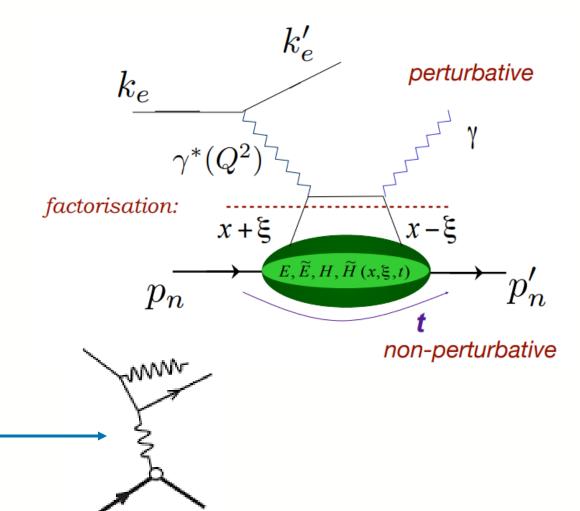


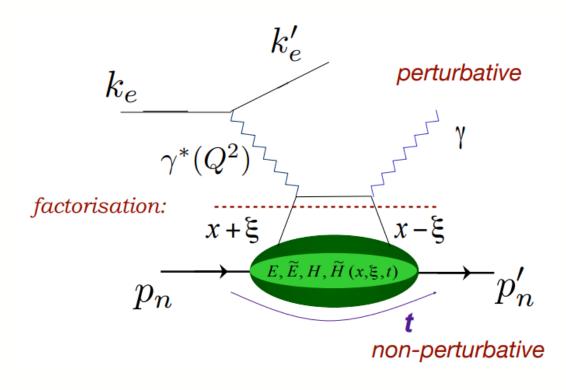
This presentation

- Brief introduction to DVCS and ePIC.
- Updates since last meeting:
 - Analysis note
 - DIS file comparison



- Electroproduction of a single photon off a hadron target.
 - $ep \rightarrow e'p'\gamma$
 - Simplest inelastic channel the EIC can study.
 - Easiest channel for probing GPDs.

- Final state $e'p'\gamma$ is not purely DVCS:
 - Also contains Bethe-Heitler contamination and QM interference.
 - Bethe-Heitler: purely EM process, which does not probe partonic content.



Formulae used for this analysis:

•
$$e(k) + p(p) \rightarrow e'(k') + p'(p') + \gamma$$

$$Q^{2} = -q^{2} = -(k - k')^{2} \qquad x = \frac{Q^{2}}{2q \cdot p}$$
$$y = \frac{q \cdot p}{k \cdot p} \qquad \xi = \frac{x}{2 - x} \approx \frac{x}{2}$$
$$t = (p - p')^{2}$$

- DIS kinematics: electron method
- Mandelstam t: BABE method

Analysis Note

DVCSep analysis note

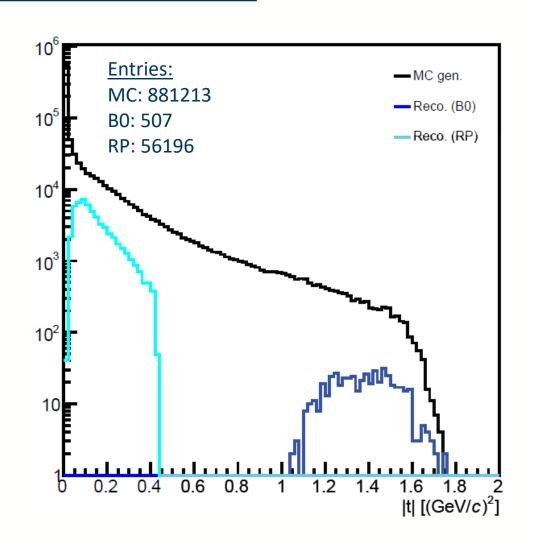
- Previous skeleton of analysis note has been fleshed out.
 - Only covers 10x130 GeV early science setting for now.
- Still wants a few more citations, but nothing that is unique to just DVCS analysis (ElCroot/software stack/etc.)

