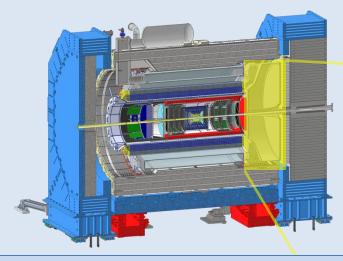
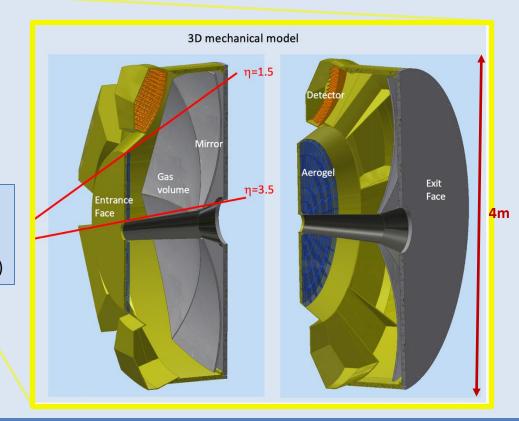

ePIC dRICH Status



M. Contalbrigo – INFN Ferrara - DSCL

10th EIC DAC Meeting – June 11th - 13th, 2025

ePIC dRICH


Dual-radiator Ring-imaging Cherenkov Detector (dRICH) Essential to access flavor information

Goals:

Hadron 3σ —separation between 3 - 50 GeV/c Complement electron ID below 15 GeV/c Cover forward pseudorapidity 1.5 (barrel) - 3.5 (b. pipe)

dRICH Features:

Extended 3-50 GeV/c momentum range --> Dual radiator Single-photon detection in high Bfield --> SiPM Limited space --> Compact optics with curved detector

Review Charges

- Charge 1: Is the design of the ePIC detector and its sub-systems appropriate and progressing well?

 Slides 4 5 6 7 9 10 11 15 18
- Charge 2: Are the remaining work and technical, cost and schedule risks adequately understood? Are there opportunities?

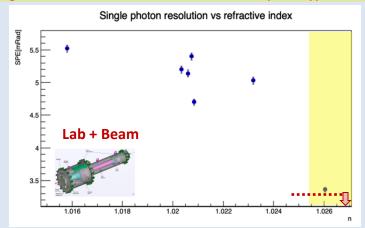
 Slides 5 8 13 14 16 17 20 and pre-TDR (pre-brief material)
- Charge 3: Will the detector be technically ready for baselining by late 2025?

 Slides 12 21 24
- Charge 4: Are the detector integration and planning for installation and maintenance progressing well?

 Are there areas where further ideas should be pursued?

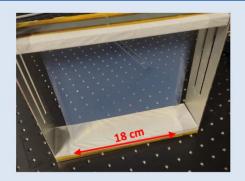
 Slides 19
- Charge 5: Will the detector be ready for start of construction by late 2026?

 Slides 12 21 24


Past Review: Action taken following recommendations Slide 14 - 19 - 22 - 23 - 24

Design Status

	Technical requirements			Validated technical solutions	Before CD-2
Aerogel:	Momentum reach above 15 GeV/c to overlap with gas More than 10 detected photons from 4 cm thickness Single photon resolution approaching 2 mrad			n = 1.026 $dn/d\lambda = 6 \cdot 10^{-6} \text{ nm}^{-1}$ scattering length > 50 mm	Dimensions
Gas:	Momentum reach above 50 GeV/c at pseudorapidity > 2.5 More than 20 detected photons from 1 m depth Single photon resolution approaching 1 mrad		C ₂ F ₆	with n = 1.00086 $dn/d\lambda = 0.2 \ 10^{-6} \ nm^{-1}$ absorption length > 100 m	Purging
Mirror:	Focalization of Cherenkov light onto the detector surface Preservation of the Cherenkov information Material budget limited to O(2 %) of radiation length			Carbon fiber material Roughness of few nm Angular precision < 0.3 mrad	Coating
Sensors:	Single photon detection capability in highly non-uniform magnetic field Excellent PDE in the visible range to cope with aerogel Marginal contribution to the angular resolution Preserve prompt Cherenkov information Tolerance to few 10 ¹⁰ 1-MeV neutron equivalent fluence	\Box	SiPM	Spatial resolution of 3 x 3 mm ² Time resolution O(100 ps) Operation at < -30 degrees Annealing curing cycles	Layout Annealing
Readout:	Below 1 p.e. signal threshold capability Preserve sensor time resolution to cope with dark counts and accidentals More than 300 kHz/ch rate capability Streaming readout with suppression of no-interaction frames	\Rightarrow	ALCOR	ALCOR chip (ToT architecture) Time resolution < 200 ps Rate > 300 kHz/ch	ALCOR 64ch RDO
Mechanics:	Acceptance maximized in 1.5 – 3.5 pseudorapidity range Material budget minimized in acceptance Compatibility with barrel maintenance at IP6			Composite materials Single open volume Detector in the barrel shadow	Real-scale prototype Cooling


dRICH baseline specifications

Aerogel with n=1.026 validated with lab and prototype tests

Details on Backup 26

Engineering of the aerogel wall expected by 2026

Goal Active Area = 21605 cm² Dead Area = $3269 \text{ cm}^2 (13\%)$ Wasted Area = 9112 cm2 (27%)

270 270 Active Area = 21368 cm²

Dead Area = $3506 \text{ cm}^2 (14\%)$

Wasted Area = 1868 cm2 (7 %)

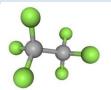
First large aerogel tile demonstrators delivered

An effort should be pursued by the vendor to keep the aerogel quality parameters as close as possible or better than the following reference values.

General specifications

- No cracks or bubbles inside the block. Single spallings which decrease its area no more than 0.25 % are acceptable on the top surface;
- Lateral dimension tolerance within 0.25 mm;
- No evident disuniformity inside the tile volume.

Technical specifications:


- Refractive index, to be chosen by the customer, in the range from 1.025 to 1.030, with a maximum tileto-tile variation of ±/-0.002;
- Tolerance on thickness +/- 1 mm, being the error intended as the maximum tile-to-tile variation;
- Absorption coefficient, defined as the constant term of the Hunt parameterization of the aerogel transmission, bigger than 0.95;
- Scattering length wavelength bigger than 45 mm at 400 nm;
- Planarity of the transmission surface, defined as the maximum peak to valley variation, does not exceed
 1.5 % of the lateral dimensions.

