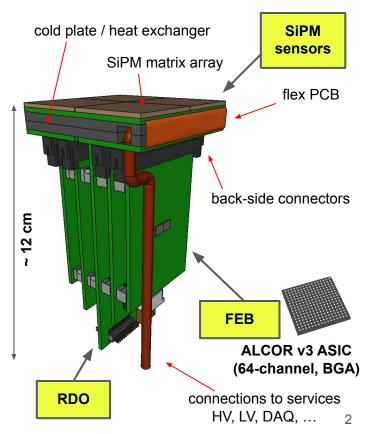

ALCOR interposer and FEB

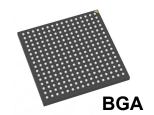
Status of ALCOR-64 BGA package and FEB designs

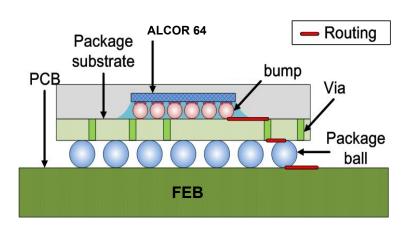

F. Cossio and M. Mignone on behalf of the ALCOR group INFN Torino

dRICH Meeting - Sensors and Electronics 12.02.2025

ePIC dRICH electronics

- 1 PDU: 4x64 SiPM array device (256 channels), 4 FEBs, 1 RDO
- 1 ALCOR (64 channels) per FEB: 8x8 SiPM matrix readout
- 1248 PDUs for full dRICH readout
- 4992 FEBs → 4992 ALCOR v3
- 319488 readout channels

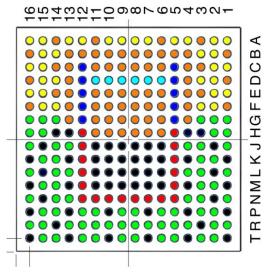

ALCOR BGA package

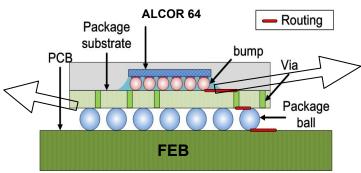

FC-BGA: flip-chip ball grid array

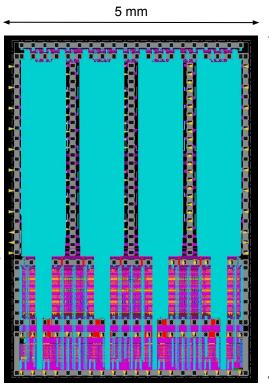
- Inside the package, the chip is flipped so that the active side of the device can be bump-bonded to the package substrate
- The whole bottom surface of the device can be used, not just the perimeter
- More interconnection pins wrt QFP or QFN
- Shorter interconnections reduce inductance, allow high-speed signals and carry heat better

