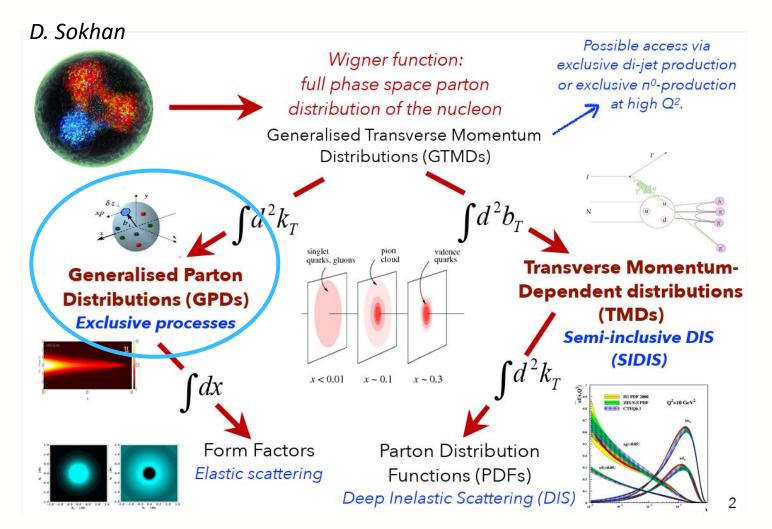


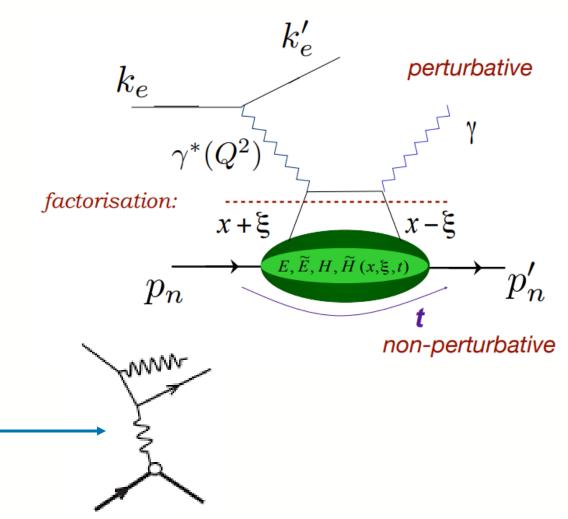
This presentation

- Overview of DVCS and its place in the EIC physics programme.
- Summary of simulation and analysis efforts.
- Current status of analysis.



Deeply Virtual Compton Scattering

Nucleon structure

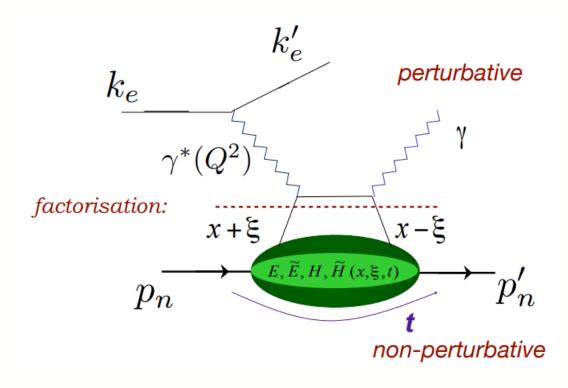

- Nucleon structure can be described within multiple dimensions by a large number of different functions.
 - GTMDs full 5D phase space distributions.
 - PDFs 1D as function of parton momentum.
 - Form factors 1D as function of transverse distance from centre.
- GPDs relate the transverse position of partons to their longitudinal momentum fraction.

Deeply Virtual Compton Scattering

- Electroproduction of a single photon off a hadron target.
 - $ep \rightarrow e'p'\gamma$
 - Simplest inelastic channel the EIC can study.
 - Easiest channel for probing GPDs.
- The cross-section for this process is related to its matrix element, $|\mathcal{T}|^2$.
 - $|\mathcal{T}|^2 = |\mathcal{T}_{DVCS}|^2 + |\mathcal{T}_{BH}|^2 + \mathcal{I}$
 - 1 is an interference term.
 - Bethe-Heitler: purely EM process, which does not probe partonic content.

