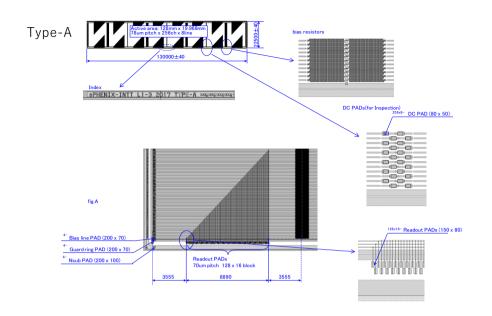
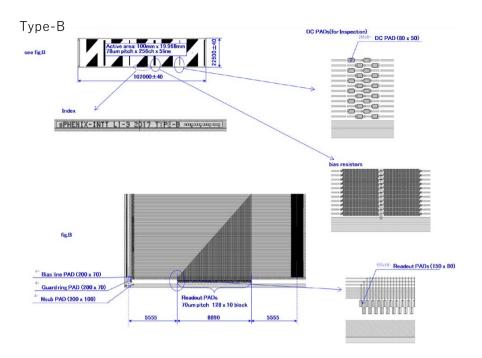
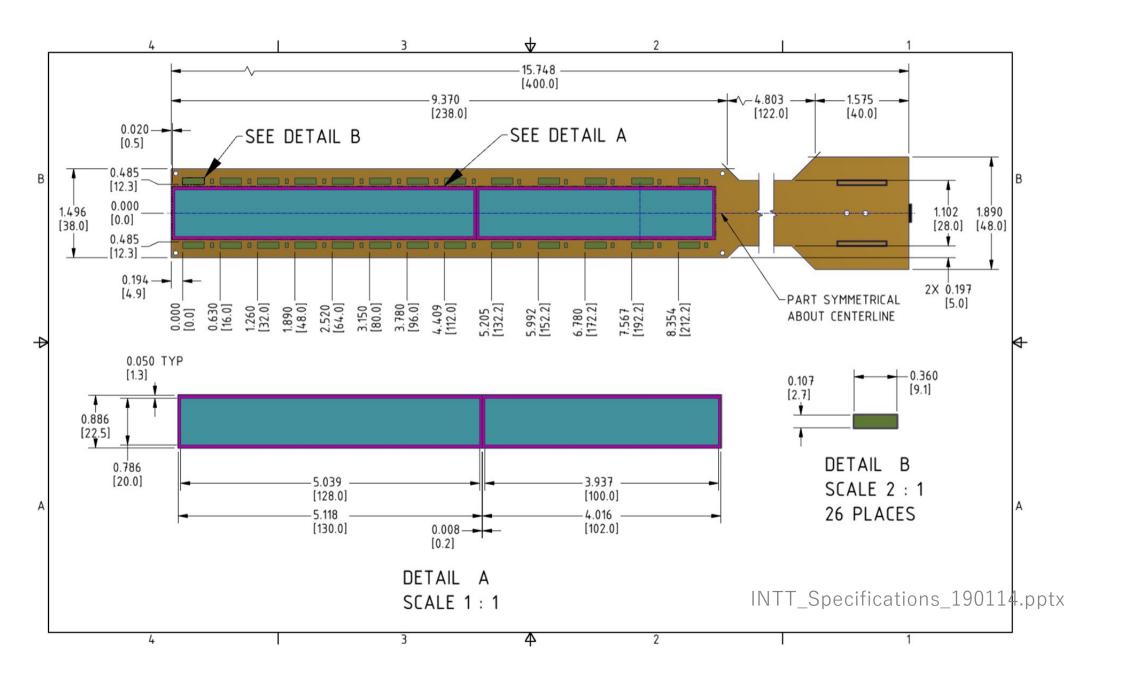
INTT Ladder NIM Figures

