

The tRECO Convention

- $p_{\rm BA}^{\mu}$: outgoing baryon 4-momentum.
- p_{BE}^{μ} : incoming proton beam momentum.
- $p_{\gamma^*}^{\mu}$: difference between incoming and scattered electron 4-momentum.
- $p_{\mathbf{X}}^{\mu}$: 4-momentum of the rest of final state.

Why is t reconstruction not trivial?

Overconstrained system, with momentum conservation, t can be measured in many different ways. Ideal way to compute t might depend on particular channel and particular kinematics

Important factors to consider:

- Beam divergence of either beam
- QED radiation. Initial and Final state radiation.
- Detector resolution (in both transverse momentum, and longitudinal momentum)
- Subtraction of large numbers, etc.

Quite a bit of proliferation of methods in inclusive DIS in HERA days...

No naming convention!!!

Method name	Observables	y	Q^2	$x \cdot E_p$
Electron (e)	$[E_0, E, \theta]$	$1 - \frac{\Sigma_e}{2E_0}$	$\frac{E^2\sin^2\theta}{1-y}$	$\frac{E(1+\cos\theta)}{2y}$
Double angle (DA) [6, 7]	$[E_0, \theta, \gamma]$	$\frac{\tan\frac{\gamma}{2}}{\tan\frac{\gamma}{2}+\tan\frac{\theta}{2}}$	$4E_0^2\cot^2\frac{\theta}{2}(1-y)$	$\frac{Q^2}{4E_0y}$
Hadron (h, JB) [4]	$[E_0,\Sigma,\gamma]$	$rac{\Sigma}{2E_0}$	$\frac{T^2}{1-y}$	$rac{Q^2}{2\Sigma}$
ISigma (I Σ) [9]	$_{[E,\theta,\Sigma]}$	$\frac{\Sigma}{\Sigma + \Sigma_e}$	$\frac{E^2 \sin^2 \theta}{1 - y}$	$\frac{E(1+\cos\theta)}{2y}$
IDA [7]	$_{[E,\theta,\gamma]}$	y_{DA}	$\frac{E^2\sin^2\theta}{1-y}$	$\frac{E(1+\cos\theta)}{2y}$
$E_0 E \Sigma$	$[E_0,E,\Sigma]$	y_h	$4E_0E - 4E_0^2(1-y)$	$rac{Q^2}{2\Sigma}$
$E_0 \theta \Sigma$	$[E_0,\theta,\Sigma]$	y_h	$4E_0^2 \cot^2 \frac{\theta}{2} (1-y)$	$rac{Q^2}{2\Sigma}$
$\theta \Sigma \gamma$ [8]	$[\theta,\!\Sigma,\!\gamma]$	y_{DA}	$\frac{T^2}{1-y}$	$rac{Q^2}{2\Sigma}$
Double energy (A4) [7]	$[E_0, E, E_h]$	$\tfrac{E-E_0}{(xE_p)-E_0}$	$4E_0y(xE_p)$	$E + E_h - E_0$
$E\Sigma T$	$_{[E,\Sigma,T]}$	$\frac{\Sigma}{\Sigma + E \pm \sqrt{E^2 + T^2}}$	$\frac{T^2}{1-y}$	$rac{Q^2}{2\Sigma}$
E_0ET	$[E_0,E,T]$	$\tfrac{2E_0 - E \mp \sqrt{E^2 - T^2}}{2E_0}$	$\frac{T^2}{1-y}$	$\frac{Q^2}{4E_0y}$
Sigma (Σ) [9]	$[E_0,E,\Sigma,\theta]$	$y_{\mathrm{I}\Sigma}$	$Q^2_{\mathrm{I}\Sigma}$	$\frac{Q^2}{4E_0y}$
e Sigma $(e\Sigma)$ [9]	$[E_0,E,\Sigma,\theta]$	$\frac{2E_0\Sigma}{(\Sigma+\Sigma_e)^2}$	$2E_0E(1+\cos\theta)$	$\frac{E(1+\cos\theta)(\Sigma+\Sigma_e)}{2\Sigma}$

Table 1. Summary of basic reconstruction methods that employ only three out of five quantities: E_0 (electron-beam energy), E and θ (scattered electron energy and polar angle), Σ and γ (longitudinal energy-momentum balance, $\Sigma = \sum_{\text{HFS}} (E_i - p_{z,i})$, and the inclusive angle of the HFS).

