

Tagging incoherent vector-meson production events at ePIC

Mathias Labonté

Exclusive diffractive and tagging meeting May 5, 2025

Outline

- 1. Motivation and Good-Walker paradigm
- 2. Details, BeAGLE dataset
- 3. Incoherent event tagging efficiency study
 How well can we tag incoherent events at ePIC?
- 4. Comparisons between Pb and Au

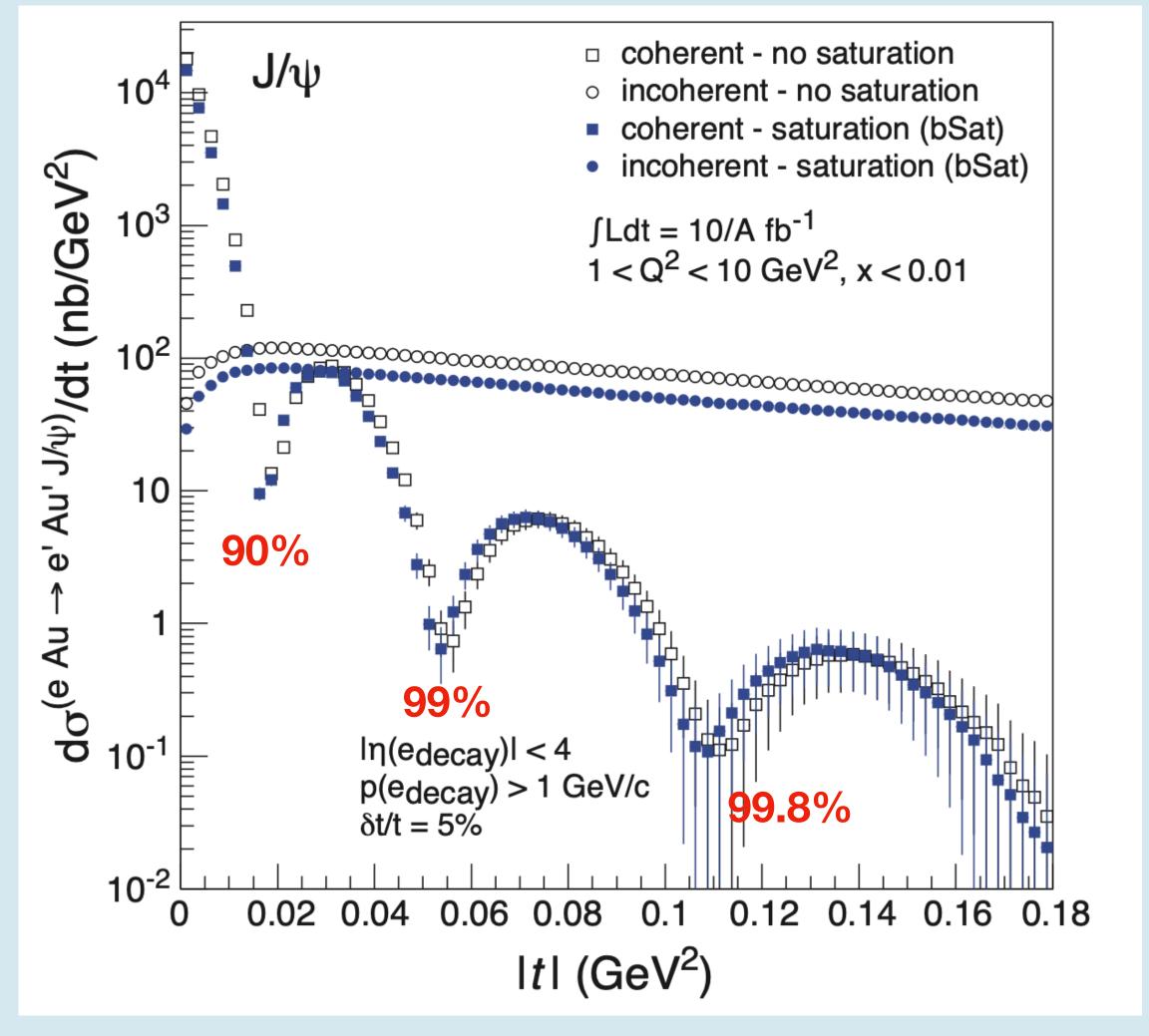
Good-Walker paradigm



- Coherent exclusive vector meson production events are sensitive to the transverse gluon distribution within the nucleus
- Incoherent events are sensitive to event-by-event fluctuations
- Even nuclear excitations are incoherent, and the Good-Walker paradigm breaks down
- Measuring these photons coming from nuclear de-excitations can serve as a means of tagging incoherent events