RIKEN/RBRC


Itaru Nakagawa

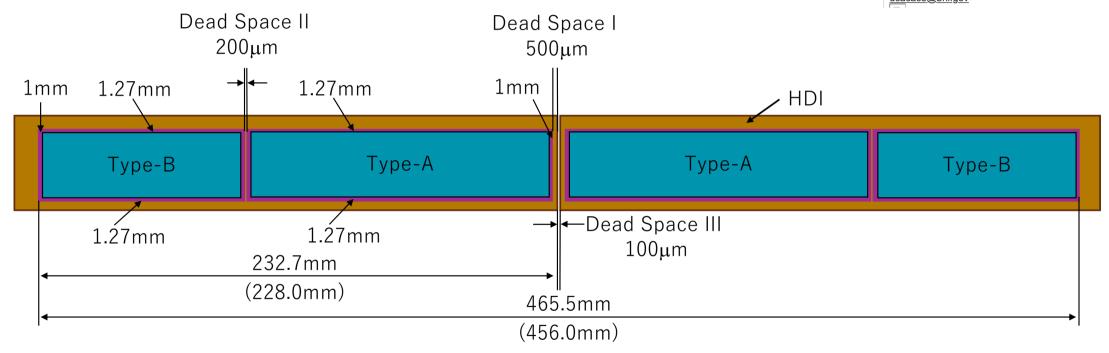

Some updates

Carefully checked through the materials and engineering drawings, there are minor updates in the following.

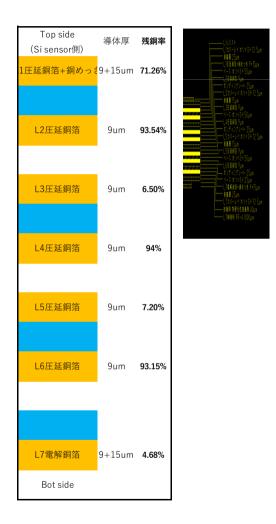

- Ladder material budget
- Dead space in the ladder

These are minor updates, but better be checked with the current INTT GEANT model hoping this is the last tuning.

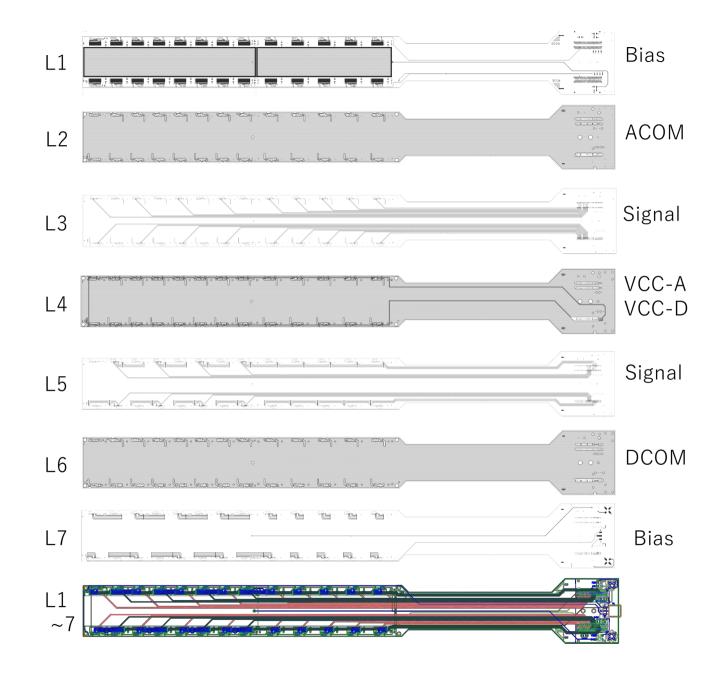
Dimension		Type-A		Type-B				
	Horizontal [mm]	Vertical [mm]	Area [mm^2]	Horizontal [mm]	Vertical [mm]	Area [mm^2]		
Physical	130	22.5	2925	102	22.5	2295		
Active	128	19.968	2555.904	100	19.968	1996.8		
Physical - Active	2.00	2.53	369.10	2.00	2.53	298.20		
(Physical - Active)/2	1.00	1.27	184.55	1.00	1.27	149.10		
Active/Physical	0.98	0.89	0.8738	0.98	0.89	0.8701		



Active Area Summary for the Ladder


Hi Itaru.

Nominally, the gap between HDIs is 0.1mm


Cheers,
Dan Cacace
sPHENIX & ePIC
Physics Department
Office: 631.344.2197
dcacace@bnl.gov

