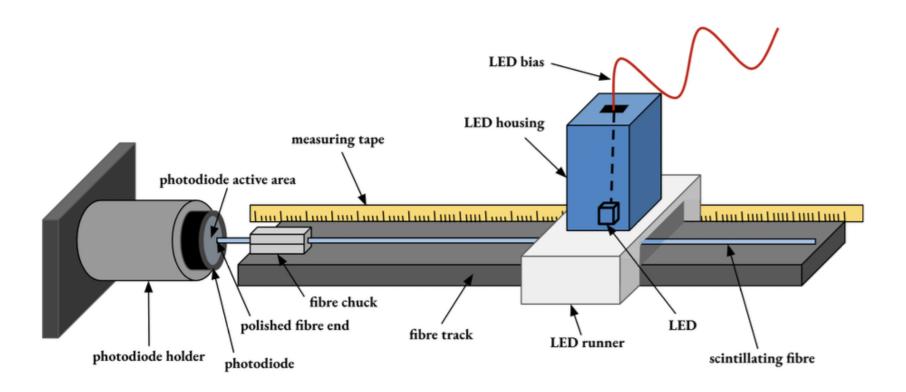

Fiber Specs

3.1 Technical/Performance Characteristics

- **A.** Light yield: the average response to a Sr-90 source shall be greater than 3.5 photoelectrons measured using a bialkali photomultiplier tube 200 cm from the source, and the opposite end blackened (assessed via methods mutually acceptable to the BSA and Contractor). **SiPM**
- **B.** Diameter mean value and variation shall be 1.00 + -0.01 mm, RMS $\leq 0.02 \text{ mm}$. Calliper
- C. Attenuation length for blue light > 4m. Photodiode
- **D.** Batch to batch or lot to lot variation of light yield <15%.
- **E.** Batch to batch or lot to lot variation of attenuation length <10%.
- F. Emission spectrum in blue-green light Spectrophotometer
- **G.** Scintillation decay time <3ns
- H. Total length 4900 km
- I. Delivery method in canes. Length of fibers 4.55 meters +/- 0.01m. Tape measure

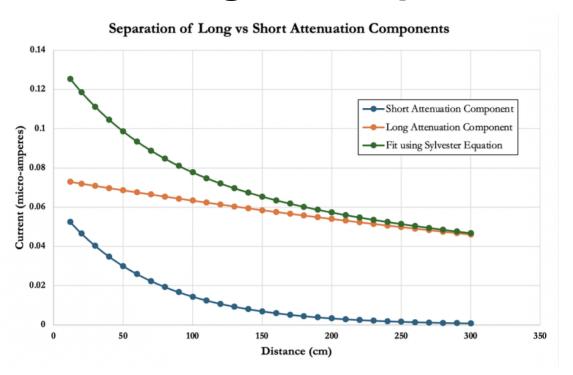

Fiber Tests @ UofR | * |

- **Test Stations** (resurrected BCAL equipment; 2023 and 2024)
 - Spectrophotometer station:
 - ageing; qualitative; recalibration
 - Opening of the ope

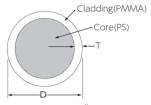


- 3 setup upgrades since July 2023, results stable.
- Measured 12-300 cm (and some to 410 cm)
- 1- & 2-exp fits: selection on long-attenuation
- Npe station: photopeaks; recent upgrade.
- Bottom line:
 - Attenuation length: Kuraray D and S, Luxium S ≥ 4m
 - Light output: NKD > NKS > L (photodiode & Npe differences)