Physics goals at the EIC

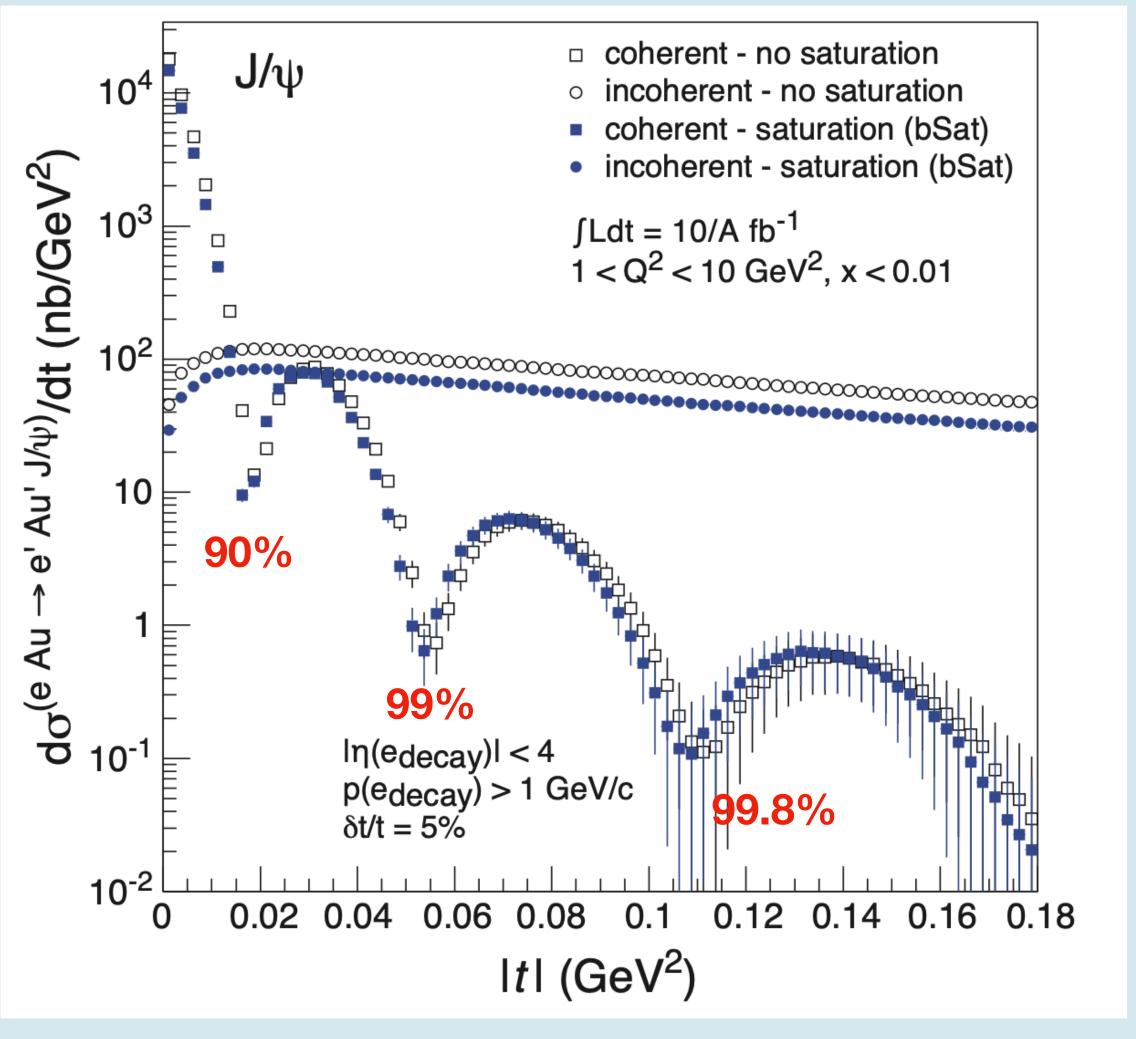
- Measure coherent vector-meson production to learn about the distribution of gluons in the nucleus
- Requires us to be able to efficiently tag incoherent events
- Tagging efficiency required at the third diffractive minimum: 99.8%