Deeply Virtual Compton Scattering

Default kinematics:

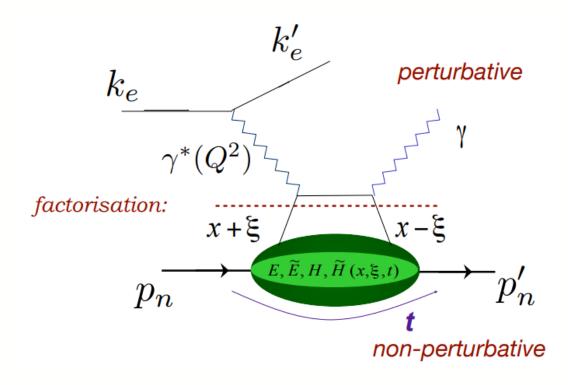

•
$$e(k) + p(p) \rightarrow e'(k') + p'(p') + \gamma$$

$$Q^{2} = -q^{2} = -(k - k')^{2} \qquad x = \frac{Q^{2}}{2q \cdot p}$$

$$y = \frac{q \cdot p}{k \cdot p} \qquad \xi = \frac{x}{2 - x} \approx \frac{x}{2}$$

$$t = (p - p')^{2}$$

 Other formulae exist, using other combinations of reconstructed quantities, if needed (e.g. see InclusiveKinematics branches in ElCrecon trees).



Deeply Virtual Compton Scattering

- DVCS amplitude can be parameterized in terms of Compton Form Factors (CFFs).
 - Experimentally accessible!
 - Access 4 quark GPDs: H_q , \widetilde{H}_q , E_q , \widetilde{E}_q .
 - Note: does not access GPDs directly, but <u>linear combinations</u> of GPDs.
- $Re \mathcal{F}_q(\xi, t) \propto \int_0^1 \left[F_q(x, \xi, t) F_q(-x, \xi, t) \right] dx$
- $Im \mathcal{F}_q(\xi, t) \propto \left[F_q(\xi, \xi, t) F_q(-\xi, \xi, t) \right]$
- Different combinations of (un)polarised beam and target are sensitive to different combinations of CFFs.

Extract CFFs from asymmetries between different beam polarisation states!

Why DVCS @ ePIC?

- Amongst the EIC's physics goals are:
 - Probing the 3D structure of nucleons.
 - Solving the mystery of proton spin.

• For an unpolarised target, the distribution of unpolarised quarks is the Fourier transform of the GPD H_q .

$$q(x,b_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-ib_{\perp} \Delta_{\perp}} H_q(x,0,t = -\Delta_{\perp}^2)$$

Why DVCS @ ePIC?

- Amongst the EIC's physics goals are:
 - Probing the 3D structure of nucleons.
 - Solving the mystery of proton spin.

 By Ji's Sum Rule, quark angular momentum can be given by a combination of GPDs.

$$J = \frac{1}{2} \int_{-1}^{1} x dx [H(x, \xi, t = 0) + E(x, \xi, t = 0)]$$

Why DVCS @ ePIC?

- The final state of the DVCS reaction will utilise many of the subsystems present in ePIC and provide useful probes of their resolutions.
 - The scattered proton will only be deflected by a small angle and will end up in the far forward region.
 - Tests B0 spectrometer and Roman Pots.
 - The scattered electron will be detected in the central barrel or (mostly) the backward endcap.
 - Test of trackers, PID detectors and calorimeters almost everywhere in the barrel (just not hadron endcap/planes).
 - The scattered photon will be detected in the backward endcap.
 - Very clean test of EEEMCAL resolution.