L123層用HDI読み出し用 残銅率

INTT_LadderMaterialBudget.xlsx

HDI Serial #271~398 (Batch-3) Total 128HDIs

Delivery Day	Batch	Order #	LOT#	Quantity	HDI Seria	l No.	Incremented Quantity	Inspection	Result	Shipped to Taiwan
2019/1/23		349670	302382	6						
	Dd	349670	302725							
2019/9/11	Preproduction	350963	306716	20						
2019/11/20										
2020/4/2		352075	310184		1	9				
2020/4/2	D				10	16				
2020/4/2	Batch-1A	352075	310185_2	13	17	29	29			
2020/4/2										
2020/4/28		352075	310188	17	60	76	76	70	bad	
2020/4/28		352075	310189	24	77	100	100	80, 94	bad	
2020/6/8		352075	311139		101	102	102			
2020/6/8			311587_1		103	109				
2020/6/17		352075	311587_2		110	111	111		1 bad	+
2020/6/17	Batch-1B		311614		112	126	126			14
2020/6/24		352075	311615	21	127	147	147	127		20
2020/7/9			312095		148	167			3 bad	4
2020/7/9		352075	312096_1		168	173	173			
2020/7/21			312096_2_1		174	180				
2020/7/28	Batch-1A	Exchanged	312096_2_2		24	24	180			
2020/9/28		353110	312532		181	200			1 bad ⁴	
2020/9/28		353110	312533	16	201	216	216			
2020/9/29		353110	312534		217	223	223			
2020/9/29	Batch-2	353110	312535	14	224	237	237			
2020/9/29		353110	312536	7	238	244	244			
2020/10/27		353110	313304	24	245	268	268	265		3
2020/11/27		353110	313673		269	270	270			
2021/6/28			317333_2_2	11	271	281	281			
2021/7/5			317338	14	282	295	295		1 bad	
2021/7/19	Batch-3		317341	23	296	319	319			
2021/8/6			318459	22	319	340	342			
2021/8/6			31860	13	341	353	353			

Bad through holes

Increased cupper plate on the surface layers from 15 to $20\mu m$ in batch-3

HDI Serial #001~270 (Batch#1,2)

理化学研究所様向け 次期ピクセルパス7層FPC層構成案1

2025/3/3 銅メッキの厚みも残同率に考慮

Acceptance | eta | < 1.1

				Rest	
N.	Regist	20 μm	Silicon pad		
_>	Copper plated	15 μm			
	L1 Electrolytic copper foil	9 μm			HVLINE+AGND
	Base Polyimide	50 μm			
	L2 Electrolytic copper foil	9 μm			A GND
	Glue	25 μm			
	Base Polyimide	12.5 μm			
	Glue	15 μm			
	L 3Electrolytic copper foil	9 μm			RF LINE
	Base Polyimide	50 μm			
	L4 Electrolytic copper foil	9 μm			PWR
	Glue	25 μm			
	Base Polyimide	12.5 μm			
	Glue	15 μm			
	L5 Electrolytic copper foil	9 μm			SIG
	Base Polyimide	50 μm			
	L6 Electrolytic copper foil	9 μm			D GND
	Glue	25 μm			
	Base Polyimide	25 μm			
	L7 Electrolytic copper foil	9 μm			
	Copper plated	15 μm			
	Regist	20 μm			
		μ m			
		438 μm			

パツ	ド/端子	部はパ	ラ	ジェ	ウム	、金メ	'n	キ仕様
----	------	-----	---	----	----	-----	----	-----

438 μm 418

TOTAL厚

山下の井上さんからの報告を元に残銅率を更新(190530) -> ページ下に記載

Rest (silicon Rest

pad area)

Sub Comp	onent T	hic	knes:
----------	---------	-----	-------

Copper Layers

			Occupancy		Effectiv e[μm]	Real [μ m]	[μ	m]	[μm]			
Coverlay Polyide	12.5	μ m										
Coverlay Glue	25	μm								25		
Copper plated	15	μm		71.3%	17.10		15					
L1 Electrolytic copper fo	9	μm		11.570	17.10		9					
Base Polyimide	50	μ m						50)	50		
L2 Electrolytic copper fo	9	μm		93.5%	8.42		9					
Glue	25	μm						25	;	25		
Base Polyimide	12.5	μm						12.5	j	12.5		
Glue	15	μm						15	i	15		
L 3Electrolytic copper fo	9	μm		6.50%	0.59		9					
Base Polyimide	50	μm						50)	50		
L4 Electrolytic copper fo	9	μm		94.0%	8.46		9					
Glue	25	μm						25	j	25		
Base Polyimide	12.5	μm						12.5	i	12.5	μ m	
Glue	15	μm						15	;	15	μ m	
L5 Electrolytic copper fo	9	μm		7.20%	0.65		9					
Base Polyimide	50	μm						50)	50	μ m	
L6 Electrolytic copper fo	9	μm		93.2%	8.38		9					
Glue	25	μm						25	j	25		25
Base Polyimide	25	μm						25	i	25	μ m	
L7 Electrolytic copper fo	9	μm		4.68%	1.12		9					
Copper plated	15	μm		4.00%	1.12		15					
Coverlay Glue	25	μm						20)	20		
Coverlay Polyimide	12.5	μm										
Glue for support plate	40	μm										
Support Plate FR-4 1	1000	μ m										