T. Toll and T. Ullrich, Phys. Rev. C 87, 024913 (2013), arXiv:1211.3048 [hep-ph].

Physics goals at the EIC

- Measure coherent vector-meson production to learn about the distribution of gluons in the nucleus
- Requires us to be able to efficiently tag incoherent events
- Tagging efficiency required at the third diffractive minimum: 99.8%



T. Toll and T. Ullrich, Phys. Rev. C 87, 024913 (2013), arXiv:1211.3048 [hep-ph].

Physics goals at the EIC

- Measure coherent vector-meson production to learn about the distribution of gluons in the nucleus
- Requires us to be able to efficiently tag incoherent events
- Tagging efficiency required at the third diffractive minimum: 99.8%


T. Toll and T. Ullrich, Phys. Rev. C 87, 024913 (2013), arXiv:1211.3048 [hep-ph].

EIC Early Science Program

	Species	Energy	Luminosity (fb ⁻¹)
Year 1	e+Ru or e+Cu	10x115	1
Year 2	e+d	10x130	9
	е+р	10x130	1
Year 3	e+p	10x130	5
Year 4	e+Au	10x130	0.5
	е+р	10x250	4
Year 5	e+Au	10x100	0.4
	e+ ³ He	10x166	4

Rosi Reed - GHP 2025 23

Gold and Lead

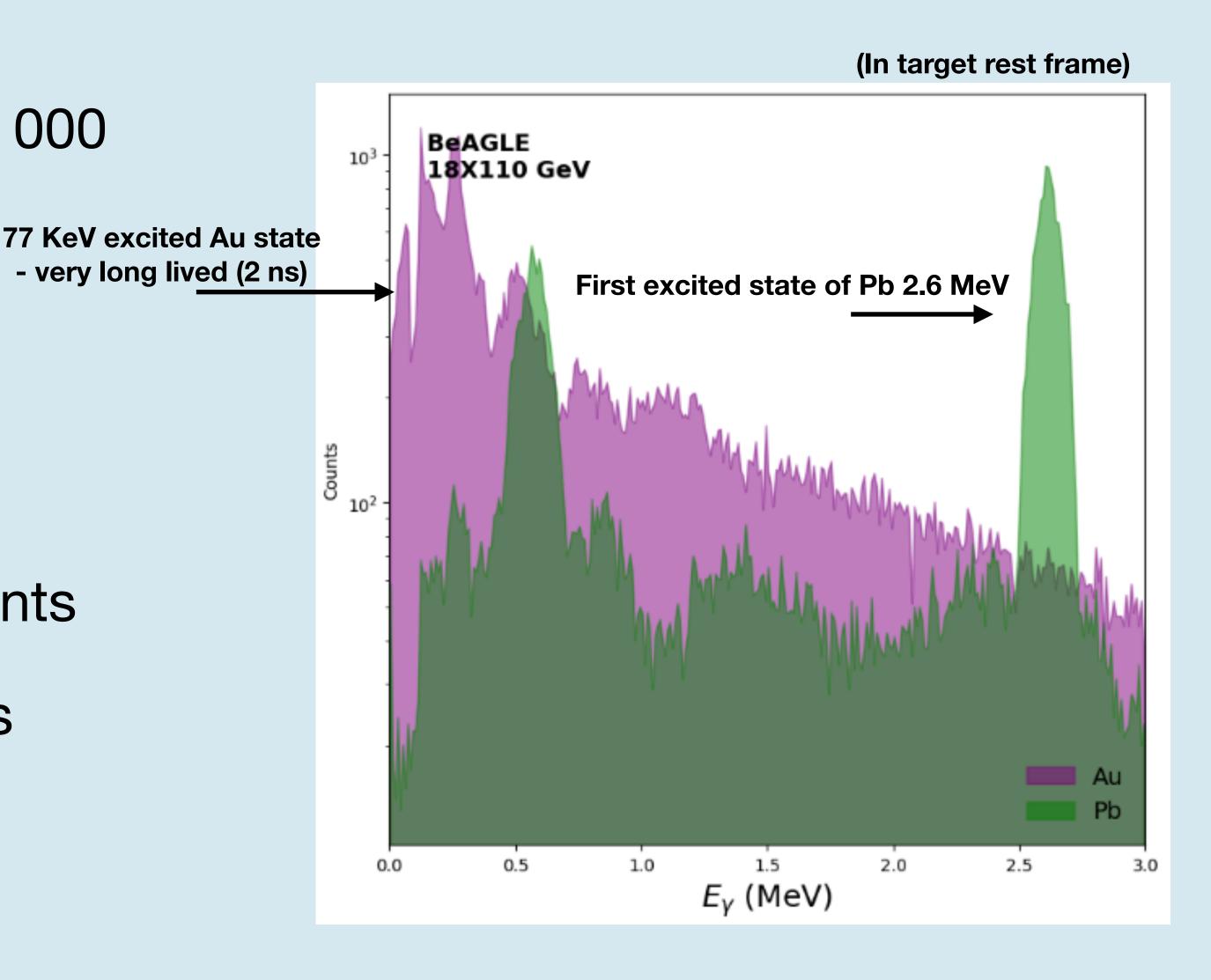
- From a partonic perspective, Au and Pb are similar (Woods-Saxon distributed nuclei and similar shadowing)
- But they have differences in their nuclear shells, giving differences in the gamma spectrum emitted from deexcitation
- The Good-Walker paradigm breaks down even in any case where there is some change to the nucleus
- The first excited state of Au (77 KeV) is much lower than than Pb (2.6 MeV), and decays much slower