DVCS simulations for ePIC

Simulation details

- Using EpIC generator (GitHub link here).
 - Purpose built generator for such GPD-sensitive processes (DVCS, TCS, DDVCS, etc.).
- Can run in fixed target or colliding beams mode.
 - Useful for JLab and EIC kinematics!
- Cross-sections and CFFs evaluated from models (Guichon and Vanderhaegen / Goloskokov-Kroll respectively).

Simulation details

- Event samples used:
 - 1M events
 - DVCS only (5x41, 10x100, 18x275) / DVCS+BH+int. (10x130)
 - $1 < Q^2 < 100 \text{ GeV}^2$
 - 0.01 < y < 0.9
 - $10^{-5} < x_B < 0.7$
 - (These kinematic ranges are correct for 10x130 unknown for other energy settings. Have asked Sal, but no response yet).

Simulation details

- Generated events represent $\mathcal{L}_{int} \sim 2fb^{-1}$ for the "standard" EIC energy settings, $\mathcal{L}_{int} \sim 0.5fb^{-1}$ for 10x130 GeV.
- Events are passed through the full EIC simulation pipeline.
 - Afterburner (to add beam smearing and crossing angle).
 - npsim
 - ElCrecon
- DVCS has been in the monthly simulation campaigns since the start.
 - Early science setting (10x130) since 25.05.0 campaign.
 - Issues present in that first run; for 10x130 use campaign 25.06.1 and later!

Analysis details

Analysis code on GitHub.

Analysis details

- Truth level particles in MCParticles branch.
 - Truth level with PID <u>afterburner applied</u>.
- Reconstructed electrons and photons in ReconstructedParticles branch.
 - ePIC PID not accurate using ReconstructedParticleAssociations to select candidates.
 - Electron energy is calculated using given momenta and e⁻ mass.
 - Associations branch also used for MC acceptance.

Analysis details

- Reconstructed protons in the B0 detector taken from ReconstructedTruthSeededChargedParticles branch.
 - Corresponding Associations branch used for PID.
 - Energy calculated from momentum and proton mass.
 - Associations also used for MC acceptance.
- Reconstructed protons in Roman Pots taken from tracks in ForwardRomanPotRecParticles branch.
 - All tracks in RP branch assumed to be protons.
 - If RP track is present, assume that MC proton is the correct associated particle.

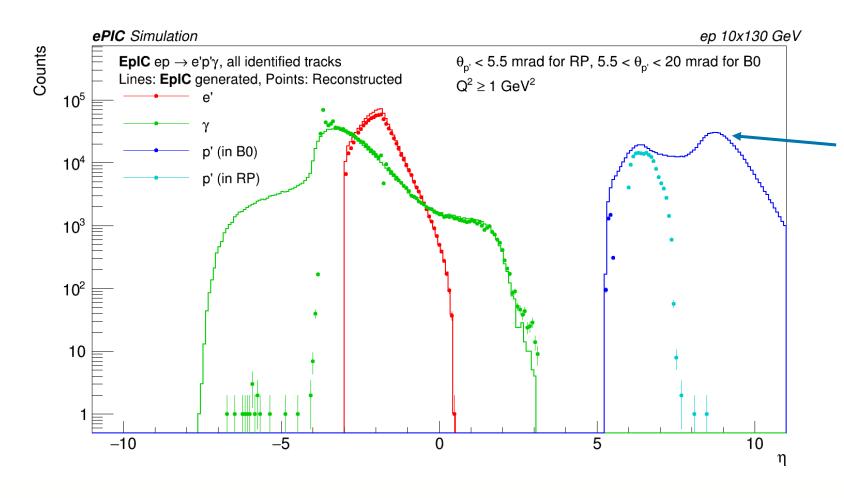
Cuts applied

- Single species cuts:
 - Electron: only 1 reconstructed and Q² > 1 GeV²
 - Photon: only 1 reconstructed
 - Proton: only 1 reconstructed and track theta appropriate for detector used.
 - 5.5 < $\theta_{p\prime}$ < 20 mrad for B0 tracks
 - $0 < \theta_{p}$, < 5 mrad for RP tracks
- DVCS event cuts:
 - Full exclusivity (e'p'γ reconstructed)
 - $M_{miss}^2 < 1 \text{ GeV}^2$