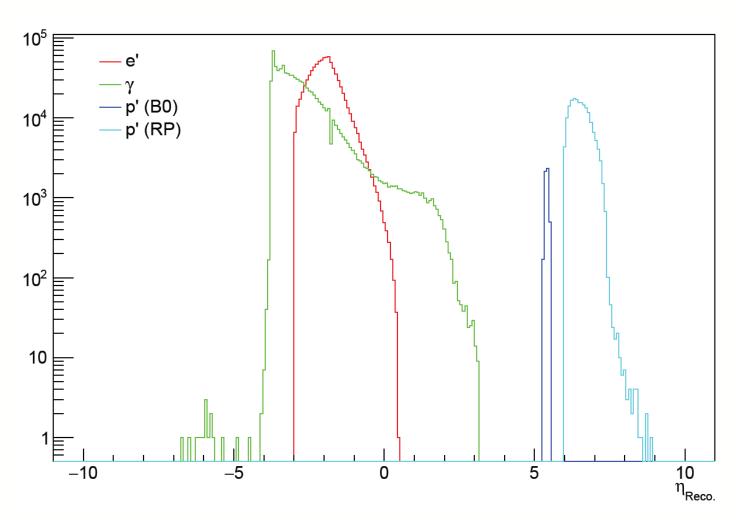
- Link to view note (also in ExclusiveWG_Paper repo.):
 - https://www.overleaf.com/read/pmsdvtmcztjx#5819b9

DIS physics background study

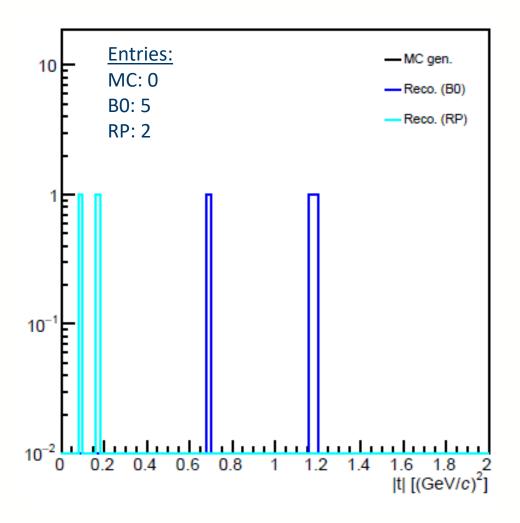
Comparing to DVCS 10x130 results

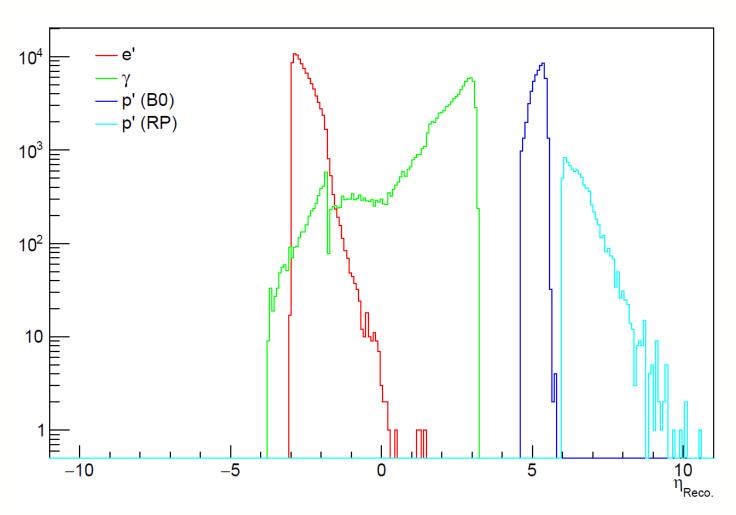
DIS physics background


- Using files put onto XRootD.
 - /volatile/eic/sjdkay/RECO_pythia6_ep_early_science