28.6 Radiation Length [c 1.435 X/Xrad [%] 0.312 0.11 Area[cm^2] 52.2

44.7207

TOTAL厚

 $473 \mu m$

Total

5.93 Area*X/Xrad 4.40 Weighted Mean X/Xrad by Area 438

325

0.117201877

28.63ilicon Area Total

350

0.12

35.96

Thickness [um] 418

93

0.43

88.16

Effective/R€

0.4809

INTT_LadderMaterialBudget.xlsx

Effective/Re 0.471

28.6 Silicon Area Total

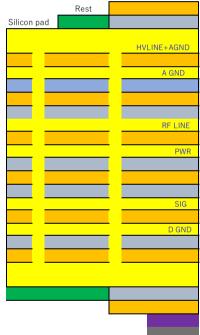
0.45

88.16

0.117201877

0.12

35.96


4.40

HDI Serial #271~398 (Batch-3)

Total 128HDIs i/3/3 銅メッキの厚みも残同率に考慮

Acceptance |eta|<1.1

Regist	20	μm
Copper plated	20	μm
L1 Electrolytic copper foil	9	μm
Base Polyimide	50	μm
L2 Electrolytic copper foil	9	μm
Glue	25	μm
Base Polyimide	12.5	μm
Glue	15	μm
L Electrolytic copper foil	9	μm
Base Polyimide	50	μm
L4 Electrolytic copper foil	9	μm
Glue	25	μm
Base Polyimide	12.5	μm
Glue	15	μm
L5 Electrolytic copper foil	9	μm
Base Polyimide	50	μm
L6 Electrolytic copper foil	9	$\mu\mathrm{m}$
Glue	25	μm
Base Polyimide	25	μm
L7 Electrolytic copper foil	9	$\mu\mathrm{m}$
Copper plated	20	$\mu\mathrm{m}$
Regist	20	μm

448 μm

Relatively small impact to the material budget due to small copper residual fraction.

山下の井上さんからの報告を元に残銅率を更新(190530) -> ページ下に記載

Rest (silicon

28.6

0.11

52.2

5.93

Weighted Mean X/Xrad by Area

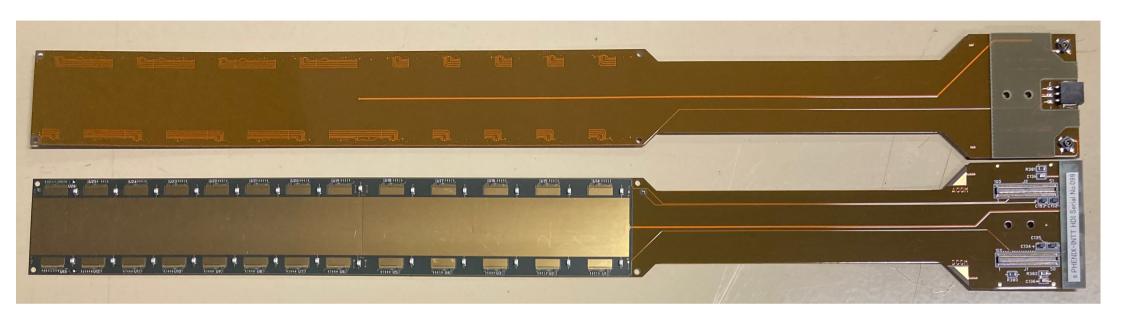
pad area)

