
The ePIC Barrel Imaging Calorimeter

AstroPix Wafers, Modules, and Staves

Manoj Jadhav Argonne National Laboratory **4th BIC In-person Workshop** April 09-11, 2025

Biographical Sketch

ePI

GTL - AstroPix Wafers + BIC Modules and Staves

Argonne Micro-Assembly Facility Technical Project Leader

High Energy Physics Division at Argonne National Laboratory

Interest:


Silicon detectors R&D, UFSD-LGADs, CMOS-MAPS, Thin film detectors

Collaboration:

BIC-ePIC
ITk Pixel Modules - ATLAS Inner Tracker
Tracker - ComPair2 and AMEGO-X - NASA

Past Experience:


Argonne Postdoc - Oct 2018 to May 2022 PhD - Indian Institute of Technology Bombay, India (ALICE Experiment)

Green Team

GTL - AstroPix Wafers + BIC Modules and Staves

Work Package Scopes:

- Chip Support
 - Chip design
 - Version 5 for PREP and Version 6 for Production
- Wafer Testing
 - QC procedure
 - wafer/chip QC
 - Wafer dicing and metrology
- Wafer procurement
 - wafer procurement
- Module/Stave Design and Assembly
 - assembly, loading, and QC procedure
 - Handling and carrier toolings
 - Module assembly and QC
 - Stave loading and QC
- Stave Bus (actually Module Hybrid-PCB AstroLinx)
 - AstroLinx design and fabrication (v3 and v5)
 - Update to AstroLinx for Production (v6)
 - AstroLinx QC

Outline

Subtitle

- Test Article evolution AstroPix versions, QC test stand, Module test article, readout PCB, Staves, handling and loading tools, QC procedure, assembly and loading procedure, production database
- Status overview Ongoing activities on wafer/chip testing, Module and Stave Design, chip wirebonding and handling tools, readout PCB, 9chip board testing, assembly mockups
- PED/preliminary design(60%) phase & deliverables → August 2025
 - schedules, what is needed, and when
- PED/final design (90%) phase & deliverables → Spring/Summer 2026
 - detailed QC plan, preliminary production-like procedures (scaling)
- Preproduction plans (PREP) (99%/100%)
 - practice of production

еріф

AstroPix

BIC PED

AstroPix v3 (1.87 cm \times 1.96 cm)

First full size design Pixel pitch: 500 µm Pixel matrix: 35 × 35 Row/Column readout

0.88 mW/cm² analog, 12 mW digital 2.5 MHz timestamp, 200 MHz ToT

HREL SAND ASTROPIX3

HREL SAND ASTROPIX3

ASTROPIX3

ADL

ASTROPIX3

ASTROPIX3

ASTROPIX3

AstroPix v4 (1 cm × 1 cm) Final design engineering run

Pixel pitch: $500 \mu m$ Pixel matrix: 13×16 Individual pixel readout 0.96 mW/cm^2 analog, 3 mW digital 3 timestamps, 3.25 ns time resolution TuneDAC for pixel-by-pixel thresholds

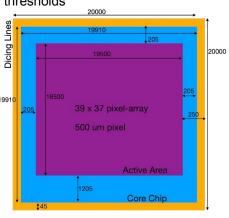
BIC PREP

AstroPix v5 (1.87 cm \times 1.96 cm)

Final design run
Pixel pitch: 500 µm
Pixel matrix: 36 × 34
Individual pixel readout

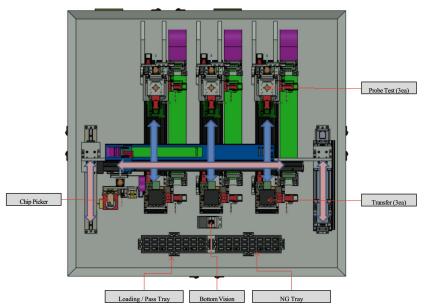
0.96 mW/cm² analog, 3 mW digital 3 timestamps, 3.25ns time resolution TuneDAC for pixel-by-pixel thresholds

*Engineering run of v6 during PREP


BIC Final Chip Design

AstroPix v6 (2 cm \times 2 cm)