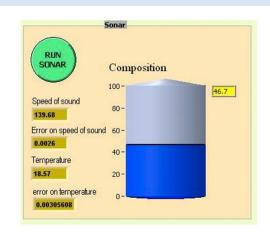
Design Status

	Technical requirements			Validated technical solutions	Before CD-2
Aerogel:	Momentum reach above 15 GeV/c to overlap with gas More than 10 detected photons from 4 cm thickness Single photon resolution approaching 2 mrad			n = 1.026 $dn/d\lambda = 6 \cdot 10^{-6} \text{ nm}^{-1}$ scattering length > 50 mm	Dimensions
Gas:	Momentum reach above 50 GeV/c at pseudorapidity > 2.5 More than 20 detected photons from 1 m depth Single photon resolution approaching 1 mrad		C ₂ F ₆	with n = 1.00086 $dn/d\lambda = 0.2 \cdot 10^{-6} \text{ nm}^{-1}$ absorption length > 100 m	Purging
Mirror:	Focalization of Cherenkov light onto the detector surface Preservation of the Cherenkov information Material budget limited to O(2 %) of radiation length			Carbon fiber material Roughness of few nm Angular precision < 0.3 mrad	Coating
Sensors:	Single photon detection capability in highly non-uniform magnetic field Excellent PDE in the visible range to cope with aerogel Marginal contribution to the angular resolution Preserve prompt Cherenkov information Tolerance to few 10 ¹⁰ 1-MeV neutron equivalent fluence		SiPM	Spatial resolution of 3 x 3 mm ² Time resolution O(100 ps) Operation at < -30 degrees Annealing curing cycles	Layout Annealing
Readout:	Below 1 p.e. signal threshold capability Preserve sensor time resolution to cope with dark counts and accidentals More than 300 kHz/ch rate capability Streaming readout with suppression of no-interaction frames	\Rightarrow	ALCOR	ALCOR chip (ToT architecture) Time resolution < 200 ps Rate > 300 kHz/ch	ALCOR 64ch RDO
Mechanics:	Acceptance maximized in 1.5 – 3.5 pseudorapidity range Material budget minimized in acceptance Compatibility with barrel maintenance at IP6			Composite materials Single open volume Detector in the barrel shadow	Real-scale prototype Cooling

Gas Radiator Technical Performance

Baseline Hexsafluoroethane validated with lab and beam tests

C₂F₆ molecular weight: 138.01 g/mol

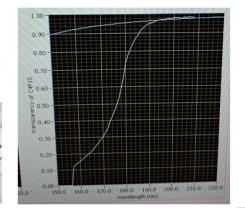

boiling point: -78.1 °C melting point: -100.6 °C

density: 5.734 kg/m³ at 24 °C density: 16.08 kg/m³ at -78 °C

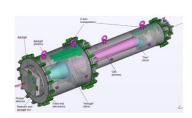
1 covalent + 6 hydrogen bonds

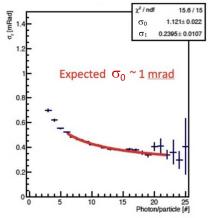
Gas	Npe(π/K)	θ_π	θ_К	σ_π	σ_K	Ν_σ	$\rho = \Delta\theta/\theta$ ($\lambda = 300$ nm)
C_2F_6	16.0/14.9	36.8	35.7	0.32	0.33	3.5	1.8 %
C4F10	24.8/23.8	48.6	47.8	0.29	0.30	2.8	2.4 %

Measured 139.7 m/s speed of sound confirms negligible contaminants after few year in bottle

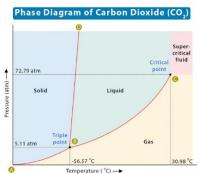


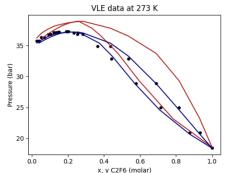
Transmission in UV range > 98 %




Deuterium UV lamp, Monochromator system, 1.6 m column for gas transparency measurement

Expected performance obtained with dRICH prototype

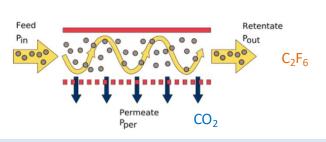


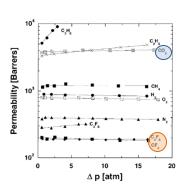

Gas Separation and Purging

Development of gas separation protocols expected by 2026

Purging via liquefaction of stand-by gas

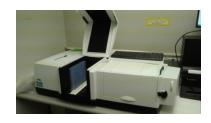
Updated vapor-liquid equilibrium C₂F₆-CO₂ model, test in preparation at CERN

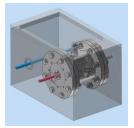




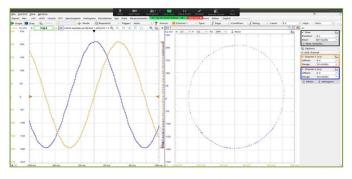
Purging via membranes

Effective separation of CF₄ and CO₂ demostrated in LHCb hpps://edms.cern.ch/document/2816490/1





Design of online purity monitors expected by 2026


Sonar to measure speed of sound

10 bar chamber + specrophotometer to measure light transmission in the visible range