The t-Reconstruction (tRECO) Convention establishes a standardized nomenclature for methods used to reconstruct the Mandelstam variable t in electron-proton (or ion) scattering. This convention aims to provide a unified framework for describing a broad class of experimental techniques to be used for t reconstruction at the Electron-Ion Collider.

TABLE I. The tRECO convention: classes of methods used to reconstruct the Mandelstam variable t are defined by the observables that are at least partially utilized. Here, $p_{\rm BA}^{\mu}$ represents the outgoing baryon 4-momentum; $p_{\rm BE}^{\mu}$ denotes the incoming proton beam momentum; $p_{\gamma^*}^{\mu}$ refers to the difference between the incoming and scattered electron 4-momenta; and $p_{\rm X}^{\mu}$ represents the 4-momentum of the rest of the final

ming and scattered electron 4-momenta; and
$$p_{\mathbf{X}}^{\mu}$$
 represents the 4-momentum of the rest of the fine class name Observables used Example(s)

BABE $p_{\mathrm{BA}}^{\mu}, p_{\mathrm{BE}}^{\mu}$ $-t = (p_{\mathrm{BA}}^{\mu} - p_{\mathrm{BE}}^{\mu})^2$ or $t = |\vec{p}_{\mathrm{BA}}^{\mathrm{T}}|^2$

eX $p_{\gamma^*}^{\mu}, p_{\mathrm{X}}^{\mu}$ $-t = (p_{\gamma^*}^{\mu} - p_{\mathrm{X}}^{\mu})^2$ or $t = |\vec{p}_{\mathrm{X}}^{\mathrm{T}}|^2$

eXBA $p_{\gamma^*}^{\mu}, p_{\mathrm{X}}^{\mu}, p_{\mathrm{BA}}^{\mu}$ $-t = (p_{\mathrm{corr}}^{\mu} - p_{\mathrm{X}}^{\mu})^2$
 $p_{\mathrm{corr}}^{\mu} = (\frac{\sum_{\mathrm{XBA}}}{2} - \frac{E_{e'}}{2}(1 + \cos\theta_{e'}), p_{\gamma^*}^{\mu}[1], p_{\gamma^*}^{\mu}[2], -\frac{\sum_{\mathrm{XBA}}}{2} - \frac{E_{e'}}{2}(1 + \cos\theta_{e'}))$
 $\sum_{\mathrm{XBA}} := (E_{\mathrm{X}} - p_{\mathrm{X}}^{z}) + (E_{\mathrm{BA}} - p_{\mathrm{BA}}^{z})$

$$\begin{aligned} & p_{\gamma^*}^{\mu}, \, p_{\mathrm{X}}, \, p_{\mathrm{BA}} & = -t - (p_{\mathrm{corr}} - p_{\mathrm{X}}) \\ & p_{\mathrm{corr}}^{\mu} = \left(\frac{\sum_{\mathrm{XBA}}}{2} - \frac{E_{e'}}{2} (1 + \cos \theta_{e'}), p_{\gamma^*}^{\mu}[1], p_{\gamma^*}^{\mu}[2], -\frac{\sum_{\mathrm{XBA}}}{2} - \frac{E_{e'}}{2} (1 + \cos \theta_{e'})\right) \\ & \sum_{\mathrm{XBA}} := \left(E_{\mathrm{X}} - p_{\mathrm{X}}^{2}\right) + \left(E_{\mathrm{BA}} - p_{\mathrm{BA}}^{2}\right) \\ & e_{\mathrm{XBE}} & p_{\gamma^*}^{\mu}, \, p_{\mathrm{X}}^{\mu}, \, p_{\mathrm{BE}}^{\mu} & -t = \left(p_{\mathrm{corr}}^{\mu} - p_{\mathrm{BE}}^{\mu}\right)^{2} \, \text{or} \, t = |\vec{p}_{\mathrm{miss}}^{\mathsf{TIS}}|^{2} \\ & p_{\mathrm{corr}}^{\mu} = \left[\sqrt{|\vec{p}_{\mathrm{miss}}|^{2} + m_{\mathrm{BA}}^{2}}, |\vec{p}_{\mathrm{miss}}| \hat{n}(\theta_{\mathrm{miss}}, \phi_{\mathrm{miss}})\right] \\ & p_{\mathrm{miss}}^{\mu} = p_{\gamma^*}^{\mu} + p_{\mathrm{BE}}^{\mu} - p_{\mathrm{X}}^{\mu} = [E_{\mathrm{miss}}, |\vec{p}_{\mathrm{miss}}| \hat{n}(\theta_{\mathrm{miss}}, \phi_{\mathrm{miss}})] \\ & e_{\mathrm{BABE}} & p_{\gamma^*}^{\mu}, \, p_{\mathrm{BA}}^{\mu}, \, p_{\mathrm{BE}}^{\mu} & -t = (p_{\mathrm{corr}}^{\mu} - p_{\mathrm{BE}}^{\mu})^{2} \\ & p_{\mathrm{corr}}^{\mu} = (p_{\mathrm{BA}}^{\mu}[0], -p_{\gamma^*}^{\mu}[1], -p_{\gamma^*}^{\mu}[2], p_{\mathrm{BA}}^{\mu}[3]) \\ \\ & e_{\mathrm{XBABE}} & p_{\chi}^{\mu}, \, p_{\mathrm{BA}}^{\mu}, \, p_{\mathrm{BE}}^{\mu} & -t = (p_{\mathrm{corr}}^{\mu} - p_{\mathrm{BE}}^{\mu})^{2} \\ \\ & e_{\mathrm{XBABE}} & p_{\gamma^*}^{\mu}, \, p_{\lambda}^{\mu}, \, p_{\mathrm{BA}}^{\mu}, \, p_{\mathrm{BE}}^{\mu} - t = (p_{\mathrm{corr}}^{\mu} - p_{\mathrm{BE}}^{\mu})^{2} \end{aligned}$$