Pixel pitch: 500 μm
Pixel matrix: 39 x 37
Individual pixel readout


2 mW/cm²

3 timestamps, 3.25ns time resolution TuneDAC for pixel-by-pixel thresholds

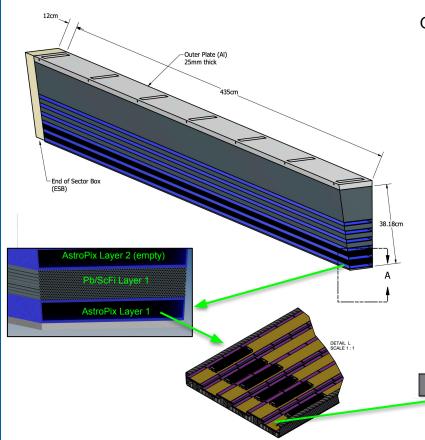
Wafer/Chip QC Test Stand

Goal

- Identify defective chips
- Avoid rework and minimize efforts
- Achieve best detector performance

PED

- Chip QC test stand
- Design and fabricate probe card (v3)
- Set initial QC procedure
- Chip QC on 80 AstroPix chips (v3)


Milestones

- Commissioning of test stand
- Decision of Chip vs. Wafer QC
- QC of 80 chips required for PED

PREP (Pre-Production)

- Commissioning of wafer-prober/chip-teststand (at 2 sites)
- Finalize wafer QC procedure and develop testing FW/SW
- Establish production workflow for AstroPix chips delivery
- Test QC on 7500 chips (125 wafers)

Modules and Staves

48 sectors 192 Trays 56 Staves/sector 2688 Staves 32256 Modules

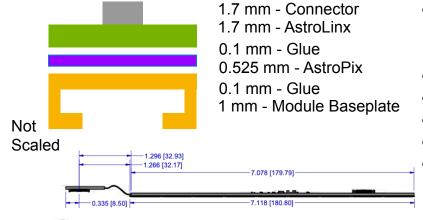
32256 Modules

0.118 [3.00]

Goal:

Four imaging layers in a Sector

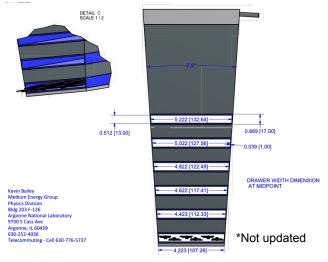
~435 cm active length

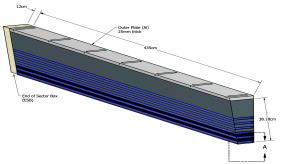

Total 48 Sectors

- Tray is a structure holding the AstroPix Staves for a single layer (217.5 cm long)
 - Tray consist of 6-7-7-8 Staves (x2) in a sector
- Stave consist of 12 AstroPix Modules
 - Module is an electrically testable elementary unit consist of **9 AstroPix chips** with Hybrid-PCB readout (~18cm)
 - Total 31104 Modules
- Total 279936 AstroPix chips will be used to build the imaging layers
- All Trays will be built using same Modules, standardizing the loading procedure

ePI

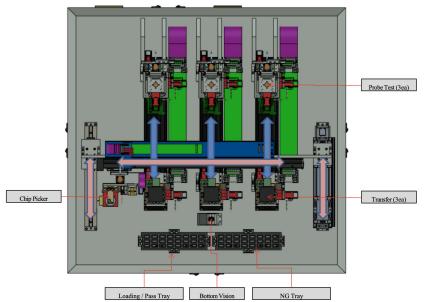
Modules and Staves


PED:


- Proof of principle: daisy-chaining
 - Quadchip board testing (talk by Bobae and Dan)
 - 9-chip PCB (Bobae's talk)
- Build and validate design concept mechanical support test articles for Modules and stave loading (Sylvester's talk)
 - evaluate and update the design
- Develop Hybrid PCB for module readout (v3) AstroLinx
- Module assembly mockups with dummy chips
- Module assembly (6 modules) with v3 chips
- Module QC initial procedure
- Load them on Tray through Stave railing
 - Lanky teenage BCAL (Maria's talk)

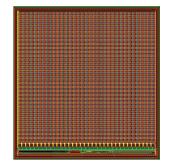
ePI

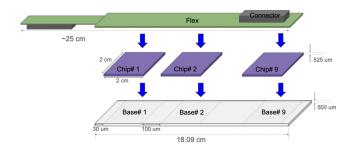
Modules and Staves

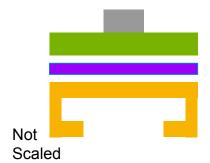

PREP:

