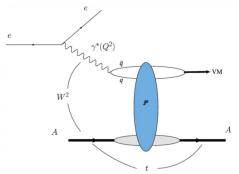
Improving |t| measurement through exclusive coherent VM production

Exclusive/Diffraction/Tagging PWG Meeting

Maci Kesler

Advisor: Zhangbu Xu Collaborators: Ashik Ikbal, Rongrong Ma, Kong Tu, Thomas Ullrich

March 10, 2025

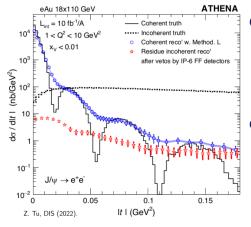

Outline

- Introduction
 - Motivation: Exclusive VM Production
 - Challenges
 - Extracting t
- 2 Method
 - Projection Technique
- Results
- 4 Summary

Motivation

Map out gluon structure in nuclei \to gluon saturation **Critical measurement:** exclusive VM production in scattering

- Measures intensity and spatial distribution of gluons
 - lacktriangleright Probe to gluon density o precisely see structure

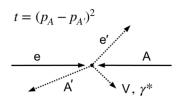


- Distribution of nuclear momentum transfer (|t|) reflects the spatial distribution of gluons inside nucleus
 - ▶ |t| conjugate to impact parameter
 - Fourier transform

M. Krelina et al., NPA 989, 187(2019)

Challenges

Measurements of the |t| distribution encounter 2 primary challenges:

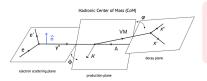

Limited resolution in measuring |t|

- Peaks and valleys washed out
- Mainly momentum resolution of outgoing electron (blue circles)

Overwhelming incoherent background

- Black dashed curve
- Detector can suppress some incoherent production (red stars)

Extracting t: $e + A \rightarrow e' + A' + V$


- To access t: need complete final state
 - ightharpoonup Cannot measure $p_{A'}$
- Know 4-momenta of e, A, e', and V
- Different methods to do this

T. Ullrich, (2020).

- Method E: gives true $t = (p_V + p_{e'} p_e)^2$
 - ▶ Cons: Subtract large incoming/outgoing momenta to get longitudinal component of $t \rightarrow$ small error/inaccuracy has large effect on t
- Method A: ignores longitudinal momenta $t = [\mathbf{p}_T(e') + \mathbf{p}_T(V)]^2$
 - **Cons:** underestimates true t, valid only for small t and small Q^2
- **Method L:** improvement to Method E, corrects $p_{A'}$ and uses true invariant mass to compensate the smearing $t_{corr} = |p_A p_{\Delta'}^{corr}|^2$
 - ▶ Cons: only applies to coherent events

Reconstruct *t* from exclusive VM production

- Measure projection of $|t|_{\perp}$ along the normal direction (\hat{n}) of the electron scattering plane
 - ▶ Eliminate momentum resolution contribution from the outgoing e
 - Potential issue: loss of information on gluon structure

$$|t|_{\perp} = (p_{V} \cdot \hat{n} + p_{e'} \cdot \hat{n} - p_{e} \cdot \hat{n})^{2}$$
$$= (p_{V} \cdot \hat{n})^{2}$$

Decompose t:

$$t=t_{\perp}+t_{\parallel}\longrightarrow t_{\perp}=t_{x}+t_{y}$$
 $t_{\perp}=q_{\perp}^{2}=q_{x}^{2}+q_{y}^{2}$

t in terms of q:

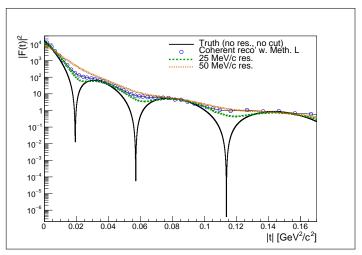
$$q_{x} = \pm \sqrt{t_{x}} = (p_{V} + p_{e'} - p_{e}) \cdot (\hat{n} \times \hat{z})$$

 $q_{y} = \pm \sqrt{t_{y}} = p_{V} \cdot \hat{n}$

Projection technique

Add detector resolution to the form factor:

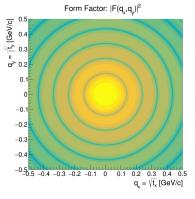
$$F(t=q^2)=rac{4\pi
ho_0}{Aq^3}\left[\sin\left(tR
ight)-tR\cos\left(tR
ight)
ight]\left(rac{1}{1+a^2t^2}
ight)$$

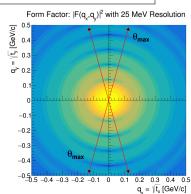

ρο: nuclear density, A: atomic number, R: nuclear radius, a: range of Yukawa potential

We can parameterize t_{\perp} in terms of q_{\perp} :

$$q_{\scriptscriptstyle X} = q_{\perp} \sin(\theta_{
m max}), \;\; q_{\scriptscriptstyle Y} = q_{\perp} \cos(\theta_{
m max}).$$

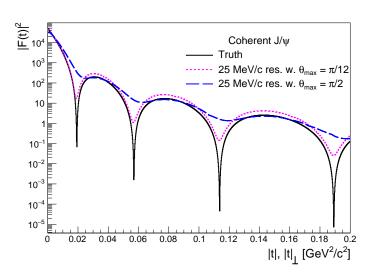
- ullet Cut wedge of angle $heta_{
 m max}$ from the \hat{n} -direction (q_y)
- Eliminates most of the q_x component


Compare with different resolution



• Seems like we can reproduce the ATHENA data with resolution between 25-50 MeV \rightarrow we use 25 MeV for our results

Wedge Cut


$$|F(t=q^2)|^2
ightarrow \int_0^{ heta_{
m max}} |F'(t, heta)|^2 d heta
ightarrow |F_{\hat n}(t)|^2 (1)$$

ullet Resolution and $heta_{
m max}$ parameters can be adjusted accordingly

Result on |t| distribution

We see a significant improvement!

Next steps...

- Analyze on ePIC software
- Correcting/Unfolding
- Fourier Transform to spatial distribution
- Separate coherent and incoherent events
 - Determine the fraction of coherently produced VMs by utilizing the transversely polarized electron beams → spin projection

Paper is on arxiv! \longrightarrow

Thank You :)

Backup Slides

Future Plan

- Utilize transversely polarized e⁻ beams
 - ▶ e[−] spin is perpendicular to its momentum
- Exploit decay pattern of VM wrt n̂
 - ▶ Determine the *fraction of coherently produced VMs*

Coherent Events

- If e[−] spin flips:
 - Spin of VM aligns with n̂
 - Expect $\cos 2\phi$ modulation if we project momentum of VM decay daughter onto VM spin direction

Future Plan

- If e⁻ spin does not flip:
 - No preferred direction of VM spin
 - ightharpoonup Expect a flat ϕ distribution

Incoherent Events

ullet VM spin expected to be random wrt \hat{n}

Result:

- Fraction of coherent events (case when e^- flips spin) is $<\cos2\phi>$
- Assume probability for e^- to flip spin is C
- Fraction of total coherent events is given by $\frac{\langle \cos 2\phi \rangle}{\zeta}$
- Can then obtain $|t|_n$ distributions for coherent VM production
 - Extract spatial distribution of gluons in nucleus

Goal:

- Provide a solution for the measurement of |t| at the EIC for imaging gluon structure in nuclei
 - Through exclusive VM production
 - ▶ Electron beam polarization
 - Separate coherent and incoherent VM production