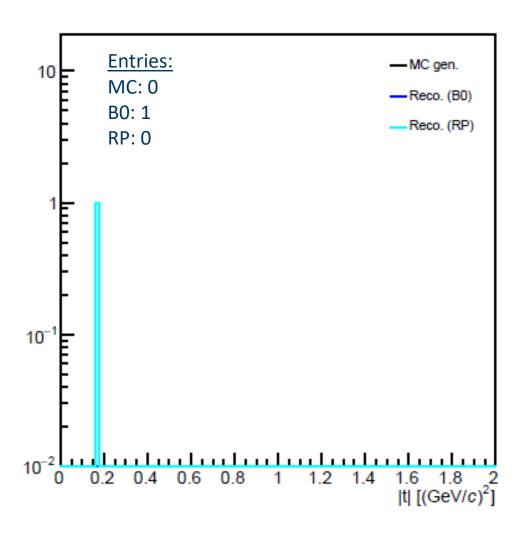

- DVCS analysis code run over single combined files.
 - .../CombinedFiles/DIS_10x130_Q2_1_10_Combined.root
 - .../CombinedFiles/DIS 10x130 Q2 10 100 Combined.root
- Cuts used are as for DVCS analysis (unless otherwise stated).
 - Full e'p'γ final state.
 - $Q^2 > 1 \text{ GeV}^2$, proton track θ cut, $M_{miss}^2 < 1 \text{ GeV}^2$

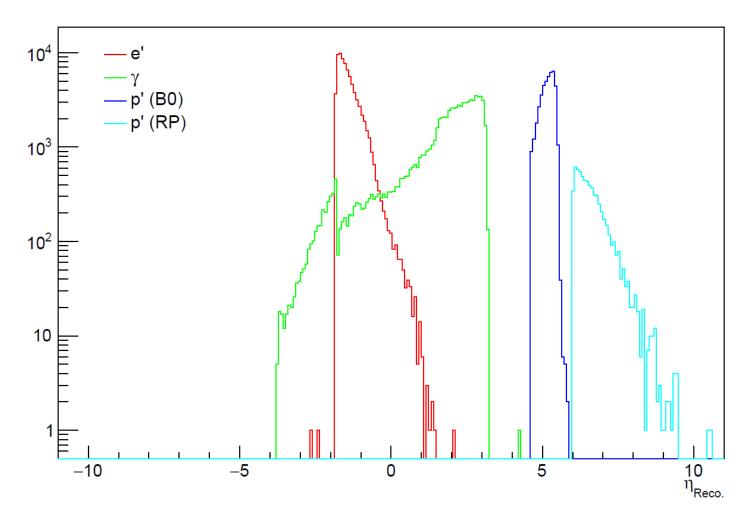
Baseline: DVCS 10x130





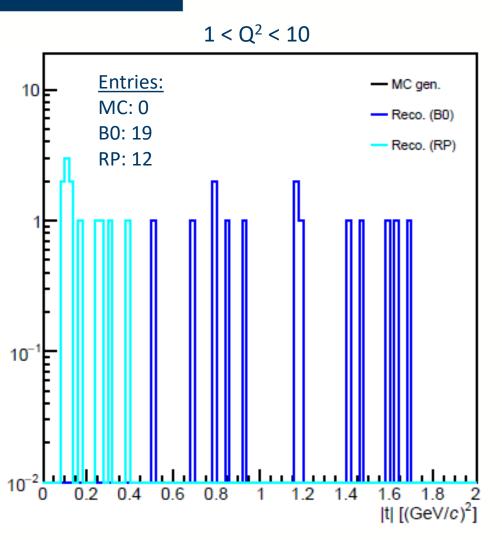
Comparison: DIS 1<Q²<10 GeV²

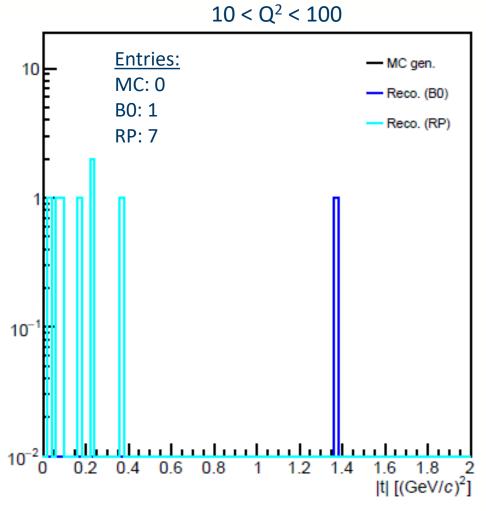




Comparison: DIS 10<Q²<100 GeV²

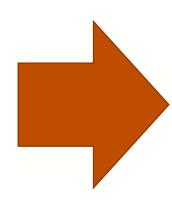
Comments (1)