256 balls BGA

• 1.0 mm ball pitch \rightarrow 17x17 mm² package

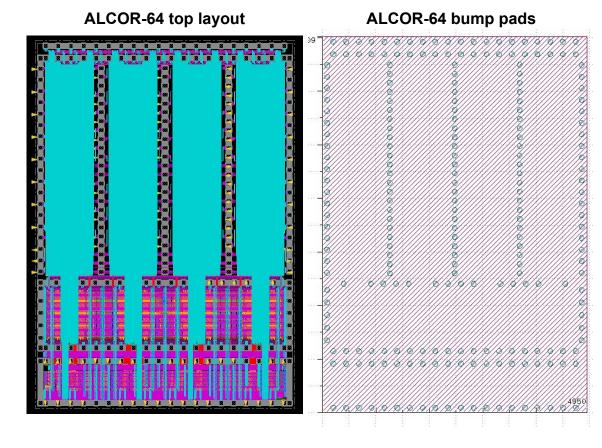





ALCOR BGA package

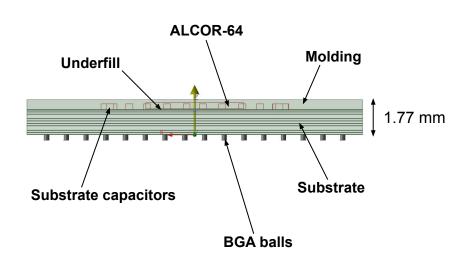
FC-BGA: flip-chip ball grid array

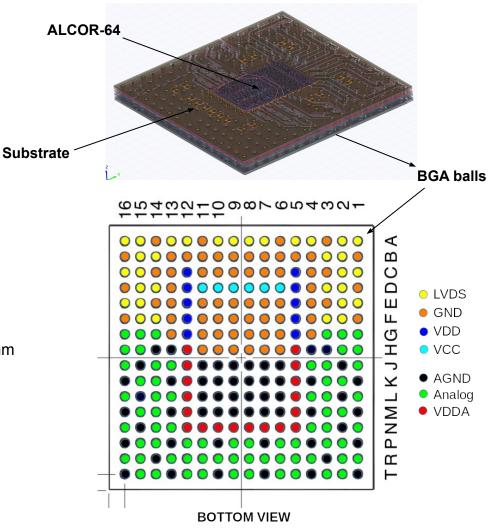
- BGA substrate designed by INFN Torino (M. Mignone)
- Substrate production, flip-chip assembly and packaging done by I-Tronics (https://www.itronics-sg.com/)



ALCOR v3

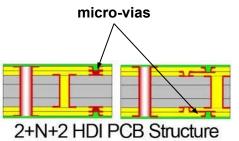
- ALCOR-64:
 - 7.02mm x 4.95mm
 - o 234 PADs
- No redistribution layer (RDL*) available in UMC 110nm technology
 - ASIC bump pads geometry not uniform
 - fan-out to BGA balls done on the interposer/substrate
- Bump pads pitch:
 - ~170 μm (analog inputs)
 - ~215 μm

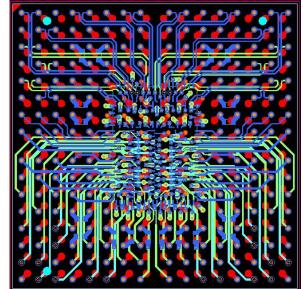

^{*}RDL (redistribution layer): special metal layer used to connect ASIC internal circuitry to its bump pads, which are then usually placed in a uniform grid pattern

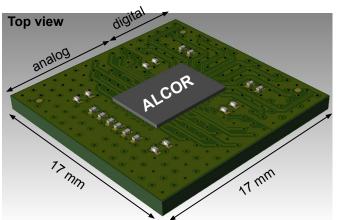

ALCOR BGA package

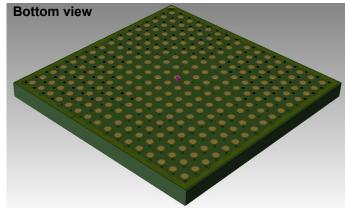
• BGA 256 (16 x 16)