Jamin interferometer for precise n determination

Nominal sensitivity down to 10 ppm of refractive index

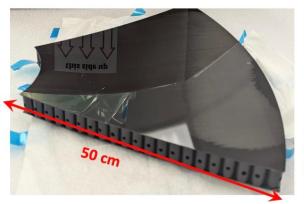
Design Status

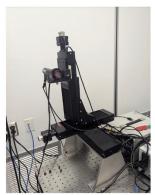
	Technical requirements			Validated technical solutions		Before CD-2
Aerogel:	Momentum reach above 15 GeV/c to overlap with gas More than 10 detected photons from 4 cm thickness Single photon resolution approaching 2 mrad			n = 1.026 $dn/d\lambda = 6 \ 10^{-6} \ nm^{-1}$ scattering length > 50 mm		Dimensions
Gas:	Momentum reach above 50 GeV/c at pseudorapidity > 2.5 More than 20 detected photons from 1 m depth Single photon resolution approaching 1 mrad		C₂F ₆	with n = 1.00086 $dn/d\lambda = 0.2 \cdot 10^{-6} \text{ nm}^{-1}$ absorption length > 100 m		Purging
Mirror:	Focalization of Cherenkov light onto the detector surface Preservation of the Cherenkov information Material budget limited to O(2 $\%$) of radiation length			Carbon fiber material Roughness of few nm Angular precision < 0.3 mrad		Coating
Sensors:	Single photon detection capability in highly non-uniform magnetic field Excellent PDE in the visible range to cope with aerogel Marginal contribution to the angular resolution Preserve prompt Cherenkov information Tolerance to few 10 ¹⁰ 1-MeV neutron equivalent fluence		SiPM	Spatial resolution of 3 x 3 mm ² Time resolution O(100 ps) Operation at < -30 degrees Annealing curing cycles	\Box	Layout Annealing
Readout:	Below 1 p.e. signal threshold capability Preserve sensor time resolution to cope with dark counts and accidentals More than 300 kHz/ch rate capability Streaming readout with suppression of no-interaction frames	;	ALCOR	ALCOR chip (ToT architecture) Time resolution < 200 ps Rate > 300 kHz/ch		ALCOR 64ch RDO
Mechanics:	Acceptance maximized in 1.5 – 3.5 pseudorapidity range Material budget minimized in acceptance Compatibility with barrel maintenance at IP6			Composite materials Single open volume Detector in the barrel shadow		Real-scale prototype Cooling

Mirror Technical Performance

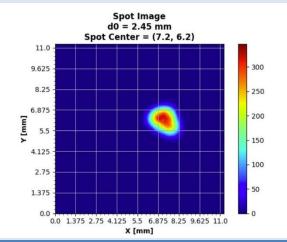
CFRP substrate mid-size (~50 cm side) demonstrator validated with lab tests before coating

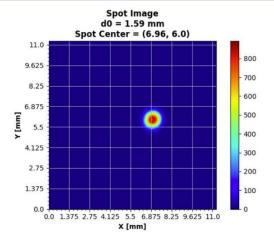
Details on Backup 27

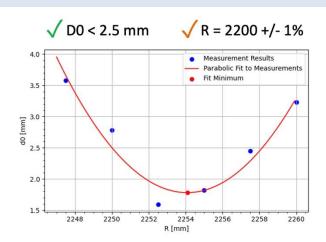

Annex C. Technical Requisite

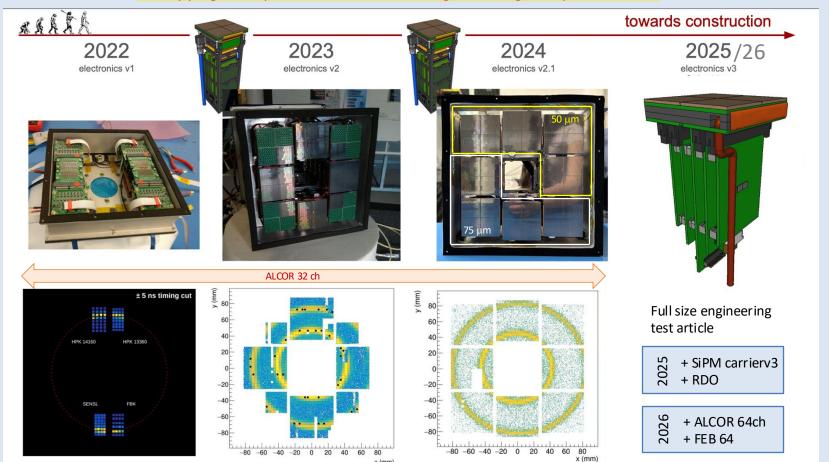

Each spherical mirror is supplied with

- a spot-size measurement,
- a report on dimensions,
- no reflective coating.


The spherical mirrors are replicated from the same mandrel. The latter is realized with the novel cost-effective technology that reduces the mandrel total mass and cost. Each mirror fulfills the following optical quality specification:

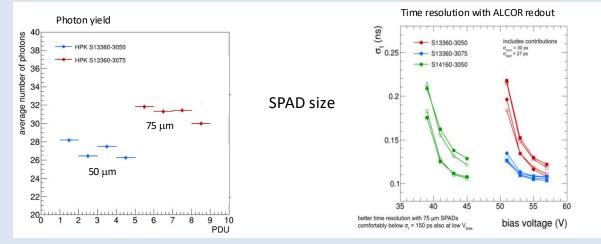

- Radius within 1% of nominal RoC value (the nominal RoC values is defined by the customer before production in the range 2000 mm +/- 10%).
- Roughness < 2 nm,
- Pointlike image spot size D0 < 2.5 mm,
- Compatibility with fluorocarbon gases (C2F6),
- Compatibility with SiO₂ reflecting coating.