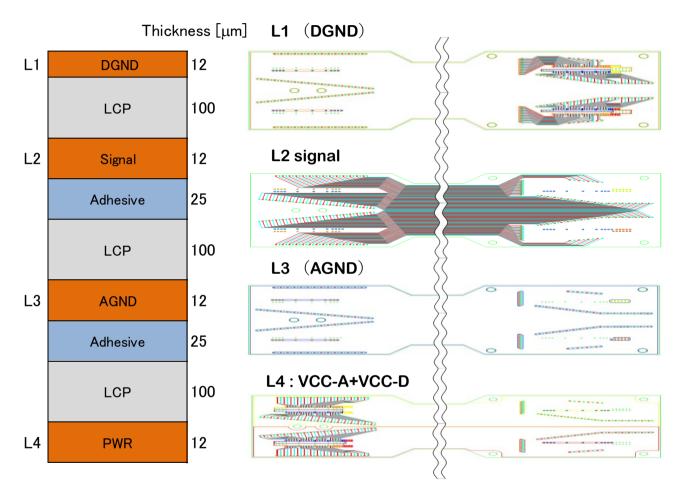
Sub Component Thickness

Copper Layers

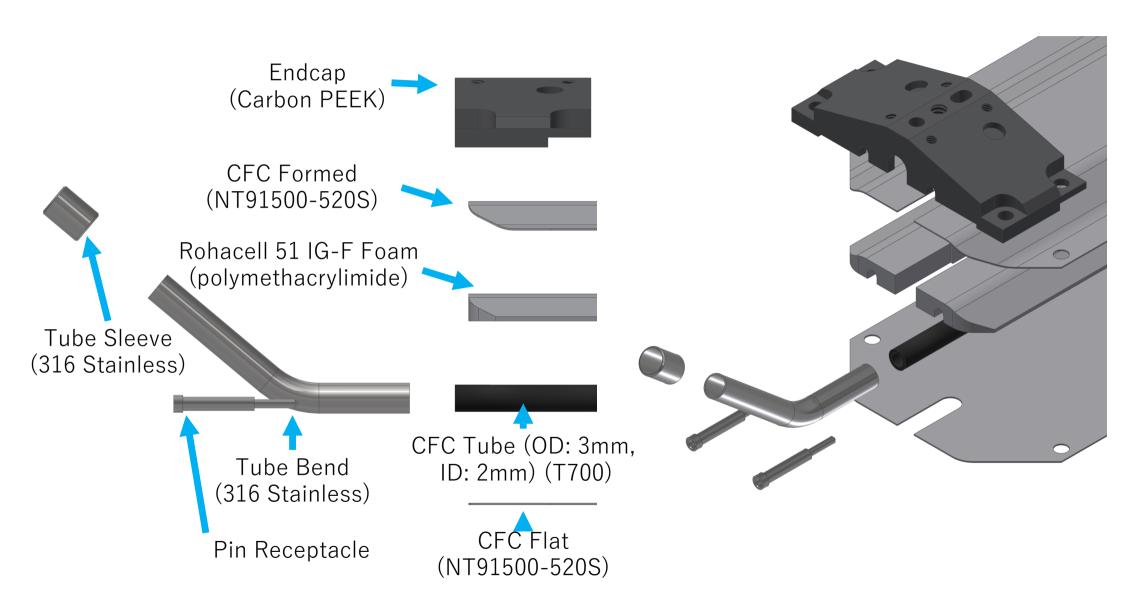
						padare	u)			
		Occupancy		Effectiv e[μm]	Real [μ m]	[μm]	[μ m]			
Coverlay Polyide	12.5 μ m									
Coverlay Glue	25 μm							25		
Copper plated	20 μm		71.3%	20.67		20				
L1 Electrolytic copper fo	9 μ m		11.070	20.01		9				
Base Polyimide	50 μm						50	50		
L2 Electrolytic copper fo	9 μm		93.5%	8.42	-	9				
Glue	25 μm						25	25		
Base Polyimide	12.5 μm						12.5	12.5		
Glue	15 μm						15	15		
L 3 Electrolytic copper fo	9 μm		6.50%	0.59		9				
Base Polyimide	50 μm						50	50		
L4 Electrolytic copper fo	9 μm		94.0%	8.46		9				
Glue	25 μm						25	25		
Base Polyimide	12.5 μm						12.5	12.5	μ m	
Glue	15 μm						15	15	μ m	
L5 Electrolytic copper fo	9 μm		7.20%	0.65		9				
Base Polyimide	50 μm				•		50	50	μ m	
L6 Electrolytic copper fo	9 μm		93.2%	8.38		9				
Glue	25 μm				•		25	25		25
Base Polyimide	25 μm						25	25	μm	
L7 Electrolytic copper fo	9 μm		4.000/	1.00		9				
Copper plated	20 μm		4.68%	1.36		20				
Coverlay Glue	25 μm				•		20	20		
Coverlay Polyimide	12.5 μm									
Glue for support plate	40 μm									
Support Plate FR-41	1000 μm									
.,	,									
TOTAL厚	483 μ m	Total		48.5177		103	325	350		

Radiation Length [1.435


0.338


Area[cm^2]

Area*X/Xrad


Thickness [um]

X/Xrad [%]


Total 398

INTT_Meeting_Minutes_200722.pdf

o Estimated effective thickness of the silver epoxy based on the volume of the glue mask provided from Rachid in the last meeting. The resulting effective thickness is 14um which is 28% of full thickness 50um. As a consequence, the contribution of the silver epoxy is now 0.04% instead of 0.14%. The total material budget was 1.12% before his update, and now 1.14%, very tiny increase. Although the carbon fiber stave thickness and silver epoxy glue are increased, these additional thickness were pretty much compensated by effective Cu thickness of HDI.

o Although the effective thickness based on the BNL mask is implemented to GEANT INTT model, NCU crews should also measure the amount of glue actually used in Taiwan assembly. The contribution of the silver epoxy in the material budget is not negligible if the effective thickness is near 50um, we should know realistic amount for the Taiwan ladders as well.