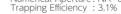
Fiber wavelength spectrum

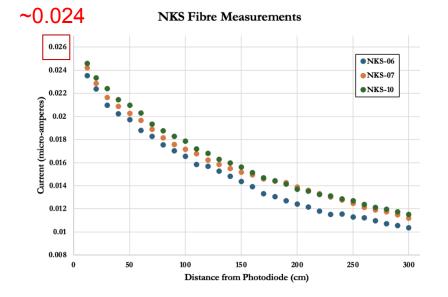


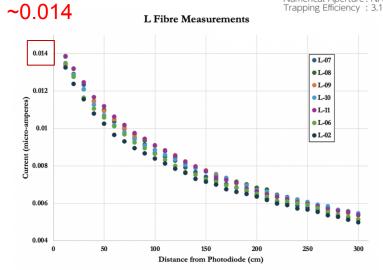
Photodiode Station


Measurements in complete darkness

Fiber Light Componets




$$I(x) = I_0(\alpha e^{-x/\lambda_1} + (1 - \alpha)e^{-x/\lambda_2})$$


Fiber Scans: Single-Clad

Cladding Thickness¹⁾: T=2% of D Numerical Aperture: NA=0.55

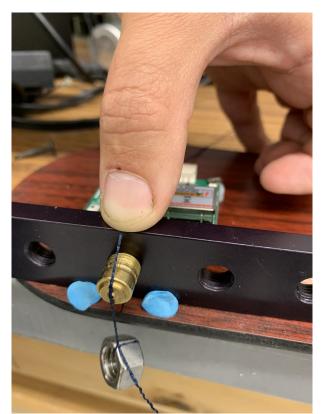
BIC measurements 2024

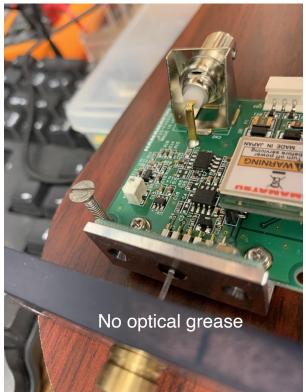
(LED issue)

BIC measurements 2024

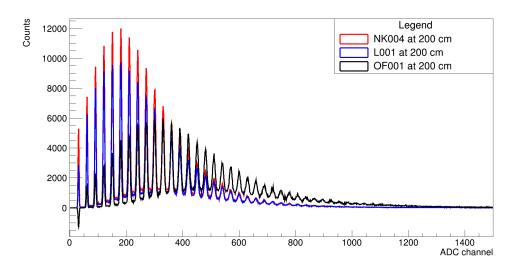
(LED fixed)

Npe Station - Setup PMT


- puck board and runner
- Stronger ⁹⁰Sr
- Ambient light control
- Coincidence with PMT



Npe Station - Setup PMT

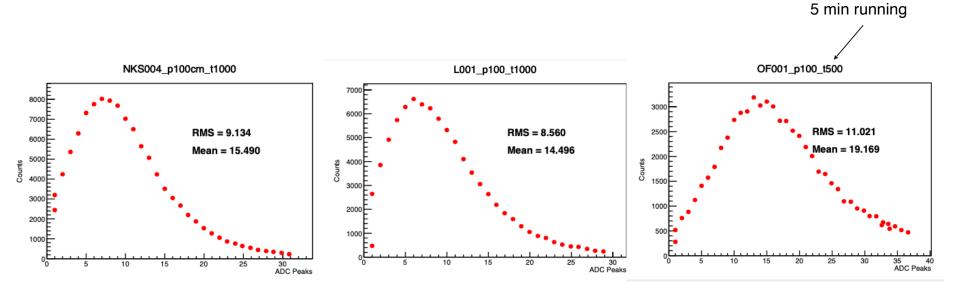

- Hamamatsu Module: high resolution, low noise, temp control
- Alignment
- Reproducible coupling

Npe spectra

- NKS, L and OKD fibers measured; coincidences
- Noise-subtracted comparison at 5 distances (100, 140, 200, 240, 280 cm)
- Analysis scripts: multi-peak finding and light calibration

OKD > NKS > L

ScFi Testing Procedures


Summary

- Lots of experience at Regina.
- All stations ready!
- Personnel available for rapid testing.

Npe - Comparisons - 90Sr at 100 cm No grease!

Spectrophotometer Set-up

- Fiber laid in groove of polyurethane tray (puckboard).
- Fed into ADC0 of Ocean Optics SD2000¹ spectrophotometer; clip for stability.
- SD2000 connected to ADC (Ocean Optics ADC1000-USB Serial¹), then connected to DAQ laptop via USB.
- Measurements in darkness; double layer of UV-absorbing film covering fibers.