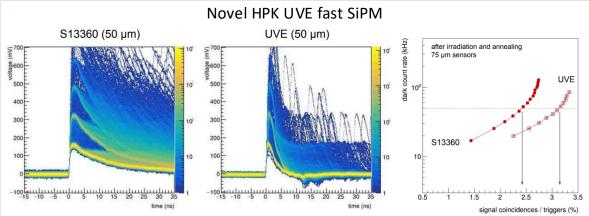




Design Status

	Technical requirements			Validated technical solutions	Before CD-2
Aerogel:	Momentum reach above 15 GeV/c to overlap with gas More than 10 detected photons from 4 cm thickness Single photon resolution approaching 2 mrad			n = 1.026 $dn/d\lambda$ = 6 10 ⁻⁶ nm ⁻¹ scattering length > 50 mm	Dimensions
Gas:	Momentum reach above 50 GeV/c at pseudorapidity > 2.5 More than 20 detected photons from 1 m depth Single photon resolution approaching 1 mrad		C ₂ F ₆	with n = 1.00086 dn/d λ = 0.2 10 ⁻⁶ nm ⁻¹ absorption length > 100 m	Purging
Mirror:	Focalization of Cherenkov light onto the detector surface Preservation of the Cherenkov information Material budget limited to O(2 %) of radiation length			Carbon fiber material Roughness of few nm Angular precision < 0.3 mrad	Coating
Sensors:	Single photon detection capability in highly non-uniform magnetic field Excellent PDE in the visible range to cope with aerogel Marginal contribution to the angular resolution Preserve prompt Cherenkov information Tolerance to few 10 ¹⁰ 1-MeV neutron equivalent fluence	\Rightarrow	SiPM	Spatial resolution of 3 x 3 mm ² Time resolution O(100 ps) Operation at < -30 degrees Annealing curing cycles	Layout Annealing
Readout:	Below 1 p.e. signal threshold capability Preserve sensor time resolution to cope with dark counts and accidentals More than 300 kHz/ch rate capability Streaming readout with suppression of no-interaction frames		ALCOR	ALCOR chip (ToT architecture) Time resolution < 200 ps Rate > 300 kHz/ch	ALCOR 64ch RDO
Mechanics:	Acceptance maximized in 1.5 – 3.5 pseudorapidity range Material budget minimized in acceptance Compatibility with barrel maintenance at IP6			Composite materials Single open volume Detector in the barrel shadow	Real-scale prototype Cooling


Photon Detector


Steadly progress of photodetector towards integrated design completion in 2026

Sensor Layout Engineering

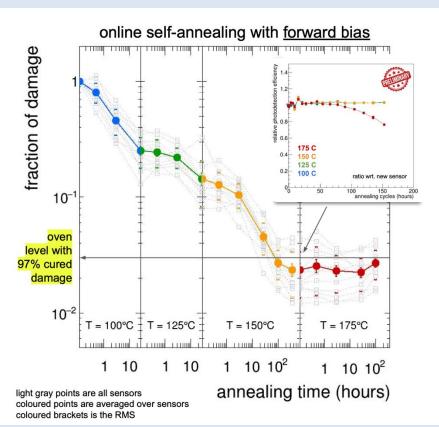
Baseline specs defined at the SiPM LLP Rewiew in fall 2023 after several tests on a variety of sensors

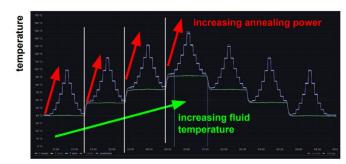
Details on Backup 28

purchased and received

- 4x matrices with 50 µm SPADs
- 12x matrices with 75 μm SPADs
- o several single-SiPM sensors

goal

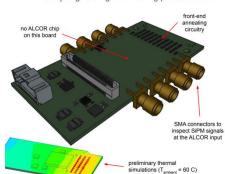

- assemble few new PDUs
- o use them in the next beam test
- evaluate expected PDE improvement

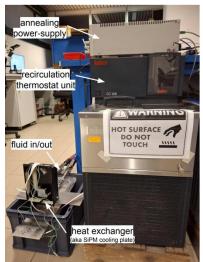


Completion of engineering of the SiPM optimized layout and temperature treatments expected by 2026

Recomm. (DAC): Annealing procedures should be investigated, and defined; this will have implications for the design of the read-out board (heating).

Details of in-situ annealing protocol based on Joule-effect

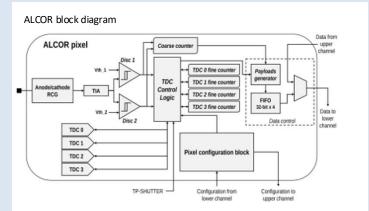



footures

- like a final FEB with all annealing circuitry
- SMA connectors to inspect SiPM signals on scope

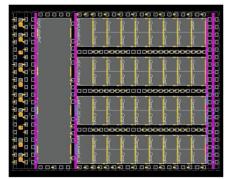
goals

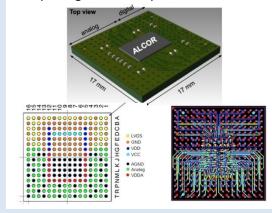
- test realistic dRICH annealing electronics
- study/engineering of annealing process details


Design Status

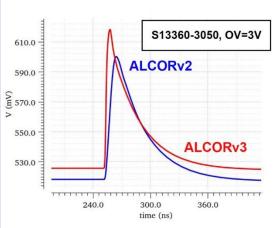
	Technical requirements			Validated technical solutions		Before CD-2
Aerogel:	Momentum reach above 15 GeV/c to overlap with gas More than 10 detected photons from 4 cm thickness Single photon resolution approaching 2 mrad			n = 1.026 $dn/d\lambda = 6 \ 10^{-6} \ nm^{-1}$ scattering length > 50 mm		Dimensions
Gas:	Momentum reach above 50 GeV/c at pseudorapidity > 2.5 More than 20 detected photons from 1 m depth Single photon resolution approaching 1 mrad		C ₂ F ₆	with n = 1.00086 $dn/d\lambda = 0.2 \ 10^{-6} \ nm^{-1}$ absorption length > 100 m		Purging
Mirror:	Focalization of Cherenkov light onto the detector surface Preservation of the Cherenkov information Material budget limited to O(2 %) of radiation length			Carbon fiber material Roughness of few nm Angular precision < 0.3 mrad		Coating
Sensors:	Single photon detection capability in highly non-uniform magnetic field Excellent PDE in the visible range to cope with aerogel Marginal contribution to the angular resolution Preserve prompt Cherenkov information Tolerance to few 10 ¹⁰ 1-MeV neutron equivalent fluence	\Box	SiPM	Spatial resolution of 3 x 3 mm ² Time resolution O(100 ps) Operation at < -30 degrees Annealing curing cycles	\Box	Layout Annealing
Readout:	Below 1 p.e. signal threshold capability Preserve sensor time resolution to cope with dark counts and accidentals More than 300 kHz/ch rate capability Streaming readout with suppression of no-interaction frames		ALCOR	ALCOR chip (ToT architecture) Time resolution < 200 ps Rate > 300 kHz/ch		ALCOR 64ch RDO
Mechanics:	Acceptance maximized in 1.5 – 3.5 pseudorapidity range Material budget minimized in acceptance Compatibility with barrel maintenance at IP6			Composite materials Single open volume Detector in the barrel shadow		Real-scale prototype Cooling