Detector acceptance correction

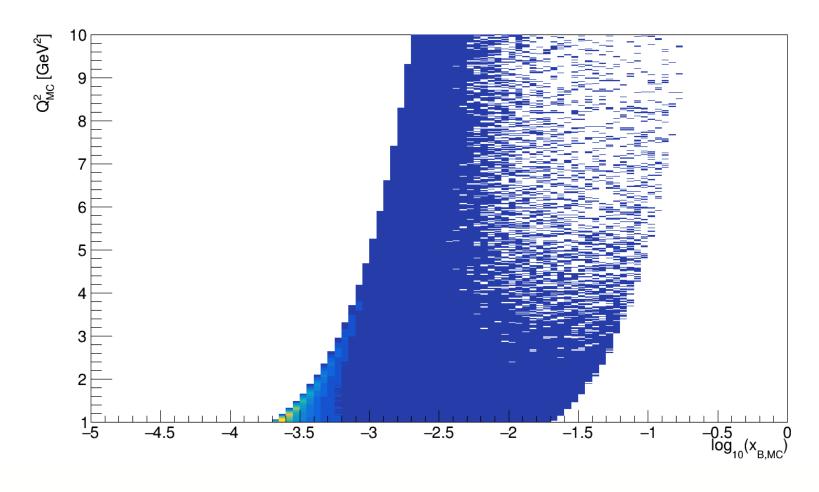
- Calculate acceptance from MC information if a reconstructed particle/event passes cuts.
 - Efficiency, $\varepsilon = \frac{N(MC\ accepted)}{N(MC\ truth)}$
- Correct reconstructed distributions by efficiency.