		E	Excited Nuclear	States for Au-19	
Energy levels Au excited states					
E^*	$2J^{\pi}$	μ	Q	$T_{1/2}$ or	
[keV]				$\Gamma_{ m cm}$	
0.0^a	2+	±1.145746(9)	±0.547(16)	Stable	
77.351(2)	1+	+0.420(3)		1.91(1) ns	
268.788(10) $279.00(5)^{A}$	3 ' 5+	+0.53(5)		15.4(13) ps 18.6(15) ps	
$409.15(8)^{B}$	11-	(+)5.98(9)	+1.68(5)	7.73(6) s	
502.52(13) $547.5(2)^a$	5 † 7+	+3.0(5) +0.53(7)	+3.0(5)	1.77(+19-12) ps 4.61(+19-13) ps	
$583.86(17)^{C}$ $736.84(15)$	(7 ⁻)	+1.7(5)	+1.7(5)	1.09(+13-9) ps	
$767.09(23)^B$ $855.6(2)^A$	⟨15−⟩ 9+	+1.5(5)	+1.5(6)	2.67(+25-15) ps	
882(5) 888.11(20)	1+				
935.96(14) $947.86(20)^{C}$	⟨5 ⁺ ⟩ ⟨9 [−] ⟩				
1003.56(21)*	(13 ⁻)				
1045.05(16)	$\langle 7^+ \rangle$				
1059.67(21)*	$\langle 9^+ \rangle$				
1118.80(19)*	-1				
1150.54(16)	3+,5+				
1217.28(22) 1220(10)	$\langle 3^+ \rangle$				
$1231.7(3)^a$	11+	+2.0(10)		0.91(1) ps	
1949 09/99\	/1+\	, ,		, , -	