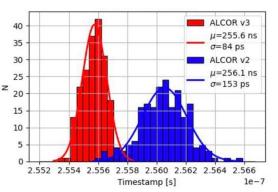
ALCOR spces defined with years of lab + beam tests with the 32 channel version - ALCORv64 ready for pilot production


MPW run in March '25


ALCOR key specifications

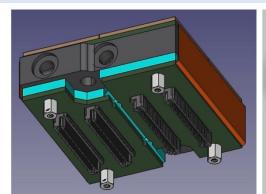
Function	Digitization from SiPMs with 1 p.e. sensitivity	
Mode	Single-photon tagging or time and charge	
Tech Node	110 nm CMOS	
Channels	64 (8x8), dual polarity	
Cdin	<1 nF	
Digitization	20-40 ps TDCs, TOA + TOT; Timing <150 ps	
Shutter	Width: 2–3 ns, programmable latency	
Input Rate	<2.4 MHz (up to 5 MHz on single channel)	
Clock	394.08 MHz operation from BX 98.5 MHz	
Links	788 Mbps LVDS, SPI configuration	
Power	12 mW/ch	
Package	BGA	
Rad Tolerance	Radiation hard	

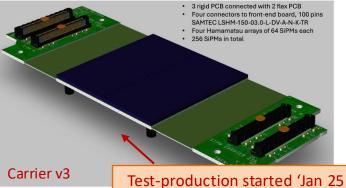

Silicon die layout

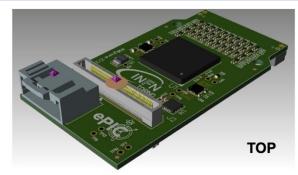


Compact ball-grid array (BGA) package with interposer

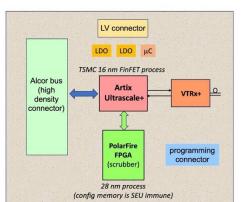
Improved timing and digital shutter


Readout Electronic

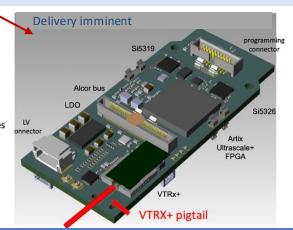

Design of the readout electronics in the "final" ePIC layout version is ready for test production.


Proton irradiation campaigns for ALCOR-32 and key RDO components showed SEU rate is within the expected manageable levels A working DAQ scheme has been identified to support ML online data filtering at sub-detector level against pure dark-count event

Details on Backup 29

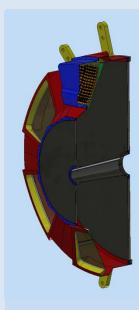

Backup 30

Front-End Board (FEB)



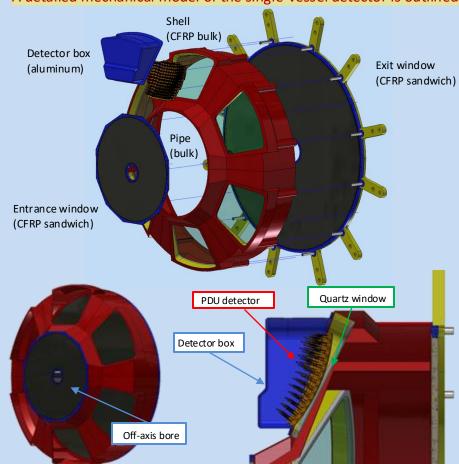
2.04 inches

Readout Board (RDO)



Design Status

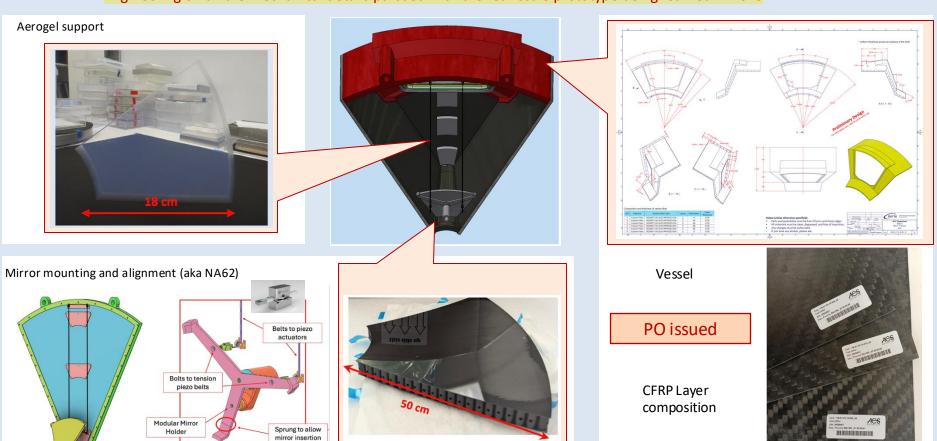
	Technical requirements		Validated technical solutions		Before CD-2
Aerogel:	Momentum reach above 15 GeV/c to overlap with gas More than 10 detected photons from 4 cm thickness Single photon resolution approaching 2 mrad		n = 1.026 $dn/d\lambda = 6 \ 10^{-6} \ nm^{-1}$ scattering length > 50 mm		Dimensions
Gas:	Momentum reach above 50 GeV/c at pseudorapidity > 2.5 More than 20 detected photons from 1 m depth Single photon resolution approaching 1 mrad	C ₂ F ₆	with n = 1.00086 dn/d λ = 0.2 10 ⁻⁶ nm ⁻¹ absorption length > 100 m		Purging
Mirror:	Focalization of Cherenkov light onto the detector surface Preservation of the Cherenkov information [Material budget limited to O(2 %) of radiation length		Carbon fiber material Roughness of few nm Angular precision < 0.3 mrad		Coating
Sensors:	Single photon detection capability in highly non-uniform magnetic field Excellent PDE in the visible range to cope with aerogel Marginal contribution to the angular resolution Preserve prompt Cherenkov information Tolerance to few 10 ¹⁰ 1-MeV neutron equivalent fluence	SiPM	Spatial resolution of 3 x 3 mm ² Time resolution O(100 ps) Operation at < -30 degrees Annealing curing cycles	\Box	Layout Annealing
Readout:	Below 1 p.e. signal threshold capability Preserve sensor time resolution to cope with dark counts and accidentals More than 300 kHz/ch rate capability Streaming readout with suppression of no-interaction frames	ALCOR	ALCOR chip (ToT architecture) Time resolution < 200 ps Rate > 300 kHz/ch		ALCOR 64ch RDO
Mechanics:	Acceptance maximized in 1.5 – 3.5 pseudorapidity range Material budget minimized in acceptance Compatibility with barrel maintenance at IP6		Composite materials Single open volume Detector in the barrel shadow		Real-scale prototype Cooling


General Layout

A detailed mechanical model of the single-vessel detector is outlined with composite materials

Composite materials

Total wieght: ~ 2 ton



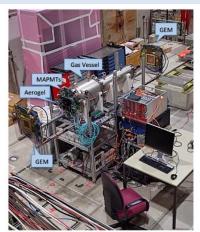
Recomm. (DAC): Provide material for the pending decision on the single vs two vessel version of the detector.