Input from Cheng-Wei

Please see the following drawing, this drawing is from Dan Caca, should be more reliable than what Rachid says.

The calculation of 18 um of glue thickness is in the following.

The total holes: (33 + 26) * 5 = *295* holes for one half-ladder

The diameter of one hole: 2 mm

The area of the one hole : $1 * 1 * \pi = \pi \text{ mm}^2$

The thickness of the mask: 0.1 mm

The total amount of glue : 295 * π * 0.1 = 29.5 π

0.1 -> 0.05

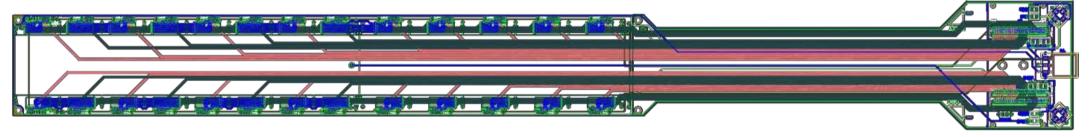
14.8pi

The area of the silicon area: (130 + 102)* 22.5 = *5,220*

The effective glue thickness: total_amount_of_glue / area_of_silicon_area =

 $29.5 \pi / 5220 = 0.018 \text{ mm} \rightarrow 18 \text{ um}.$

14.8pi/5220=0.0085=8.5um


Epoxy tab of INTT_LadderMaterialBudget.xlsx

Radiation Length of INTT Ladder

Material	Thickness [μm]	XXX0
Silicon	320	0.34%
HDI	473	0.49%
Stave	500	0.25%
Total	1293	1.08%

HDI Material	Thickness [μm]	XXX0				
Copper*	52	0.36%				
Polyimide	380	0.13%				
Total**	432	0.49%				
*Copper thickness is not physical thickness, but effective thickness.						

^{**}Total thickness is not 473µm, because of copper effective thickness.

The HDI is composed of 7 copper layers. 4 layers are solid ground or power layers. The remaining 3 layers are signal line layers containing a few percent of solid copper per layer.

Total	4.56	1.14	1.16
Stave	3.76	0.33	0.33
Thermally conductive epoxy	0.05	0.02	0.02
HDI	0.418	0.43	0.45
Silver epoxy	0.009	0.02	0.02
Silicon Sensor	0.32	0.34	0.34
	Thickness [mm]	X/X0 [%]	X/X0 [%]
INTT Material Budget		HDI batch 1,2	HDI batch 3

To be confirmed in the INTT GEANT model.

金メッキについて

On 2025/02/03 6:51, 柳川 大輔 wrote:

中川 様

ご連絡頂きまして、ありがとうございます。

金メッキの構成は、下記のねらい値となるそうです。

下地ニッケル:3~6µm厚

パラジウム:0.1~0.3µm厚

金:0.09~0.2µm厚

(標準的な無電金メッキの仕様になってます。)

Ni: 0.006mm/14.24mm=0.00042=0.04% 小さいのでここでは無視する。

Atomic and nuclear properties of nickel (Ni)

Quantity	Value	Units	Value	Units
Atomic number	28			
Atomic mass	58.6934(4)	g mol ⁻¹		
Density	8.902	g cm ⁻³		
Mean excitation energy	311.0	eV		
Minimum ionization	1.468	MeV g ⁻¹ cm ²	13.07	MeV cm ⁻¹
Nuclear interaction length	134.1	g cm ⁻²	15.06	cm
Nuclear collision length	82.6	g cm ⁻²	9.279	cm
Pion interaction length	162.6	g cm ⁻²	18.26	cm
Pion collision length	107.9	g cm ⁻²	12.12	cm
Radiation length	12.68	g cm ⁻²	1.424	cm
Critical energy	20.05	MeV (for e ⁻)	19.41	MeV (for e ⁺)
Muon critical energy	326.	GeV		
Molière radius	13.41	g cm ⁻²	1.506	cm
Plasma energy $\hbar\omega_p$	59.38	eV		