ADC0 port

Spectrophotometer with fiber inserted (left); view down the tray holding the fibers (right)

Long Atten Len: fits 100-300cm

Fibre Type	Fibre #	Relative Error (%)	I_0	λ	χ^2/NDF
	02	1.1	0.0105 ± 0.0001	396 ± 7	19.86 / 17
	06	1.3	0.0107 ± 0.0001	411 ± 9	20.28 / 17
	07	1.5	0.0112 ± 0.0001	372 ± 9	15.18 / 17
Luxium	08	1.1	0.0114 ± 0.0001	393 ± 7	19.59 / 17
	09	1.4	0.0117 ± 0.0001	369 ± 8	17.99 / 17

1.0

1.5

2.1

0.7

1.3

0.9

1.2

1.7

Attenuation Curve Coefficients from Single Exponential Fit - 370nm LED with 3.3V Current Limit

All types have long atten > 4m

10

11

06

07

10

06

07

10

NKS

NKD

16.01 / 17

20.77 / 17 14.61 / 17

15.69 / 17 16.53 / 17

15.1 / 17

21.04 / 17

16.9 / 17

 408 ± 7

 369 ± 9

 411 ± 15

 486 ± 7

 459 ± 12

 513 ± 10

 509 ± 13

 557 ± 22

 0.01113 ± 0.00009

 0.0116 ± 0.0001

 0.0207 ± 0.0004

 0.0208 ± 0.0001

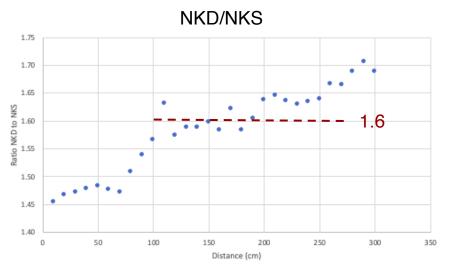
 0.0217 ± 0.0002

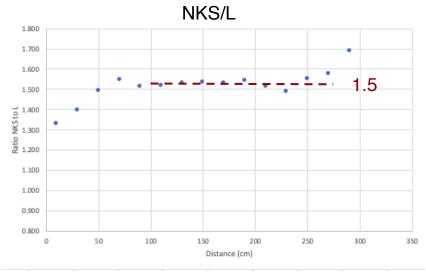
 0.0292 ± 0.0002

 0.0254 ± 0.0003

 0.0262 ± 0.0004

Short & Long Atten Len: fits 100-300cm

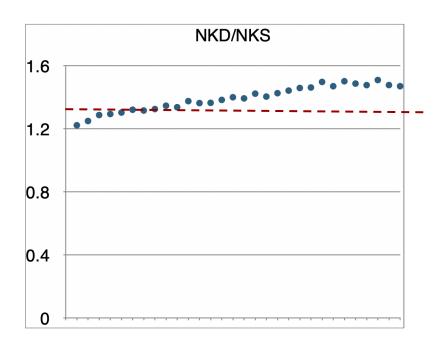

Attenuation Curve Coefficients from Double Exponential Fit - 370nm LED with 3.3V Current Limit							
Fibre Type	Fibre #	Relative Error (%)	I_0	α	λ_1	λ_2	χ^2/NDF
	02	0.6	0.0147 ± 0.0001	0.321 ± 0.006	40 ± 2	434 ± 8	27.57 / 26
	06	0.9	0.0148 ± 0.0001	0.33 ± 0.12	47 ± 4	467 ± 18	28.03 / 26
	07	0.7	0.0151 ± 0.0001	0.37 ± 0.02	59 ± 4	476 ± 22	23.07 / 26
Luxium	08	0.6	0.0146 ± 0.0001	0.28 ± 0.01	52 ± 4	447 ± 12	29.27 / 26
	09	0.8	0.0141 ± 0.0001	0.35 ± 0.05	81 ± 12	542 ± 69	28.76 / 26
	10	0.6	0.0149 ± 0.0001	0.301 ± 0.007	42 ± 2	458 ± 10	25.59 / 26
	11	0.7	0.0148 ± 0.0001	0.42 ± 0.04	80 ± 7	597 ± 67	28.96 / 26
	06	2.1	0.0244 ± 0.0003	0.40 ± 0.02	100 ± 18	742 ± 59	8.095 / 26
NKS	07	0.8	0.0260 ± 0.0003	0.214 ± 0.009	40 ± 4	506 ± 13	23.22 / 26
	10	0.6	0.0256 ± 0.0001	0.34 ± 0.03	94 ± 8	734 ± 71	27.72 / 26
	06	0.9	0.03386 ± 0.0003	0.21 ± 0.02	62 ± 10	624 ± 42	21.67 / 26
NKD	07	2.7	0.037 ± 0.001	0.42 ± 0.04	53 ± 10	775 ± 161	30.35 / 26
	10	1.2	0.0301 ± 0.0003	0.28 ± 0.02	98 ± 5	833 ± 53	20.04 / 26


