Study D⁰ reconstruction with D⁰ and DIS samples

Rongrong Ma 02/04/2025

Simulation samples

ep @ 10x100	D0 sample	DIS sample	Scale factor for DIS sample
Q ² > 1	0.985 M (<u>LOCATION</u>)	4.98 M (<u>LOCATION</u>)	~350
Q ² > 100	0.985 M (<u>LOCATION</u>)	4.97 M (<u>LOCATION</u>)	~99

- Scale factors determined based on simulation statistics
 - Q² > 1 D0:DIS ~ 1:1770
 - Q² > 100 D0:DIS ~ 1:500
- D⁰ signals in DIS sample are removed. A very small effect

D⁰ reconstruction

• Truth PID

- Topological cuts
 - DCA_{π} > 20 μ m, DCA_K > 20 μ m
 - $DCA_{12} < 70 \ \mu m$
 - DCA_{D0} < 100 μ m
 - Decay length > 50 μ m
 - $-\cos\theta > 0.95$

Inclusive D0+DIS sample

Before

Now

$Q^2 > 1$: D0 sample

5

$Q^2 > 1$: DIS sample

$Q^2 > 1$: D0 + scaled DIS

1.95

M_v (GeV/c²

1.9 1.95

M_{-k} (GeV/c²)

1.95

M_{"K} (GeV/c²)

Fluctuations in background overwhelm signal •

$Q^2 > 100$: D0 sample

 $Q^2 > 100$: DIS sample

$Q^2 > 100$: D0 + scaled DIS

• Fluctuations in background overwhelm signal

How to overcome fluctuations?

- Fluctuations in background are artificially amplified when scaling DIS samples
- Fit background distributions from DIS, and use the fit function to sample "scaled" background

$Q^2 > 1$: fit DIS sample

$Q^2 > 1$: fit DIS sample with topo cuts

M_{=K} (GeV/c²)

$Q^2 > 100$: fit DIS sample

$Q^2 > 100$: fit DIS sample with topo cuts

M_{=K} (GeV/c²)

$Q^2 > 1$: fit D0 sample

• Student-T function describes signal shape better

 $Q^2 > 100$: fit D0 sample

Student-T function describes signal shape better

$Q^2 > 1$: fit D0+DIS sample

S/B ratio within 2σ of signal peak

– 1.6

1.6

1.6

$Q^2 > 1$: fit D0+DIS sample with topo cuts

$Q^2 > 100$: fit D0+DIS sample

140F

280

1.6

1.75 1.8

1.6

1.65

1.6 1.65 1.7

-No cuts

$Q^2 > 100$: fit D0+DIS sample with topo cuts

 π +K pair: -3 < y < -1, 1 < p_ < 2 GeV/c

Summary

- D0 shape can be better fit with the student-T function
- Directly scaling DIS samples to mimic background introduces large fluctuations.
 - A fitting & sampling procedure is used to suppress the fluctuations.
 - This procedure does not work for machine learning since the correlations are lost. Producing a DIS sample with sufficient statistics for individual p_⊤eta bin will be computationally very expensive.
- With straight topological cuts, good S/B ratios can be achieved in most p_Teta bins. Maybe we do not need to apply machine learning in individual bins.