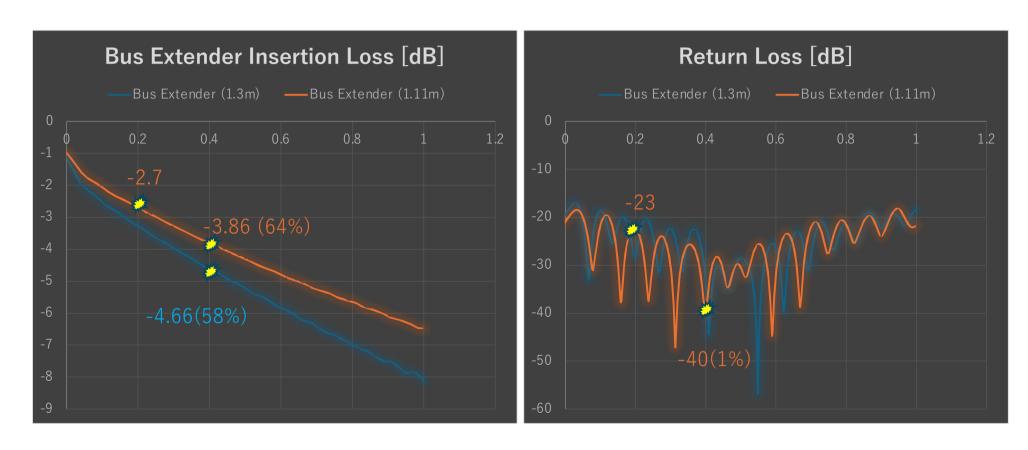
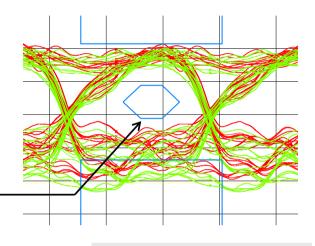
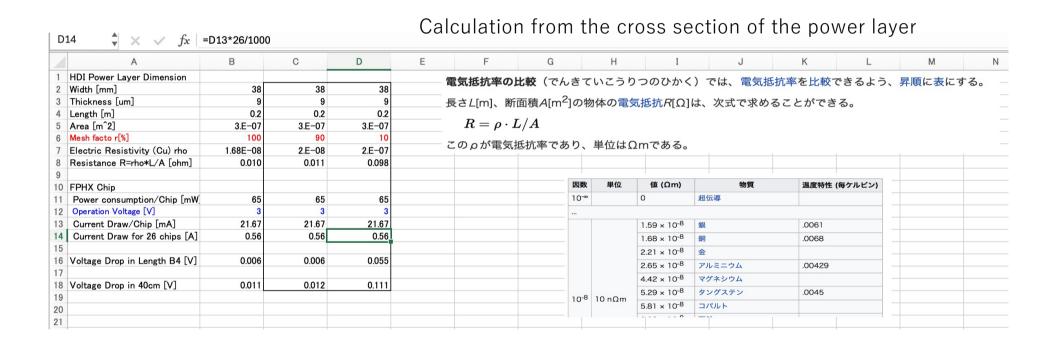

For muons, dE/dx = a(E) + b(E) E. Tables of b(E): PDF TEXT

Table of muon dE/dx and Range: PDF TEXT

Explanation of some entries


Table of isotopes via WIKIPEDIA

x ray mass attenuation coefficients from NIST


Eye Diagram Specifications

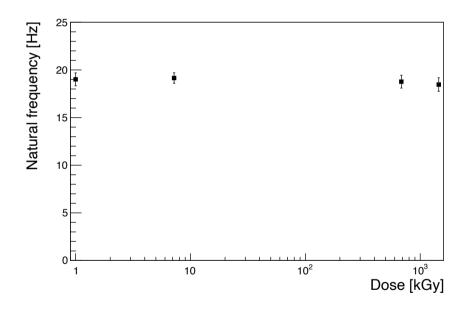
- The receiver is designed for regular LVDS f.i. $4mA@100\Omega$. This translates to be $\Delta V = 400mV$.
- The receiver is not employing any commercial device, so no clear specification is defined.
- However Tom considers △V=
 100mV should work, but △V=
 50mV is a bit uncomfortable
 level.