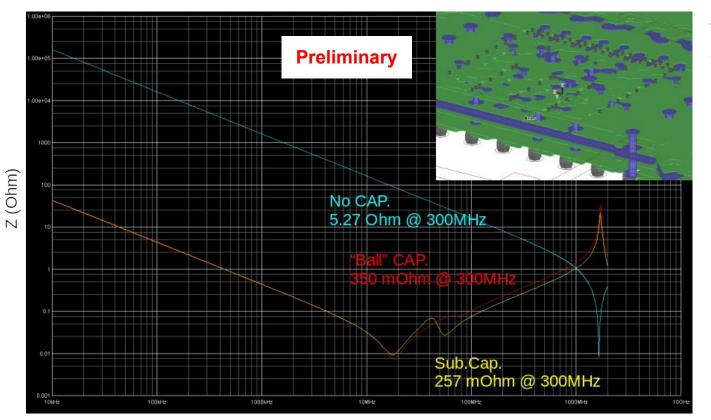
• Size: 17 mm x 17 mm

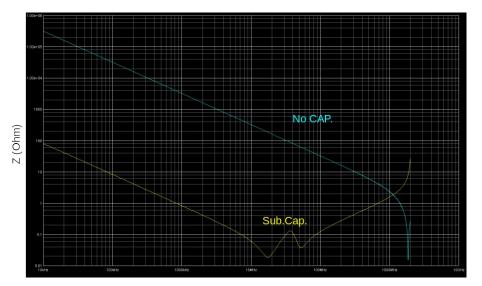

Ball pitch: 1 mm

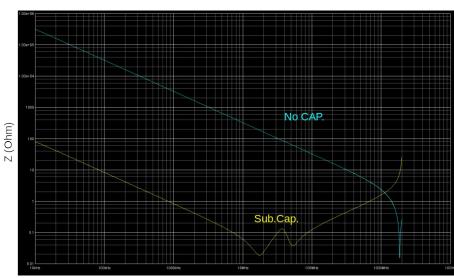





ALCOR-64 substrate

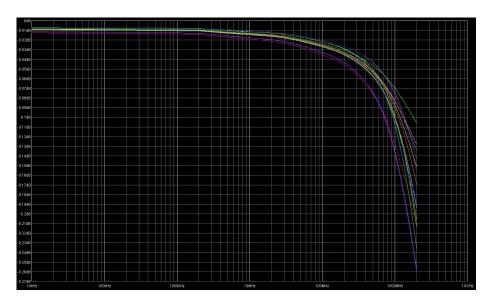

- BGA 256 Ball 17x17mm 1mm-pitch
- BT-Epoxy
- 10 Layers (2+N+2) -
- Thickness: 1.27 mm
- Decoupling capacitors (0201)
- Design completed
- Verification ongoing: signal and power integrity simulations



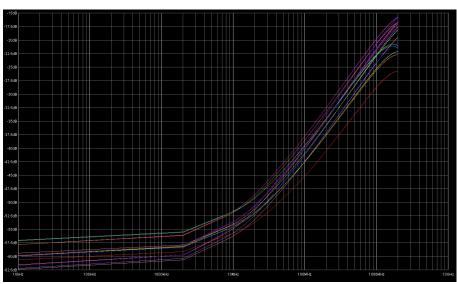

VDD-PDN (analog core supply power distribution network)

- Sub.CAP: substrate capacitors provides lower impedance
- Ball CAP: ideal case (not feasible)

Back-annotate this model into ALCOR simulations

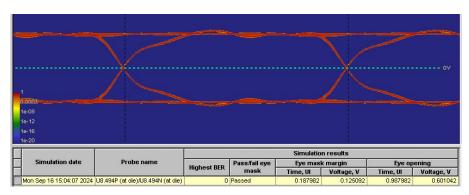


VDD-PDN (Digital core power supply)

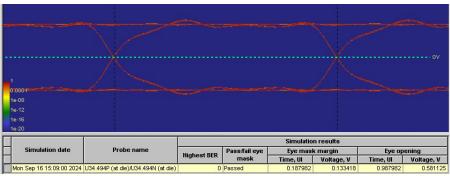


VCC-PDN (Digital IO power supply)

Digital IO - LVDS transmission lines

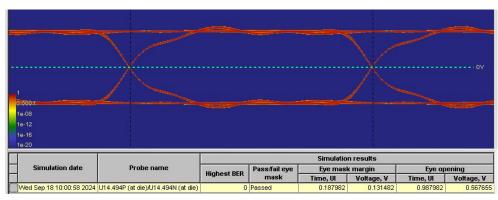


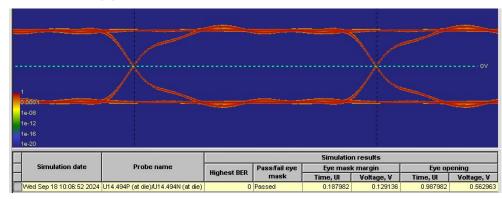
Insertion loss: amount of energy that a signal loses as it travels along the PCB trace



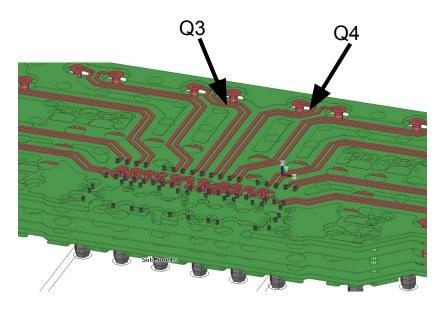
Return loss: loss of signal power due to signal reflection (impedance mismatch)