•
$$N(corrected\ reco.) = \frac{N(raw\ reco.)}{\varepsilon}$$


Analysis plots 10x130 GeV

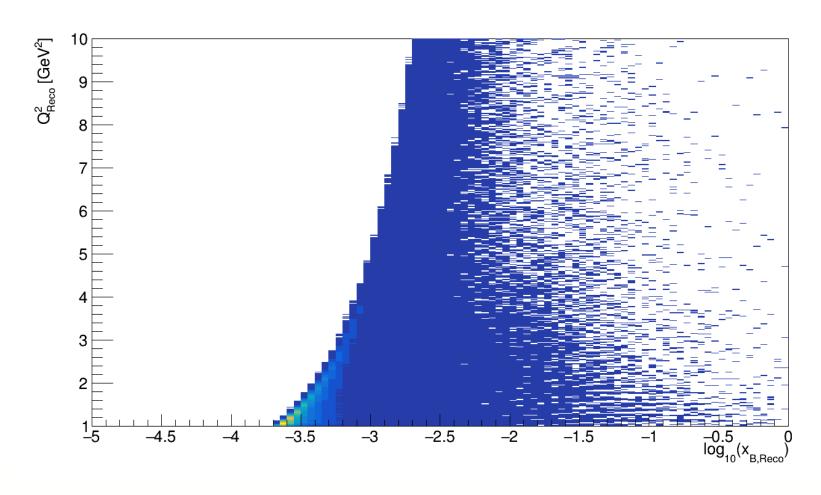
Early Science energy setting

Detector occupancy

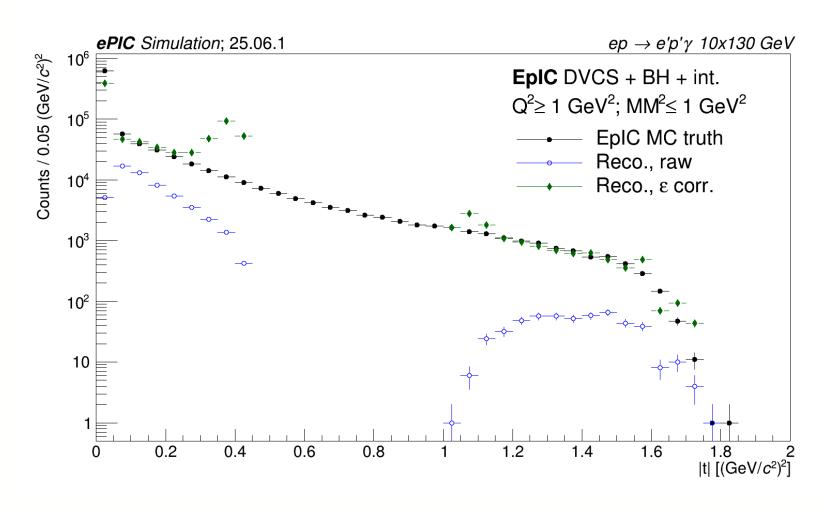


Lot of BH background is removed by RP acceptance!

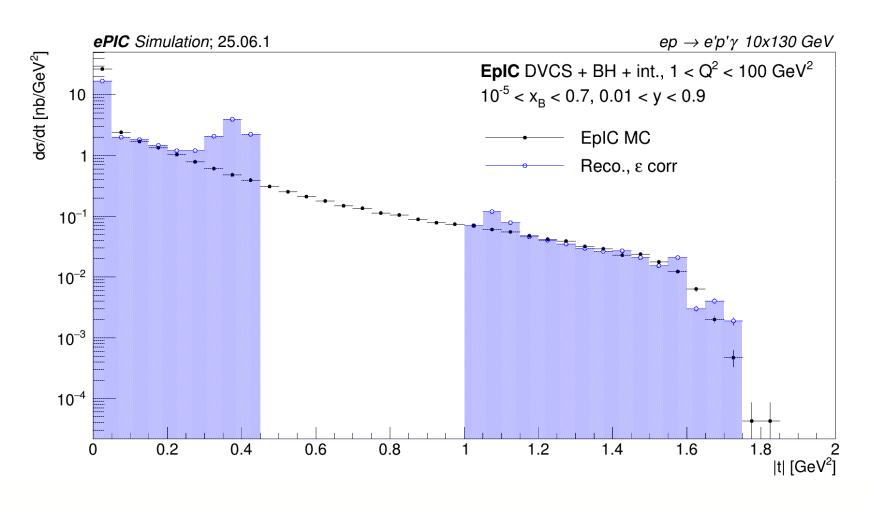
Q^2 vs x_B coverage (inclusive electrons)



Q² vs x_B coverage (inclusive electrons)



t-distribution (with corrected)



Cross-section ($\mathcal{L}_{int} \sim 0.5 fb^{-1}$)

QA plot status

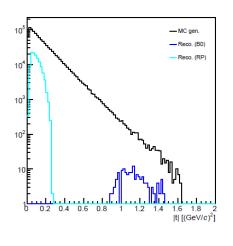
Kinematic reconstructions	quantity	Reco	Truth	Response (2D)	Purity/bin migration	detector acceptance-only corrected	Unfolding/full correction
(electron,JB, DA,sigma, e-sigma)	Q2						
	х						
	у						
	dQ2/Q2						
	dx/x						
	dy/y						
	e' energy						
	e' theta						
	HFS (E-pz)						
	HFS (pT)						
Event level							
	E-pz (e'+HFS)						
	E/p for calorimeter						
	Calo clusters						
Observable of interest							
	e.g., t, etc.						
Detector specific variables	Depends						
PID quantities:	add when it comes						