- Building half sector (~217 cm)
 - o all 6 layers of tracker (6+7+7+7+8 Staves)
 - Total 50 Stave 600 Modules
- Finalize the assembly, loading, and QC procedure
- Update the Hybrid-PCB design for AstroPlx v5
- Design and fabricate handling/carrier tools
- Commissioning of pick and place machine for automation of assembly
- Assembly and Loading procedure
 - assembly of 600 modules at 3 sites
 - loading modules to Tray
 - o QC
- Development of electric and mechanical test articles for AstroPix
 v6 (final design)
 - Module assembly (v6 engineering run)
 - Stave loading and QC

Status Overview


AstroPix Wafers and QC


- AstroPix v5 is ready and waiting for submission (engineering run)
- Final chip (v6) dimensions is 2 cm x 2 cm
- Test stand design finalized at PNU, (Sanghoon's talk tomorrow)
 - procurement under process
 - v3 probe card design in progress
 - In discussion with vender for wafer prober estimates
 - v3/v4 chip testing to set QC procedure

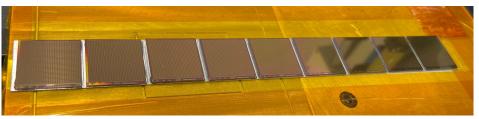

AstroPix v5

Status Overview

Module and Staves

- 1.7 mm Connector
- 1.7 mm AstroLinx
- 0.1 mm Glue
- 0.525 mm AstroPix
- 0.1 mm Glue
- 1 mm Module Baseplate

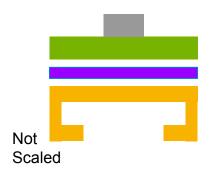
Module design


- Base Plate (Aluminum)
- Nine AstroPix Chips
- Hybrid PCB

Mechanical design

- Finalized base plate design
- Topic of discussion locking mechanics
- Initial test article under fabrication

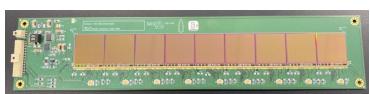
Mechanical loading procedure

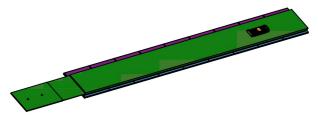

- Glass dummies under fabrication
- Ongoing discussion on adhesive selection and glueing procedure
- Wire-bonding procedure under discussion

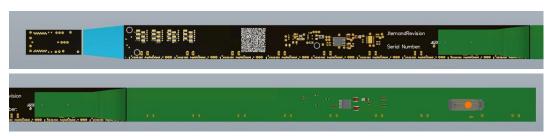
Status Overview

ePI

Module and Staves


1.7 mm - Connector
1.7 mm - AstroLinx
0.1 mm - Glue
0.525 mm - AstroPix
0.1 mm - Glue
1 mm - Module Baseplate


AstroPix testing


- AstroPix v3 will be used for PED
- o ongoing quadchip and 9chp board testing

Hybrid PCB Design (AstroLinx)

- Schematic completed
- work ongoing on layout design
- Will be presented tomorrow by Blake

PED Design and Pre-production Plans

Milestones - Wafer QC

Aug 2025	Spring/Sum 2026	mer ~early 2027	~Fall 2030
PED: Preliminary Design	PED: Final Design	Preproduction	Production

- Fully commissioned chip test stand at PNU July 7, 2025
- QC testing of priliminary tests of AstroPix v3 chip
 July 15, 2025
- AVAIL: wafer vs. chip testing decision July 21, 2025
- QC tested v3 chips for Module PED Aug 20, 2025

- AstroPix v5 deliveryJuly, 2026
- Wafer/chip prober -July, 2026
- Wafer QC procedure- Apr, 2026
- Wafer QC on first preproduction v5 wafer - Aug, 2026
- Start receiving diced QC'ed chips - Sep 2026
- AstroPix v6 for Production - Aug 2027

PED Design and Pre-production Plans

Milestones - Modules and Staves

Spring/Summer ~early 2027 ~Fall 2030

PED: Preliminary Design

PED: Final Design

Preproduction

Production

- Proof of Principle
 Daisy-Chained
 9-chip Module PCB
 for PDR 28 July,
 2025
- AVAIL: 3 fully QC'ed
 9-chip PCB board Aug 25, 2025
- Final sign-off on the AstroLinx v3 design
 May 15, 2025
- First QC'ed v3 module - July 29, 2025