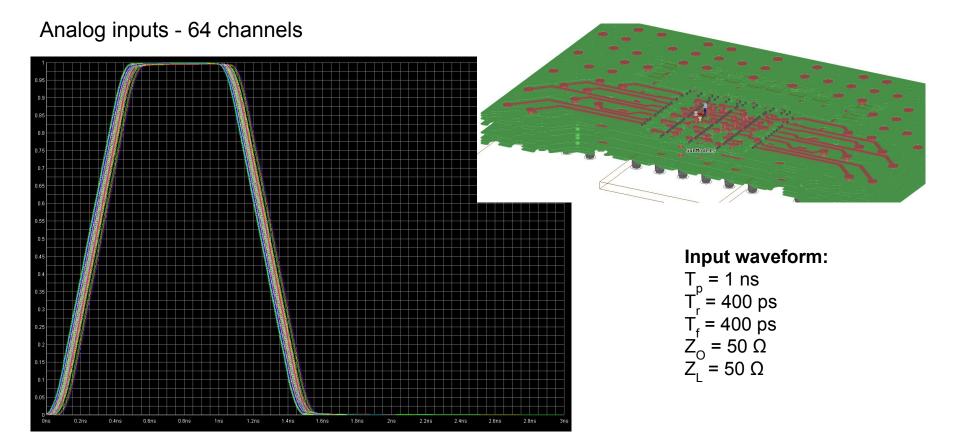
Digital IO - LVDS transmission lines

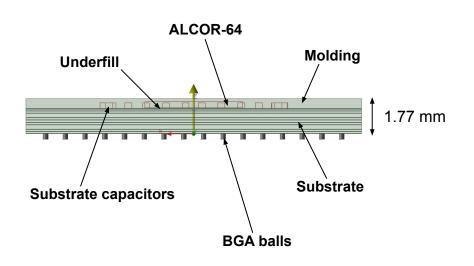

ALCOR substrate=Ball+Via+Line+Bump Q0-PRBS 19bit 800Mbps

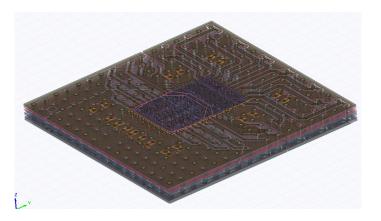

"Ideal" TLINE Q0-PRBS 19bit 800Mbps

Tx and Rx model used is LVDS_2V5 Driver (Artix UltraScale+)


Q3-PRBS 19bit 800Mbps

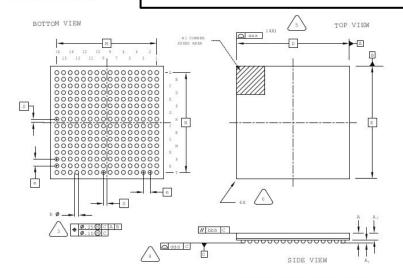

Q3-PRBS 19bit 800Mbps (+Q4 "Aggressor" Crosstalk PRBS 19bit 800 Mbps)


Crosstalk


Tx and Rx model used is LVDS_2V5 Driver (Artix UltraScale+)

Package Thermal Resistance

- Molding 0.5 mm (0.16 mm above ASIC)
- ALCOR-64
- Underfill
- Substrate



Underfill Thermal Conductivity	θ _{JC} (ASIC-case)	θ _{JB} (ASIC-board)
0.2 W/mK	3.45 °C/W	14.86 °C/W
0.8 W/mK	3.13 °C/W	11.01 °C/W

Commercial 256-ball BGA package datasheet

256-Ball ftBGA Package 0

Dimensions in Millimeters

NOTES: UNLESS OTHERWISE SPECIFIED

 DIMENSIONS AND TOLERANCES PER ANSI Y14.5M.

ALL DIMENSIONS ARE IN MILLIMETERS.

DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C

PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

BILATERAL TOLERANCE ZONE IS APPLIED TO EACH SIDE OF THE PACKAGE BODY.

EXACT	SHAPE	AND	SIZE	OF	THIS	FEATURE
TE ODS	TEMOTE					

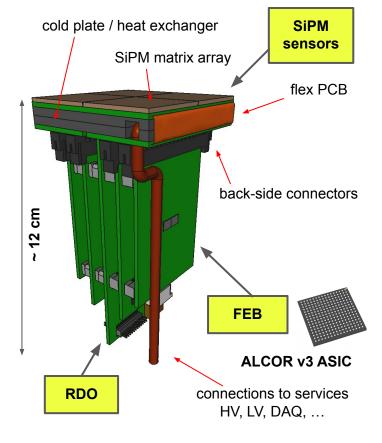
SYMBOL	MIN.	NOM.	MAX.				
A	1.30	1.70	2.10				
A1	0.30	0.50	0.70				
A2	1.40 REF						
D/E	17.0 BSC						
M/N	15.0 BSC						
S	0.50 BSC						
b	0.50	0.60	0.70				
е	1.0 BSC						
aaa	-	-	0.20				
bbb	-	-	0.25				
ddd	200	(5)	0.20				