 $p_{\text{corr}}^{\mu} = \left[\sqrt{|\vec{p}_{\text{miss}}|^2 + m_{\text{BA}}^2}, |\vec{p}_{\text{miss}}| \hat{n}(\theta_{\text{BA}}, \phi_{\text{BA}}) \right]$

 $p_{\text{miss}}^{\mu} = p_{\gamma^*}^{\mu} + p_{\text{BE}}^{\mu} - p_{\text{X}}^{\mu} = [E_{\text{miss}}, |\vec{p}_{\text{miss}}| \hat{n}(\theta_{\text{miss}}, \phi_{\text{miss}})]$

eXBA
$$p_{\gamma^*}^{\mu}, p_{X}^{\mu}, p_{BA}^{\mu}$$
 $-t = (p_{corr}^{\mu} - p_{X}^{\mu})^2$
 $p_{corr}^{\mu} = (\frac{\sum_{XBA}}{2} - \frac{E_{e'}}{2}(1 + \cos\theta_{e'}), p_{\gamma^*}^{\mu}[1], p_{\gamma^*}^{\mu}[2], -\frac{\sum_{XBA}}{2} - \frac{E_{e'}}{2}(1 + \cos\theta_{e'}))$
 $\sum_{XBA} := (E_{X} - p_{X}^{z}) + (E_{BA} - p_{BA}^{z})$
eXBE $p_{\gamma^*}^{\mu}, p_{X}^{\mu}, p_{BE}^{\mu}$ $-t = (p_{corr}^{\mu} - p_{BE}^{\mu})^2 \text{ or } t = |\vec{p}_{miss}^{T}|^2$
 $p_{corr}^{\mu} = \left[\sqrt{|\vec{p}_{miss}|^2 + m_{BA}^2}, |\vec{p}_{miss}|\hat{n}(\theta_{miss}, \phi_{miss})\right]$
 $p_{miss}^{\mu} = p_{\gamma^*}^{\mu} + p_{BE}^{\mu} - p_{X}^{\mu} = [E_{miss}, |\vec{p}_{miss}|\hat{n}(\theta_{miss}, \phi_{miss})]$
eBABE $p_{\gamma^*}^{\mu}, p_{BA}^{\mu}, p_{BE}^{\mu}$ $-t = (p_{corr}^{\mu} - p_{BE}^{\mu})^2$
 $p_{corr}^{\mu} = (p_{BA}^{\mu}[0], -p_{\gamma^*}^{\mu}[1], -p_{\gamma^*}^{\mu}[2], p_{BA}^{\mu}[3])$
XBABE $p_{X}^{\mu}, p_{BA}^{\mu}, p_{BE}^{\mu}$ $-t = (p_{corr}^{\mu} - p_{BE}^{\mu})^2$

The tRECO Convention

https://www.overleaf.com/4492745111zwdkzkmntgqk#b5a34econtent_copy

You are welcome to comment, edit, and sign the convention