- Significant reduction in reconstructed "DVCS" events as fraction of total.
 - Seen in both Q² ranges.
- Complications arising:
 - Overcounting "protons" from RP track assumption.
 - Default cuts require ONLY ONE of each species in the final state.
 - Valid for real data? Pile-up/noise/material interactions...
 - DIS events will have multiple final state electrons and photons.
- Try making selection less strict: <u>at least one</u> of each species in the final state (calculate *t* from first candidate in particle arrays).

DIS comparison, multiplicity > 0

Comments (2)


- Still see low counts of fake DVCS events as fraction of total.
- Main culprit: M_{miss}² cut (plots in backup).
- **CAVEAT:** The cross-sections used for the DIS events are orders of magnitude larger than that for the 'real' DVCS events.
 - The DIS samples represent significantly lower integrated luminosities than the DVCS sample.

Cross-sections

- DIS (10x130, 1<Q²<10 GeV²)
 - $\sigma_{int} \approx 0.64 \ \mu b$
 - (For 500k events) $L_{int} \approx 7.8 \times 10^{-4} \text{ fb}^{-1}$
- DIS (10x130, 10<Q²<100 GeV²)
 - $\sigma_{int} \approx 0.047 \ \mu b$
 - (For 500k events) $L_{int} \approx 0.016 \text{ fb}^{-1}$
- DVCS (10x130, 1<Q²<10 GeV²)
 - $\sigma_{int} \approx 2.1 \text{ nb}$
 - (For 1M events) $L_{int} \approx 0.47 \text{ fb}^{-1}$

DVCS is factor ~30 higher lumi. than mid-Q² DIS.

Factor ~ 600 higher than low-Q² DIS!

Conclusions on DIS background

- Inclusive single species plots will get swamped by DIS background without DVCS exclusivity cut.
 - This will reduce rates significantly in DVCS analysis due to B0/RP acceptances.
- Exclusive DVCS event kinematic plots are harder to tell.
 - Assuming a constant scaling to the DIS plots → DIS could provide ~10% background to RP events or <u>dominate</u> B0 events.
 - Mostly from low Q² DIS events.
 - Very hard to gauge effect of increased lumi. from low statistics in DIS plots.

Concluding remarks

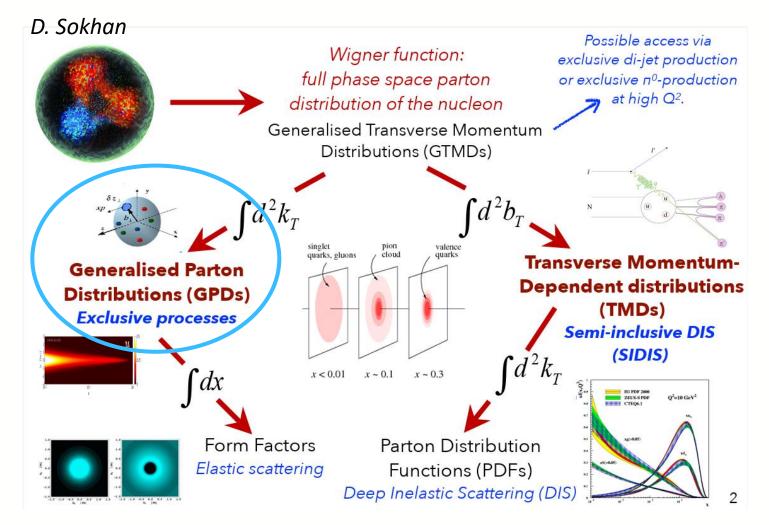
Next steps

- Analysis note now ~90% complete (at least first draft).
 - Can take plots from there for early science exclusive paper.
 - If more/different plots are needed: get in contact.
- DIS background to DVCS is hard to judge.
 - Current missing mass cut reduces DIS contamination significantly → but not completely.
 - Very hard to judge effect of increased luminosity with current statistics.
 - Would need to generate ~120M DIS events to match luminosity of DVCS sample.
 - MINIMUM useful DVCS ~200k events → still ~60M DIS events.