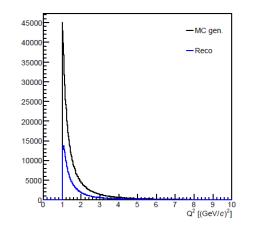
QA plot status

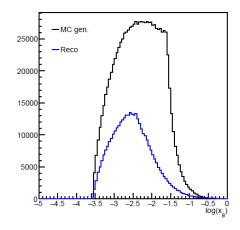
Kinematic reconstructions	quantity	Reco	Truth Response (2D)	Purity/bin migration	detector acceptance-only corrected	Unfolding/full correction
(electron,JB, DA,sigma, e-sigma)	Q2					
	х			its re		
	у					
	dQ2/Q2					
	dx/x					
	dy/y					
	e' energy					
	e' thete				sis note	
Majo						
	E (-1-11E0)					
	E-pz (e'+HFS)					
	E/p for calorimeter					
	Cale clusters					
Observable of interest						
Detector specific variables	ends					
PID quantities:	add when it comes					

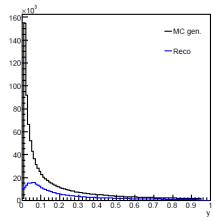
Analysis note

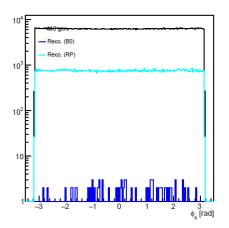
- Template of analysis note made and few preliminary plots added.
- Sections to clean up/improve:
 - Introduction
 - Event generator
- Sections to properly write:
 - Analysis procedure
 - Results

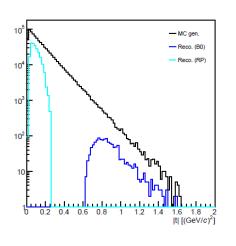

Comment on 25.07.0 campaign

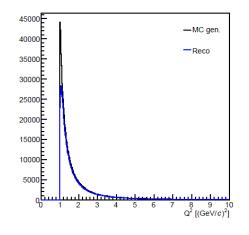

DVCS files run over the weekend. Only cursory glance at plots so far.

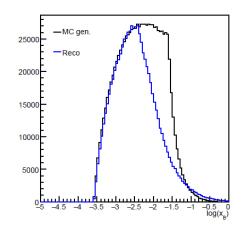


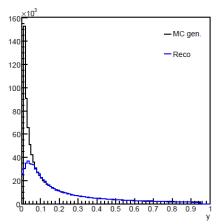

Event kinematics (10x100, 25.07.0) **eP**

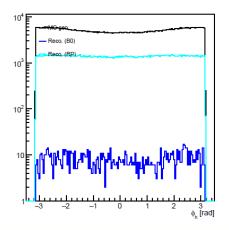









Event kinematics (10x100, 25.06.1) **eP**



Comments

- Significant drop in accepted events.
- Seems to be tied to drop in accepted electron candidates.

Need to investigate further.

Concluding remarks

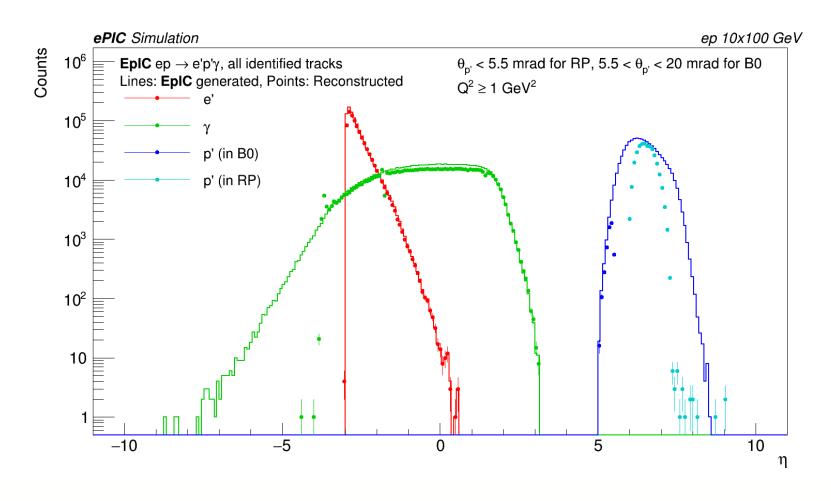
Next steps

- Look into applying ElectronFinder algorithm for reconstructed e⁻.
- Apply calorimeter cluster energies to particle 4-vectors.
- More appropriate event cuts.
- Finer x_B/Q² binning what to use?