Gold and Lead

Excited Nuclear States for Pb-208 (Lead)							
Energy levels	Pb excited states						
E^*	J^{π}	$E_{\rm n}$ $\ell_{\rm n}$	$\Gamma_{\rm n}$	$\Gamma_{\rm n}^{\rm l}$	${\Gamma_{\circ}}^2/\Gamma$	B(E1)	$T_{1/2}$ or
[keV]		$[\mathrm{keV}]$	$[\mathrm{meV}]$	$[\mathrm{meV}]$	[eV]		$\Gamma_{ m cm}$
0.0 2614.52(1) 3197.71(1) 3475.08(1) 3708.45(1) 3919.97(1) 3946.58(1) 3961.16(1) 3995.44(1) 4037.44(1) 4037.44(1) 4045(5) 4051.13(1) 4085.52(4) 4106(3) 4125.35(1) 4144(5)* 4159(4) 4180.41(1) 4206.28(1) 4296.56(1) 4296.56(1)	3- 5- 4- 5- 4- 5-,6- 3- 2+ (3-) 5- X+ (2+) 5- 4- 2- 3- 4- 5- 4- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5	Sta	ates a	are sh	orter		Stable 16.7(3) ps 294(15) ps 4(3) ps <100 ps >690 fs >430 fs ≤18 ps >690 fs 326(+28-21) fs 0.80(4) fs >490 fs 319(35) fs >690 fs 333(28) fs 97(7) fs >520 fs 201(+49-35) fs
4318(12) 4323.95(1) 4358.67(1) 4383.29(2) 4403(2) 4423.65(2) ^A	$2^{+},5^{-}$ 4^{+} 4^{-} 6^{-} $3^{-},4^{+}$ 6^{+}						11.7(+1.5-1.8) ps 194(21) fs >690 fs >110 fs

	Excited Nuclear States for Au-1					
Energy levels Au excited states						
E^*	$2J^{\pi}$	μ	Q	$T_{1/2}$ or		
[keV]				$\Gamma_{ m cm}$		
0.0^a	2+	±1.145746(0)	±0.547(16)	Stable		
77.351(2)	1+	+0.420(3)		1.91(1) ns		
268.788(10)	3 '			15.4(13) ps		
279.00(5)A	5+	+0.53(5)		18.6(15) ps		
$409.15(8)^{B}$	11-	$\langle + \rangle 5.98(9)$	+1.68(5)	7.73(6) s		
502.52(13)	9,	+3.0(5)	+3.0(5)	1.77(+19-12) ps		
$547.5(2)^a$	7+	+0.53(7)		4.61(+19-13) ps		
$583.86(17)^{C}$	$\langle 7^{-} \rangle$					
736.84(15)	7+	+1.7(5)	+1.7(5)	1.09(+13-9) ps		
$767.09(23)^{B}$	$\langle 15^{-} \rangle$					
$855.6(2)^A$	9^{+}	+1.5(5)	+1.5(6)	2.67(+25-15) ps		
882(5)						
888.11(20)	1+					
935.96(14)	$\langle 5^+ \rangle$					
$947.86(20)^{C}$	$\langle 9^- \rangle$					
1003.56(21)*	$\langle 13^{-} \rangle$					
1045.05(16)	$\langle 7^+ \rangle$					
1059.67(21)*	$\langle 9^+ \rangle$					
1118.80(19)*						
1150.54(16)	3+,5+					
1217.28(22)	$\langle 3^+ \rangle$					
1220(10)						
1231.7(3) ^a	11+	+2.0(10)		0.91(1) ps		
1949 09/99\	/1+\					


Event Generation

• Use BeAGLe to generate ~ 20 000 events with J/Ψ production

e+Pb 18x110 GeV

- e+Au 18x110 GeV
- Calculate our ability to veto incoherent VM production events
- Is there a target species that is preferred for VM production?

Event Generation

- Use BeAGLe to generate \sim 300 000 events with J/Ψ production
 - e+Pb 18x110 GeV
 - e+Au 18x110 GeV
- Calculate our ability to veto incoherent VM production events
- Paper from 2021, try to reproduce the different veto efficiencies

Investigation of the background in coherent J/ψ production at the EIC

```
Wan Chang, 1, 2, * Elke-Caroline Aschenauer, 2, † Mark D. Baker, 3, ‡ Alexander Jentsch, 2, § Jeong-Hun Lee, 2 Zhoudunming Tu, 2, 4, ¶ Zhongbao Yin, 1 and Liang Zheng 5

1 Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics,

Central China Normal University, Wuhan 430079, China

2 Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, U.S.A.

3 Mark D. Baker Physics and Detector Simulations LLC, Miller Place, NY 11764, U.S.A.

4 Center for Frontiers in Nuclear Science, Stony Brook, NY 11794, U.S.A.

5 School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China

(Dated: August 10, 2021)
```