Thank you for listening!

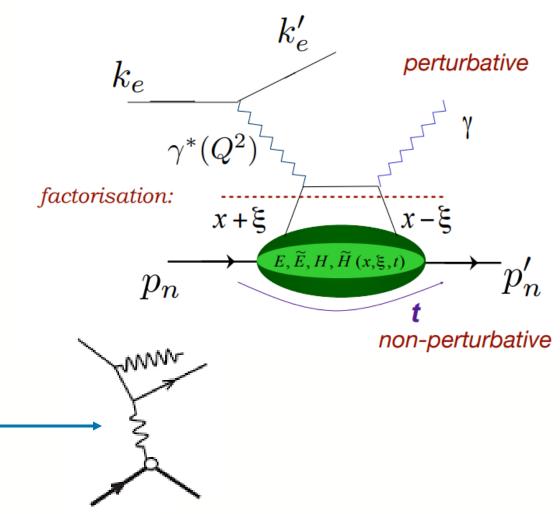
Any questions?

Offline questions? Ping me an email!



Backup

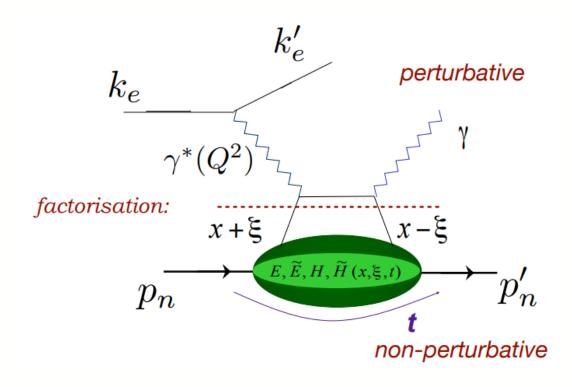
Nucleon structure



- Nucleon structure can be described within multiple dimensions by a large number of different functions.
 - GTMDs full 5D phase space distributions.
 - PDFs 1D as function of parton momentum.
 - Form factors 1D as function of transverse distance from centre.
- GPDs relate the transverse position of partons to their longitudinal momentum fraction.

- Electroproduction of a single photon off a hadron target.
 - $ep \rightarrow e'p'\gamma$
 - Simplest inelastic channel the EIC can study.
 - Easiest channel for probing GPDs.
- The cross-section for this process is related to its matrix element, $|\mathcal{T}|^2$.
 - $|\mathcal{T}|^2 = |\mathcal{T}_{DVCS}|^2 + |\mathcal{T}_{BH}|^2 + \mathcal{I}$
 - 1 is an interference term.
 - Bethe-Heitler: purely EM process, which does not probe partonic content.

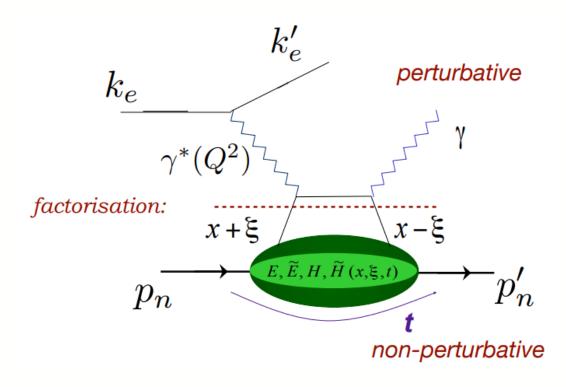
Default kinematics:


•
$$e(k) + p(p) \rightarrow e'(k') + p'(p') + \gamma$$

$$Q^{2} = -q^{2} = -(k - k')^{2} \qquad x = \frac{Q^{2}}{2q \cdot p}$$

$$y = \frac{q \cdot p}{k \cdot p} \qquad \xi = \frac{x}{2 - x} \approx \frac{x}{2}$$

$$t = (p - p')^{2}$$


 Other formulae exist, using other combinations of reconstructed quantities, if needed (e.g. see InclusiveKinematics branches in EICrecon trees).