- More generator files are being prepared.
 - Only 10x130 for now.
 - 2 different beam helicities project asymmetries.
- Continue with analysis note.

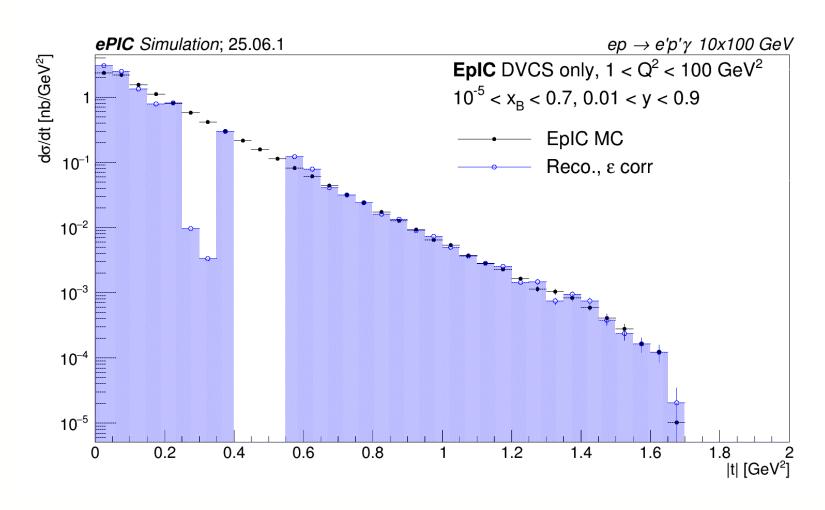
Thank you for listening!

Any questions?

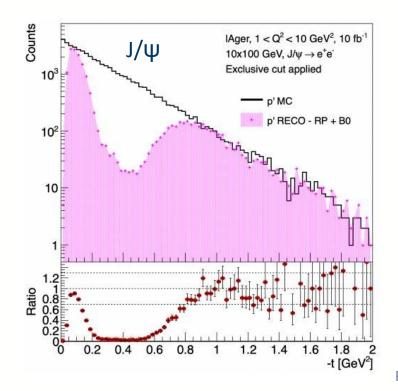


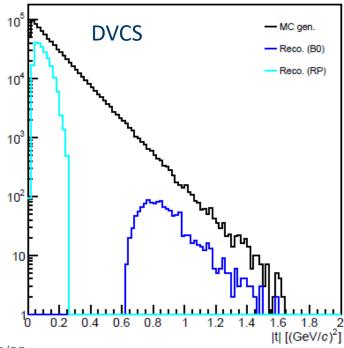
Backup

Eta coverage (10x100)



Cross-section ($\mathcal{L}_{int} \sim 2fb^{-1}$)





Noted differences between DVCS and other analyses

- Observed in the presentations at the EICUG, that Jihee and Olaiya see drops in their acceptance for t, but not a full gap in coverage.
 - Emails sent the day after; have heard back from Jihee.

Noted differences between DVCS and other analyses

- Cause: Jihee's DVπ⁰P analysis does not include a cut on proton track angle.
 - Assume that this is true for Olaiya's?
- Pion analysis sees "poorly reconstructed tracks, particularly from the Roman Pot".
 - Not sure how 'poor' these tracks are.
 - Would be nice to see raw eta/theta/t distributions from J/ ψ or DV π^0 P files for proton tracks (separating B0 from RP).

Noted differences between DVCS and other analyses

- Another observation: the reconstructed distributions for DVCS do not agree with MC truth as well as for the J/ ψ / DV π^0 P plots.
- Cause: there is a MM² cut applied for the DVCS analysis, but not for the other 2.
 - This reduces the number of accepted events, roughly uniformly.
 - This is somewhat addressed by the MC correction, but not entirely.
 - Edge effects in RP causing fluctuations in σ plot.