BCAL had ~50cm and ~500 cm for PHT fibers

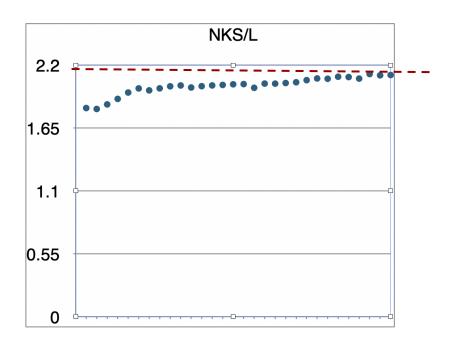
Attenuation Length Comparison (100-300cm) 2023

NKS-00i	λ (cm)	L-00i	λ (cm)	NKD-00i	λ (cm)
001	431±17	001	412±17	001	620±41
002	480±22	002	386±13	002	528±24
003	486±16	003	377±8	003	505±21
004	441±46	004	406±8	004	544±17
005	460±13	005	439±8		
001G	432±27	001G	425±8	001G	641±67
002G	532±42	002G	407±9	002G	529±41
004G	449±17	004G	567±66	004G	531±29

Fiber Scans: Comparisons 2023

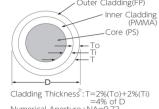


Kuraray brochure: D is 50% > S

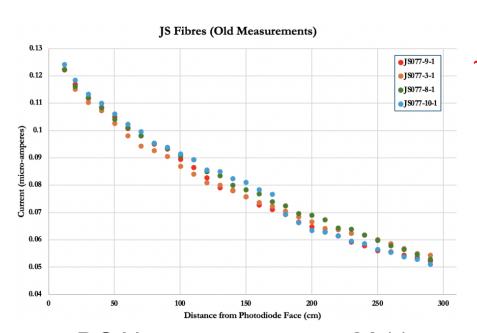

NKS > L by $\sim 50\%$

(Oleg Tsai saw 20%)

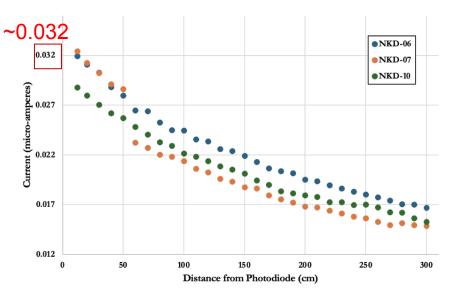
Fiber Scans: Comparisons 2024



Kuraray brochure: D is 50% > S

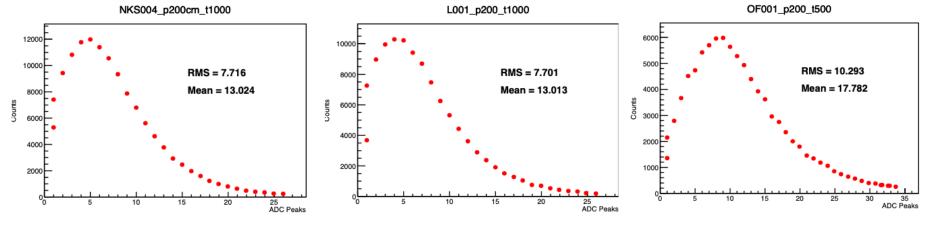


NKS > L by ≥50%


Fiber Scans: Double-Clad

=4% of D Numerical Aperture: NA=0.72 Trapping Efficiency: 5.4%

NKD Fibre Measurements



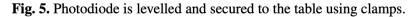
BCAL measurements 2011

BIC measurements 2024

(LED issue)

Npe - Comparisons - 90Sr at 200 cm

No grease! NKS/L = 0.3%, NKD/NKS = 27%



Photodiode Station