Engineering of all the mechanical details pursued with the real-scale prototype being realized in 2025

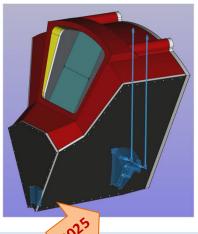
and removal

Test Beams

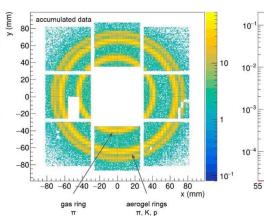
Previous validations:

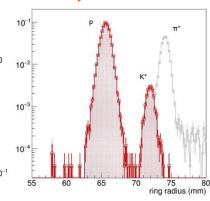

Dual-radiator concept C_2F_6 radiator gas performance Aerogel rafractive index SiPM-ALCOR readout chain EIC-drive readout plane Temperature gradients

2025 main goals:


Real scale 1-sector prototype with demo components

ALCOR readout with RDO


Slot at SPS H8 in November



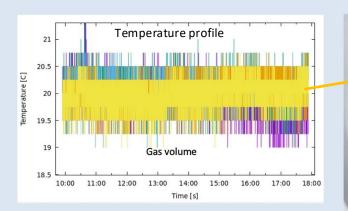
SiPM plane, cycled from 22° to -30°

Ongoing comparative simulation vs prototype thermal study expected to be completed by mid 2026

Details on Backup 33

3 mm lucite window

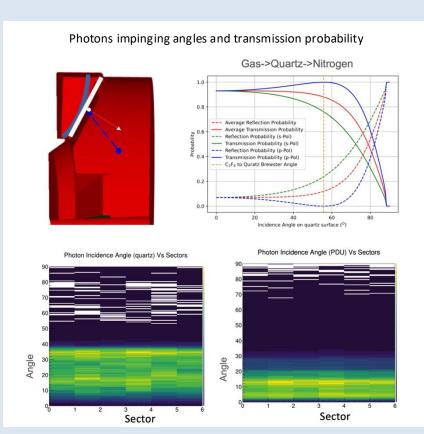
Time [s]

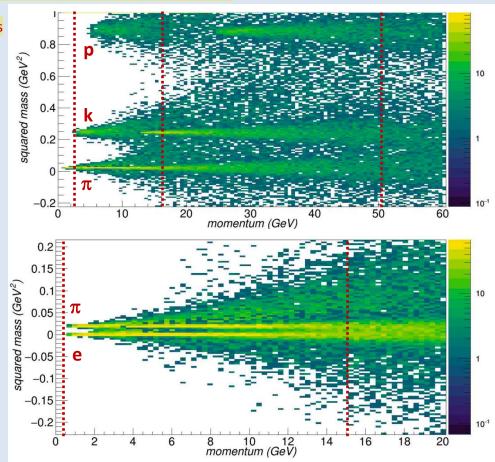

Recomm. (DAC): Investigate whether windows are necessary to separate regions at different temperatures (gas radiator and the photon detector), and if needed, whether they impact performance significantly.

Ongoing study with ANSYS workbench simulations

Benchmarked by dRICH prototype

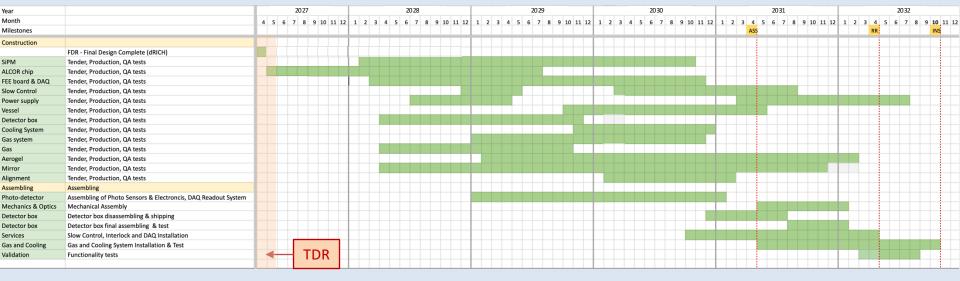
Gradients are largely mitigated by


- double lucite window (with air gap) x 0.5
- 8 mm thick quartz window
- inner gas recirculation x 0.1



Simulation within ePIC dd4hep framework accounts for tracking, material budget and magnetic bending.

Model bases on lab characterization and test-beam data of components



Construction Plan

60% Preliminary Design Review passed. A construction and QA plan is outlined accounting for lead, assembling and commissioning time

Recomm. (DAC): Present at least a vague timeline for the project at the next DAC review.