- Veto.1: no activity other than e^- and J/ψ in the main detector ($|\eta| < 4.0$ and $p_T > 100 \text{ MeV}/c$);
- Veto.2: Veto.1 and no neutron in ZDC;
- Veto.3: Veto.2 and no proton in RP;
- Veto.4: Veto.3 and no proton in OMDs;
- Veto.5: Veto.4 and no proton in B0;
- Veto.6: Veto.5 and no photon in B0;
- Veto.7: Veto.6 and no photon with E > 50 MeV in ZDC.

Percentage of surviving events

• Veto.1: no activity other than e^- and J/ψ in the main detector ($|\eta| < 4.0$ and $p_T > 100 \text{ MeV}/c$);

- Veto.2: Veto.1 and no neutron in ZDC;
- Veto.3: Veto.2 and no proton in RP;
- Veto.4: Veto.3 and no proton in OMDs;
- Veto.5: Veto.4 and no proton in B0;
- Veto.6: Veto.5 and no photon in B0;
- Veto.7: Veto.6 and no photon with E > 50 MeV in ZDC.

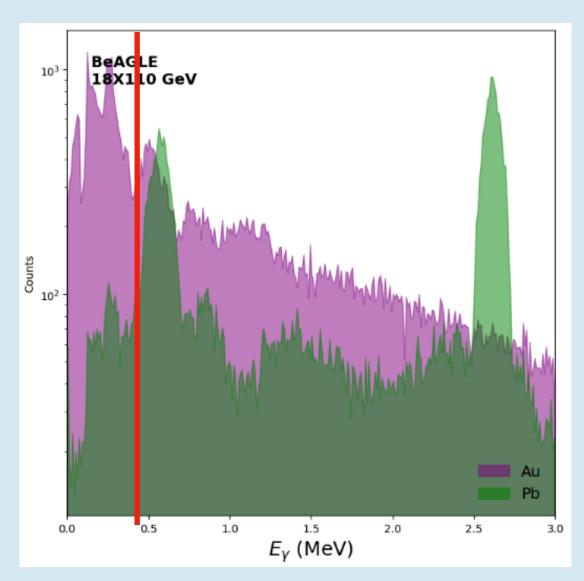
$e+Pb 18 \times 110 GeV$

Veto Stage	This study (%)	Paper (%)
Veto 1	85.0682	86.9
Veto 2	5.128	5.81
Veto 3	5.128	5.81
Veto 4	5.1062	5.09
Veto 5	4.639	4.32
Veto 6	0.7818	2.29
Veto 7	0.2204	1.06

- The difference in surviving events could come from different BeAGLE versions, slightly different detector models, no crabbing effect
- No reconstruction here

Comparison to Gold

- A first look shows that Au performs similarly to Pb
- But we have to remove the long-lived states (crude cut; remove particles with $E_{\gamma} < 409~{\rm KeV}$)
- Not perfect because higher states could decay into an intermediate state that is short lived