- DVCS amplitude can be parameterized in terms of Compton Form Factors (CFFs).
 - Experimentally accessible!
 - Access 4 quark GPDs: H_q , \widetilde{H}_q , E_q , \widetilde{E}_q .
 - Note: does not access GPDs directly, but linear combinations of GPDs.
- $Re \mathcal{F}_q(\xi, t) \propto \int_0^1 [F_q(x, \xi, t) F_q(-x, \xi, t)] dx$
- $Im \mathcal{F}_q(\xi, t) \propto \left[F_q(\xi, \xi, t) F_q(-\xi, \xi, t) \right]$
- Different combinations of (un)polarised beam and target are sensitive to different combinations of CFFs.

Extract CFFs from asymmetries between different beam polarisation states!

Why DVCS @ ePIC?

- Amongst the EIC's physics goals are:
 - Probing the 3D structure of nucleons.
 - Solving the mystery of proton spin.

• For an unpolarised target, the distribution of unpolarised quarks is the Fourier transform of the GPD H_q .

$$q(x,b_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-ib_{\perp} \Delta_{\perp}} H_q(x,0,t = -\Delta_{\perp}^2)$$

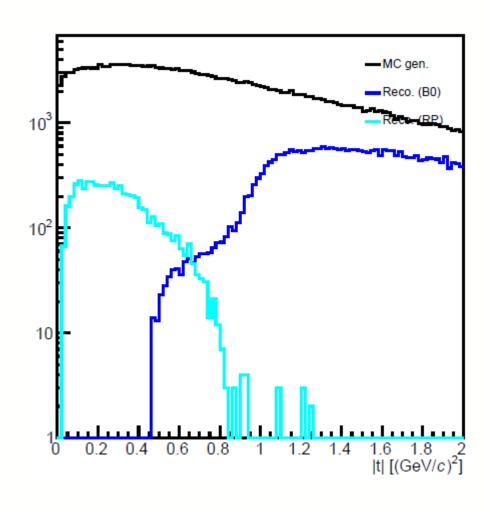
Why DVCS @ ePIC?

- Amongst the EIC's physics goals are:
 - Probing the 3D structure of nucleons.
 - Solving the mystery of proton spin.

 By Ji's Sum Rule, quark angular momentum can be given by a combination of GPDs.

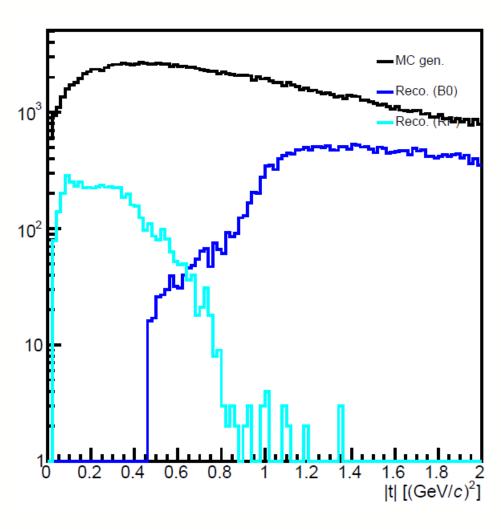
$$J = \frac{1}{2} \int_{-1}^{1} x dx [H(x, \xi, t = 0) + E(x, \xi, t = 0)]$$

Why DVCS @ ePIC?



- The final state of the DVCS reaction will utilise many of the subsystems present in ePIC and provide useful probes of their resolutions.
 - The scattered proton will only be deflected by a small angle and will end up in the far forward region.
 - Tests B0 spectrometer and Roman Pots.
 - The scattered electron will be detected in the central barrel or (mostly) the backward endcap.
 - Test of trackers, PID detectors and calorimeters almost everywhere in the barrel (just not hadron endcap/planes).
 - The scattered photon will be detected in the backward endcap.
 - Very clean test of EEEMCAL resolution.

DIS 1-10 GeV², no MM2 cut (mult > 0)



DIS 10-100 GeV², no MM2 cut (mult > 0)