- CD-2: Validate ALCOR-64 & RDO design
 Validate real-scale prototype mechanics
 Study detector box engineering
 Define baseline integration and maintenance plan
 Work out a baseline cooling & gas sytem
- CD-3: Optimize component performance
 Complete component integration
 Finalize cooling & gas system
 Detail detector integration and maintenance

- Stage 1: Procurement for the PDU components (asics, SiPM, carrier, FEB, RDO...)
 Anticipate mirror and gas procurement to reduce risk
- Stage 2: Central 2-3 year for the detector box assembling before delivery to BNL Aerogel production after engineering optimization

 Gas system realization after BNL authority approval
- Stage 3: Mechanical structures
 Assembling and completion of services
 6 months of contingency and functionality tests

Conclusions

dRICH Design Status is documented in the pre-TDR:

dRICH passed 60% Preliminary Design Review on April 1-2, 2025

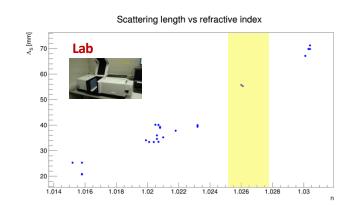
Essential technical performance has been validated for each dRICH component

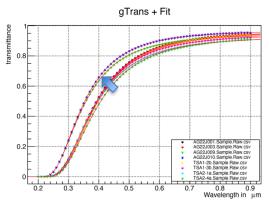
Engineering is ongoing with pre-productions for performance vs cost optimization

Workforce is increasing, with focus in simulations and engineering

Ultimate R&D achievements expected in 2025 (real-scale prototype, RDO, ALCOR64)

On track for CD-2 in 2026 and Final Design completion in January 2027 as for P6

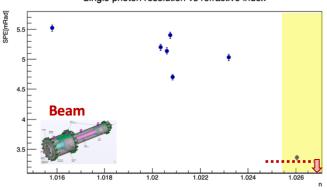

Previous DAC Recommendations:

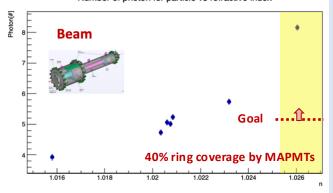

- ✓ Annealing procedures should be investigated and defined; this will have implications for the design of the read-out board (heating).
- ✓ Provide material for the pending decision on the single vs two vessel version of the detector.
- ✓ Present at least a vague timeline for the project at the next DAC review.
- ✓ Investigate whether windows are necessary to separate regions at different temperatures (gas radiator and the photon detector), and if needed, whether they impact performance significantly.

Aerogel Technical Performance

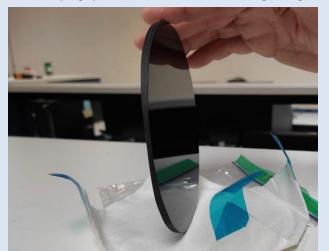
Aerogel with n=1.026 validated with lab and prototype tests

- * meet SPE resolution expectations
- * scattering length > 50 mm
- * match with TOF end point (2.5 GeV/c)
- * overlap with gas (> 12 GeV/c)
- * photon yield > 10 per particle with MAPMTs




Various samples from Aerogel Factory

Single photon resolution vs refractive index


Number of photon for particle vs refractive index

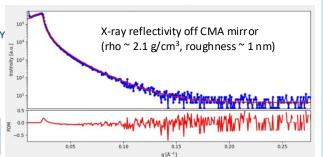
Mirror Substrate & Coating

Ongoing activities with possible synergies with pfRICH to be completed by 2026

Studying special material (ultra-low degassing)

Developing portable reflectivity test bench

Testing coating (SBU) on dRICH samples

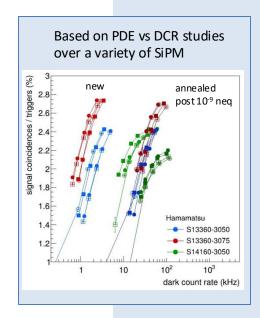


SMiF | SHARED MATERIALS INSTRUMENTATION FACILITY

Access to a variety of instruments for precision characterization of materials

AFM images of coated surface (SBU) showing roughness of $< 100 \, nm$

Sensor Technical Performance


Baseline specs defined at the SiPM LLP Rewiew in fall 2023 after several tests on a variety of sensors

SiPM technical specs

baseline sensor device

64 (8x8) channel SiPM array 3x3 mm² / channel

Parameters	Value	Notes (all parameters at the recommended operating voltage and $T = 25 C$, unless specified)
Device type	SiPM array	
Number of channels	64	8 x 8 matrix
Active Area	3 x 3 mm ²	active area of one channel, total active area is $64 \times 3 \times 3 \text{ mm}^2$
Device Area	< 28 x 28 mm ²	device area should be small such as to have > 75% fraction of active area over device total area
Pixel Size	40 - 80 um	pitch of the microcell SPAD
Package Type	surface mount	
Operating voltage	< 64 V	
Peak Sensitivity	400 - 450 nm	
PDE	> 35%	at peak sensitivity wavelength
Gain	> 1.5 106	
DCR	< 1.5 MHz	
Temperature coefficient of Vop	< 60 mV / C	
Direct crosstalk probability	< 10%	
Terminal capacity	< 600 pF	
Packing granularity		
Vop variation within a tray	< 300 mV	Vop variation between channels in one device
Recharge Time	< 100 ns	ctau recharge time constant
Fill Factor	> 70%	
Protective Layer	silicone resin (n = 1.5 - 1.6)	radiation resistant, heat resistant (up to T = 180 C)
DCR at low temperature	< 10 kHz	at T = -30 C
OCR increase with radiation damage	< 1 MHz / 109 neq	at T = -30 C, after a radiation damage corresponding to 109 1-MeV neutron equivalent / cm² (nec
Residual DCR after annealing	< 25 kHz / 109 neq	at T = -30 C, after a radiation damage of 10^{9} neq and a 150 hours annealing cycle at T = 150 C
Single photon time resolution	< 200 ps FWHM	corresponding to < 85 ps RMS

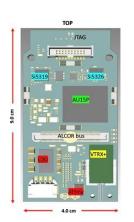
we will evaluate as part of QA, testing sensor samples in received batches

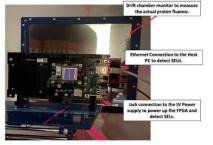
Readout Irradiation Tests

Singe-event upset (SEU) rate of dRICH electronics is manageable with standard firmware redundancy and resets features

Regular irradiation campaign ongoing:

Neutron irradiation campaign at LNL-CN (9-11 October 24)


Gamma irradiation campaign at CERN-GIF (14-16 October 24)


Proton irradiation campaign at TIFPA (12-14 December 24) $TID_5 \cong 2.3 \text{ krad}$ (for 1000 fb⁻¹)

ALCOR radiation tolerance

RDO radiation tolerance

Measured

Mean SEU time @ ePIC

Si5326 (clock)

 $\sigma_{\text{SEU}} = (3.89 \pm 0.54) \cdot 10^{-14} \frac{\text{cm}^2}{\text{bit}}$