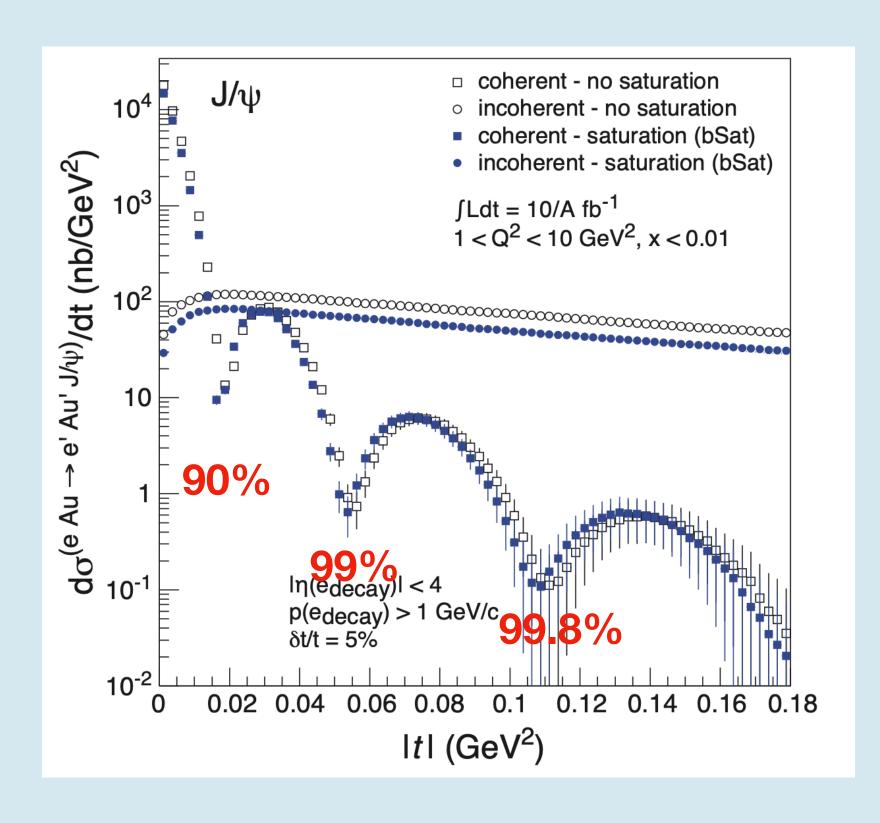

Percentage of surviving events

				_	
Veto Stage	Au (%	(c)	Pb (%)		
	This study	Paper	This study	Paper	
Veto 1	85.019	N/A	85.0682	86.9	
Veto 2	5.919	N/A	5.128	5.81	
Veto 3	5.919	N/A	5.128	5.81	
Veto 4	5.8964	N/A	5.1062	5.09	
Veto 5	5.2898	N/A	4.639	4.32	
Veto 6	0.2614	N/A	0.7818	2.29	
Veto 7	0.0748	N/A	0.2204	1.06	

Comparison to Gold

UNIVERSITY OF CALIFORNIA

- A first look shows that Au performs similarly to Pb
- But we have to remove the long-lived states (crude cut; remove particles with $E_{\gamma} < 409~{\rm KeV}$)
- Not perfect because higher states could decay into an intermediate state that is short lived


Percentage of surviving events

				_	
Veto Stage	Au (%	<u>(</u>)	Pb (%)		
	This study	Paper	This study	Paper	
Veto 1	85.129	N/A	85.0682	86.9	
Veto 2	5.9234	N/A	5.128	5.81	
Veto 3	5.9234	N/A	5.128	5.81	
Veto 4	5.9004	N/A	5.1062	5.09	
Veto 5	5.2922	N/A	4.639	4.32	
Veto 6	4.7106	N/A	0.7818	2.29	
Veto 7	3.8448	N/A	0.2204	1.06	

Much higher after we cut the Au states

Comparison to Gold

T. Toll and T. Ullrich, Phys. Rev. C 87, 024913 (2013), arXiv:1211.3048 [hep-ph].

Percentage of surviving events

Veto Stage	Au (%)		Pb (%)	
	This study	Paper	This study	Paper
Veto 1	85.129		85.0682	86.9
Veto 2	5.9234		5.128	5.81
Veto 3	5.9234		5.128	5.81
Veto 4	5.9004		5.1062	5.09
Veto 5	5.2922		4.639	4.32
Veto 6	4.7106		0.7818	2.29
Veto 7	3.8448		0.2204	1.06
Step 7 for $0.1 < t < 0.12$	1.814		0.041	

- For the third diffractive minimum, we need a veto efficiency of 0.2%
- Pb is close to this target, but Au is not after removal of the excited states
 - This is before considering detector effects

Conclusion

- A first look shows us that we might not be able to reconstruct the third diffractive minimum with a Au beam
- Pb seems to perform better
 - Using a crude cut to eliminate the long lived states
 - Should investigate further how to best do this
- Could use studies like this to motivate ion species during the early physics program
- Next steps
 - Reconstruction?
 - More differential studies in t