- Updated test articles (Mechanics) - Dec, 2025
- v3 Module test articles (6 Modules) -Mar 2026
- v3 Module loading on the Stave test articles Lanky-Teenager-BIC
 - Apr 2026

- Handling and Carrier tools ready for preproduction - July, 2026
- Review AstroLinx PCB v5 Oct 2025
- REQD: Start receiving QC'd v5 AstroPix chips - Oct 2026
- Gantry system commissioned June 2026
- Final Production pipline defined Aug 2026
- Review of QC procedure Dec 2026
- Start receiving QC'ed v5 modules Dec 2026
- Preproduction phase 1 assembly completed (v5 chips) - Jan 2027
- Finish Loading of Staves Feb 2027
- AVAIL: Remaining Trays ready for System
 Testing May 2027

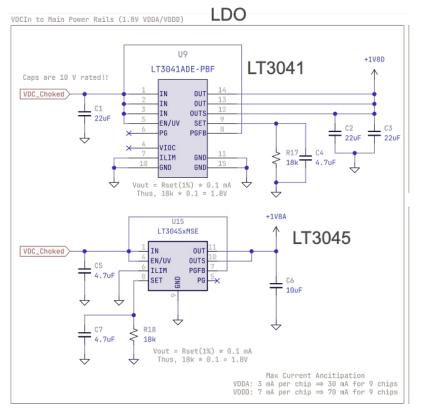
AstroPix Coverage

еРІС

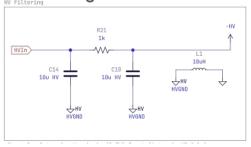
Active area of the imaging layers

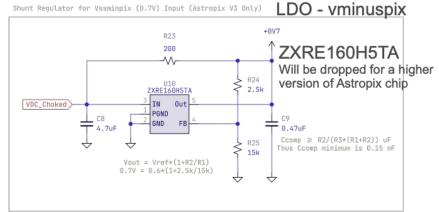
- AstroPix chip size = 2 cm × 2 cm
- Active area = 1.95 cm x 1.85 cm
- Total Sector length = 435 cm
- Length to cover with single Stave = 217.5 cm
- AstroPix chip + gap = 2.01 cm
- Number of chips required = 217.5/2.01 = 108.21

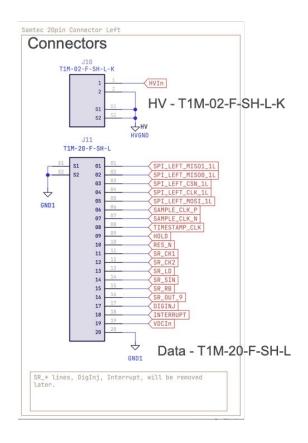
- 12 Module with 9 chips = 108 AstroPix Chips
- Length of the Module = 9*2.01 = **18.09 cm**
- Length of the Stave = 9*2.01*12 = **217.08 cm**
- Length of Imaging Sector = 434.16 cm


Inactive area percentage along Stave = 2.99%

Transverse Coverage of imaging layers


	Length		Overlap or Inactive	Overlap/Inactive per Stave	Overlap/Inactive per Gap	Inactive
	(mm)		(mm)	(mm)	(mm)	(%)
1	107.257	6	4.243	0.707	0.8486	0.47
3	117.411	7	12.589	1.7984	2.0982	0.43
4	122.488	7	7.512	1.073	1.252	0.41
6	132.642	8	15.858	1.982	2.2654	0.38


AstroPix Module Test PCB


HV Filtering

AstroPix Module Test PCB

List of I/O		
	V3	V5 (Not Final - need in)
Power	HVin	HVin
	HV GND	HV GND
	VDCIN	VDCIN
SPI	MISO0	MISO0
	MISO1	MISO1
	CSN	CSN
	CLK	CLK
	MOSI	MOSI
Sample Clk	SAMPLE_CLK_P	SAMPLE_CLK_P
	SAMPLE_CLK_N	SAMPLE_CLK_N
Shift Register	SR_Ck1	
	SR_Ck2	
	SR_LD	
	SR_SIN	
	SR_RB	
	SR_OUT	
Other	DIGINJ	
	INTERRUPT	
	TIMESTAMP_CLK	TIMESTAMP_CLK
	Hold	
	RES_N	