
Ask PanDA

February 19, 2025

NPPS Weekly Meeting

Paul Nilsson

Introduction

2

• ”Ask PanDA” (prel. name) is a prototype virtual assistant using

OpenAI API
• Originally intended to improve how we access project documentation but might

grow into something more interesting (and useful)

• Can answer both static (predefined) and dynamic (real-time) questions
• “What is PanDA?” (static)

• “How does Harvester work?” (static)

• “Tell me about brokering in PanDA” (static)

• “How many pilots ran yesterday at BNL?” (dynamic)

• “Why did job XYZ fail?” (dynamic)

• Why is that interesting?
• Reduces time spent searching for answers

• For both users as well as the people that have to spend time looking for answers and

respond

• Operators monitoring the system trying to understand it (esp. when things go wrong)

InitiaI Ideas – Static Queries

3

• Use AI to answer questions about the PanDA documentation

• No AI is better than the information it is trained on

• Trick is to use well written, relevant and up-to-date documentation along with a proper

prompt template (only answer relevant questions)

• Provide access via standard entry point, i.e. the PanDA monitor

• Re-use/extend search field or add new “Ask PanDA” button somewhere

Ask PanDA

RAG Approach for Static Queries

4

• Retrieval-Augmented Generation (RAG) is a better approach for our

purposes than training a new model
• Since PanDA documentation is essentially the only source of knowledge needed for our chatbot (and

thus has too little information to train an LLM from scratch)

• RAG stores the input document in an embedding-based database (Langchain

FAISS)
• When a user asks a question, retrieve the most relevant sections and pass them to an existing LLM

(GPT)

• RAG does not extend the LLM model but augments the answers

• Works well for long documents since it avoids input size limitations

• Currently using GPT-4o-mini model ($0.15 per 1M tokens input, $0.60 per 1M

output)

Footnote: Would be interesting to try GPT-4o
• Very fast and has a 128k context window which allows to process large portions of the document in

one go

• Alas, it’s expensive ($2.5 per 1M tokens input, $10 per 1M output)

Current Implementation

5

• PanDA documentation (readthedocs) was exported as pdf, then converted to plain text
• Realized later that readthedocs does not export properly – used GitHub source files instead

• A python script using OpenAI and LangChain API modules
• For testing purposes flask is currently used for creating simple web interface – but seems to be a bottleneck

• A “proper” prompt template is used

• PanDA docs are over 600 kB - can only send 15kB to OpenAI
• Script therefore divides the text in chunks and once it gets user input, it tries to find the most likely chunk (using

OpenAI embedding model via Langchain) before sending it off to the GPT model

• Tried different ChatGPT models
• GPT-3.5 (fast but not so good answers, sometimes cut in the middle of a sentence – but is very cheap)

• GPT-4 (much better, more expensive of course)

• Switched to GPT-4o-mini this week

Example 1

6

• How to run a hello

world job with prun
• PanDA client tool used

to submit user jobs to

the grid

Static

Example 2

7

• Task status changes

are explained

• Formatting and list

numbering done by

ChatGPT

• Note: if you ask

ChatGPT (web

version) the same

question, you will

probably get the

same answer in this

case
• Because it’s on the

internet!

• It might also be

outdated info

Static

Example 3

8

• However, if you ask

ChatGPT/Gemini/..

about a list of, say,

PanDA pilot error

codes it will either not

know the answer or

show something

incoherent/scrambled

and not complete

• Using your own input

document gives you

full control

Static

Dynamic Queries

9

• For questions like “why did my job fail?”, GPT

will of course not know anything

• Script therefore extracts relevant info from

query and gets info from PanDA before asking

GPT what went wrong
• If the job ID can be extracted, e.g. the pilot log

(only) will be downloaded from PanDA

• Relevant chunks (error messages, warnings and

such) is then sent to GPT

• Response is returned from GPT

• Currently only the pilot log is investigated but

same methodology can be used for any log file
• User could request in the query

• Why did the payload in job XYZ fail?

 payload.stdout/stderr gets downloaded

• Script can also download and analyze info from

standard job page (JSON version)
• Trivial - GPT is not involved in this case

Is static or

dynamic question?

Static

Dynamic

Can PanDA id be

extracted?

Consult GPT

No

Yes

Download relevant

log file

Extract relevant

chunks

Example 1

10

• NB currently not much

more info is revealed

than the monitor

page, but if error

codes can be

extracted, more

explanations can be

provided (script has

list of pilot error codes

included)

Dynamic

Example 2

11

• Stage-out failure with

a little bit more

explanations

Dynamic

Usage statistics

12

• Models are priced individually

• 76 API requests with 101k tokens sent to

gpt-3.5
• User questions

• 32 API requests with 31k tokens sent to

gpt-4
• User questions

• 85 API requests with 5.2M tokens sent to

embedding model
• To find the most relevant chunk for a given

question

Usage Costs

13

• Total cost after around

100 questions: $1.82
• But mostly using GPT-

3.5 – which is better to

use if the quality of the

answers is not always

important

• When I switched to the

better GPT-4 model, I

quickly ran out of

money

Breakdown

14

• Cost for embedding

model: $0.53

• Cost for questions +

responses: $1.29

• GPT-3.5 model really

cheap, but also not so

good..

Outlook

15

• Improve input document wherever needed, collect feedback

• Pilot documentation not part of PanDA readthedocs (only linked), so add that

and possibly other bits and pieces (in progress)

• Implement handling of more advanced queries

• Capability of selecting different log files

• (I’m mostly interested in error analysis – which also ties into

REDWOOD project)

• Move project to Django to align with new BigPanDAMon project

• Unfortunately not for free and API not currently part of the BNL OpenAI

ChatGPT license

• Need to discuss funding at some point

	Slide 1: Ask PanDA
	Slide 2: Introduction
	Slide 3: InitiaI Ideas – Static Queries
	Slide 4: RAG Approach for Static Queries
	Slide 5: Current Implementation
	Slide 6: Example 1
	Slide 7: Example 2
	Slide 8: Example 3
	Slide 9: Dynamic Queries
	Slide 10: Example 1
	Slide 11: Example 2
	Slide 12: Usage statistics
	Slide 13: Usage Costs
	Slide 14: Breakdown
	Slide 15: Outlook