Geometry very similar to ALCOR BGA

Table 2. Device/Package Thermal Resistance¹

Family	Device	Package	Dimensions	Pin Count	θ _{JA} (0lfm) °C/W	θ _{JA} (200lfm) °C/W	$^{\theta_{\rm JA}}_{\rm (500lfm)}$ °C/W	^θ JB °C/W	^θ JC °C/W
LatticeECP2M™	LFE2M20E	FPBGA	17 x 17 mm	256	24.2	20.2	17.8	12.6	3.2
	LFE2M20E	FPBGA	23 x 23 mm	484	18.1	15.6	13.8	9.5	5.1
	LFE2M35E	FPBGA	17 x 17 mm	256	22.4	18.5	16.2	11.0	2.5
	LFE2M35E	FPBGA	23 x 23 mm	484	16.8	14.3	12.5	8.1	4.0
	LFE2M35E	FPBGA	27 x 27 mm	672	15.5	13.0	11.1	5.9	3.1
	LFE2M50E	FPBGA	23 x 23 mm	484	15.6	13.1	11.3	6.9	3.1
	LFE2M50E	FPBGA	27 x 27 mm	672	14.2	11.9	10.2	5.9	2.6
	LFE2M50E	FPBGA	31 x 31 mm	900	12.5	10.4	9.1	6.1	1.9
	LFE2M70E	FPBGA	31 x 31 mm	900	11.7	9.5	8.1	5.3	1.5
	LFE2M70E	FPBGA	35 x 35 mm	1152	13.7	12.0	11.0	6.5	2.0
	LFE2M100E	FPBGA	31 x 31 mm	900	10.8	8.6	7.1	4.5	1.2
	LFE2M100E	FPBGA	35 x 35 mm	1152	13.2	11.2	9.8	5.7	1.5
LatticeECP3™	LFE3-17	FTBGA	17 x 17 mm	256	24.5	20.6	18.2	12.9	3.3
[LFE3-17	CSBGA	10 x 10 mm	328	30.8	27.8	25.5	12.5	6.1
	LFE3-17	FPBGA	23 x 23 mm	484	18.4	15.8	14.1	9.8	5.4
	LFE3-35	FTBGA	17 x 17 mm	256	24.5	20.6	18.2	12.9	3.3
	LFE3-35	FPBGA	23 x 23 mm	484	18.4	15.8	14.1	9.8	5.4
	LFE3-35	FPBGA	27 x 27 mm	672	17.1	14.7	12.7	9.5	4.5
	LFE3-70	FPBGA	23 x 23 mm	484	15.7	13.2	11.4	7	3.2
	LFE3-70	FPBGA	27 x 27 mm	672	14.3	12	10.3	6	2.7
	LFE3-70	FPBGA	35 x 35 mm	1156	12.9	11.5	10.6	7.3	2.3

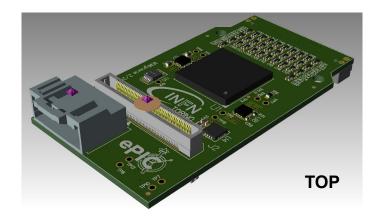
Package Thermal Resistance

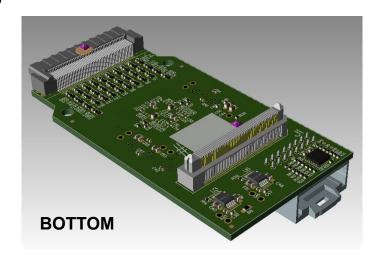

- θ_{JB} = 12.9 °C/W (Junction-to-Board)
- θ_{1C}° = 3.3 °C/W (Junction-to-Case)

Results from our simulations match quite well specs from commercial BGA

dRICH ALCOR FEB

- 4 FEBs in each PDU (256 readout channels)
- Functionalities defined, components selected, schematic design done
- 2 slightly different FEB versions, they share the ALCOR BUS connector (interface with RDO):
 - Master: internal FEB
 - Slave: external FEB
- Layout ongoing: many constraints already finalized to match RDO and ALCOR designs, PCB traces routing ongoing


Designed by **INFN Torino** (M. Mignone), close cooperation with **Bologna-Ferrara** colleagues for RDO design, SiPMs requirements and space constraints



PDU

dRICH ALCOR FEB

- ALCOR v3: 64-channel, BGA package
- ALCOR BUS connector: interface between RDO and 4 FEB
- **SiPM connector**: interface between ALCOR inputs and SiPM
- **Service connector**: provides LV (for ALCOR) and HV (for SiPM)
- Dedicated PCB section for SiPMs HV routing: 2 V_{bias} channels, to be used also for SiPM annealing (forward-bias, T=150°C on SiPM matrix board, up to 3.2 A on each V_{bias} channel, 0.1 A for each SiPM)
- ALCOR AC-coupling circuitry + annealing diodes
- Voltage regulators with current monitors (managed by RDO via I2C expander)
- NTC temperature sensor