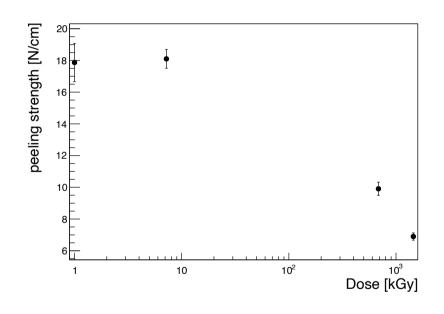
This figure is presented by Doug in FVTX review. The center diamond is not provided by Tom.

HDI Resistance

Drawing Current for FPHX Chips

FPHX chip consumes about 1/3 power in analogue and 2/3 in digital sections, respectively.


	Total	Digital	Analogue
LVDS min.	0.54 A	0.36 A	0.18 A
LVDS max.	0.64 A	0.42 A	0.21 A


Typical currents after 'INIT'

	Total	Partial	Conversion Cable		Bus Extender	HDI
	Current [A]	Current [A]	20cm [Ω]	$40 \mathrm{cm}[\Omega]$	Resistance $[\Omega]$	$40 \mathrm{cm}[\Omega]$
LVDS min.	0.54		0.2	0.4	0.3	0.1
Digital		0.36	0.07	0.14	0.11	0.04
Analogue		0.18	0.04	0.07	0.05	0.02
LVDS max.	0.64					(
Digital		0.42	0.08	0.17	0.13	0.04
Analogue		0.21	0.04	0.08	0.06	0.02

Anticipated Voltage Drop in each cables

Radiation Hardness of the BEX

H. Imai Diploma Thesis

Origin of 5 kGy in sPHENIX

Kondo et al.: Development of Long and High-Density Flexible Printed Circuits (1/10)

[Technical Paper]

Development of Long and High-Density Flexible Printed Circuits

Takashi Kondo^{1*}, Kohei Fujiwara¹, Takashi Hachiya^{2,3}, Hikaru Imai⁴, Miu Morita², Itaru Nakagawa^{3,4}, Naoyuki Sato⁵, Masato Tsuruta⁴, and Daisuke Yanagawa⁵

¹ Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10, Aomi, Koto, Tokyo 135-0064, Japan

(Received August 3, 2021; accepted July 7, 2022, published August 4, 2022)

Abstract

The super Pioneering High-Energy Nuclear Interaction eXperiment (sPHENIX), which aims to unravel the mysteries of the creation of the universe, is scheduled to be launched in 2023 at Brookhaven National Laboratory, U.S.A, using the relativistic heavy ion collider. As a typical high-energy particle accelerator-based experiment, the collision area of sPHENIX is to be tightly occupied with various radiation detectors, requiring a minimal special budget to run cables and transmit massive signals generated by these detectors to downstream electronics for data processing located in a remote distance. Accordingly, a long, high signal line-density cable has been developed based on the flexible printed circuit

more than the minimum required bit error rate of 50 ppm. **4.2** Mechanical characteristics

In sPHENIX, high reliability is required for the FPC because it is difficult to access the inside the radiation area during the experiment. This reliability was evaluated by the peeling and thermal-shock tests.

The objective of the peel test is to verify that the laminate substrate has sufficient peel strength between layers. We prepared a test sample of the same stackup as the prototype, but with no pattern in every layers, and then tested it by peeling it up and down at an angle of 180° in the second or third layer using a tensile tester. The test results are presented in Fig. 14. The peel strength is defined at the point of the observed tensile force where the stress

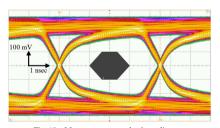


Fig. 13 Measurement result of eye-diagram

samples demonstrated higher peel strength than the required 10 N/cm (a typical peel strength of conventional polyimide). This result is an improvement over the initial prototype test sample. This improvement was a biproduct of the new bonding sheet introduced in Section 3.3.

The observed peel strength can be degraded after daily use in the radiation environment. Therefore, the peel strength was measured for the samples under radiation exposure by 5 kGy. In addition, 5 kGy is the expected radiation dose for five years of operation in sPHENIX. We did not observe obvious degradation in the peel strength within the accuracy of the measurement.

Because the cable comprises 4 layers of 12- μm thick

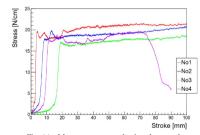


Fig. 14 Measurement result of peel strength

The origin of 5 kGy in sPHENIX needs to be double checked (Itaru)

² Nara Women's University, Kitauoya-Higashimachi, Nara 630-8506, Japan

³ RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan

⁴ Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan

⁵ Hayashi-Repic Co., Ltd., 1-28-3, Kitaotsuka, Toshima, Tokyo 170-0004, Japan

Felix Clock Block Diagram

This is underdevelopment.