4 h

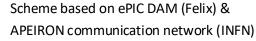
3.8 h

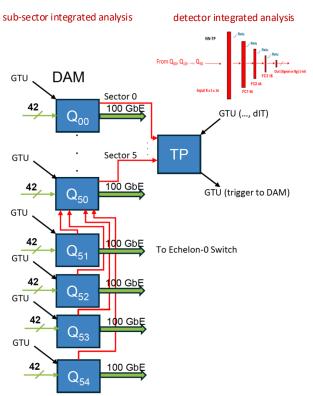
Attiny (power)

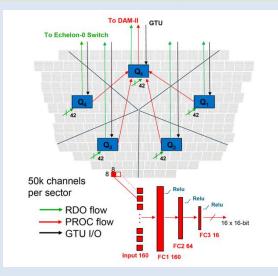

 $\sigma_{\text{SEU}} = (2.11 \pm 0.50) \cdot 10^{-14} \frac{\text{cm}^2}{\text{bit}}$

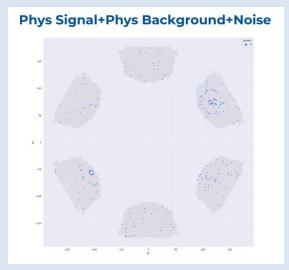
AU15P (FPGA)

 $\sigma_{SEU} \left(\frac{\text{cm}^2}{\text{bit}} \right)$ Our estimates $(1.78 \pm 0.23) \cdot 10^{-15}$ BRAM $(2.30 \pm 0.28) \cdot 10^{-16}$

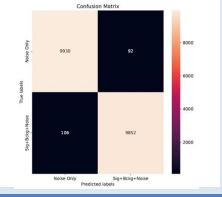

2 min


- **ECCR** BCR PCR
- $\sigma = 9.8 \cdot 10^{-14} \text{ cm}^2/\text{bit}$
- $\sigma = 6.1 \cdot 10^{-14} \text{ cm}^2/\text{bit}$
- no SEU detected
- periphery register → no TMR in ALCOR v2.1 periphery register → no TMR in ALCOR v2.1
 - re-written every 10 seconds to mimick TMR




dRICH Online Filtering

A working DAQ scheme has been identified to support ML online data filtering at sub-detector level against pure dark-count event



Preliminary tests

Classifier

- O Accuracy =
 (TP+TN) / (TP+TN+FP+FN) = 0.990
 O Precision = TP/(TP+FP) = 0.989
- \circ Recall = TP/(TP+FN) = 0.991
- →Through quantization, we defined: quantized fixed point<16,6> inputs quantized fixed point<8,1> weights quantized fixed point<8,1> biases

dRICH Overview

Preliminary commitments for the construction phase are defined

Institution	Nation	Activity		
INFN-FE	Italy	Mechanics, detecor box and control panels		
INFN-BO	Italy	Photosensors, photodetection unit PDU and readout board RDO		0.4
INFN-TO	Italy	ALCOR and front-end board FEB		24 staff
INFN-BA	Italy	Aerogel radiator		18 postdocs/
INFN-CS-SA-CT	Italy	SiPM quality assurance	4	students
INFN-GE	Italy	dRICH tagger		18 technicians/
INFN-LNS	Italy	Mechanical design		engineers
INFN-RM1-RM-TV	Italy	Online data reduction		
INFN-TS	Italy	Radiator gas, gas system and software, SiPM quality assurance	_	0 -1
Duke-U.	USA	Mirror		8 staff
JLab	USA	Mechanical design and mirror characterization		2 postdocs/ students
BNL	USA	Mechanical design, integration, infrasctructure	7	
Temple U.	USA	Aeorgel quality assurance	L	2 technicians/ engineers
M.S. Ramaiah U.	India	Simualtions and performance study	٢	engineers
NISER	India	Performance study		8 staff
Central U. of Haryana	India	Performance study	7	2 postdocs/
Central U. of Karnataka	India	Performance study	L	students

Many groups have committed to the construction phase of the above items

QA stations are of common interest: best performance with co-funded equipment & shared workforce open to collaborators: opportunity for secondments and students traning

Quality Assurance

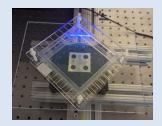
QA is organized to allow essential acceptance tests on 100% of components plus in-depth sample characterization

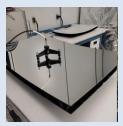
QA stations organized in order to

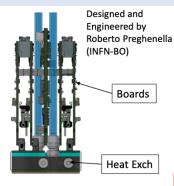
Aerogel: Integrity, defects, transmittance, refractive index, dimensions, planarity

Be close to the assembling site Mirror: Dimensions, shape accuracy, radius, reflectivity

Ensure adequate personnel training Sensors: Electrical connections, quench resistor, I-V characteristics, DCR, relative PDE


Provide redundancy & investment synergy Readout: Electrical connections, bias levels, threshold and gain scans, time jitter, DAQ rate


Support specific in-deep characterization studies Gas: Refractive index, transparency, sound speed, leakage rate



Component	QA station 1	QA station 2	QA detail and backup	QA Acceptance	In-depth
Aerogel	Temple U.	BNL	INFN-BA	100 %	5%
Gas	BNL		INFN-TS	2 %	2%
Mirror	JLab	Duke U.		100 %	10%
Sensor (SiPM)	INFN CS-SA-CT	INFN-TS	INFN-BO	100 %	1%
Readout	INFN-BO	INFN-FE	INFN-TO	100 %	1%

Preliminary Cooling Study

dRICH PDU = 1200 **Detector Box PDU = 242** dRICH Detector Boxes = 6

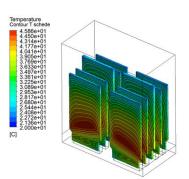
SiPM

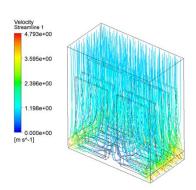
P_{PDU} = 5 W (cooling power to be supplied to each PDU unit) $T_{SiPM} = -40$ °C (SiPM temperature)

 P_{DT} = 242 × 5 W = 1210 W (cooling power to be supplied to each detector box) $P_{dRICH} = 6 \times 1210 \text{ W} = 7260 \text{ W}$ (cooling power to be supplied to dRICH)

Electronic Boards

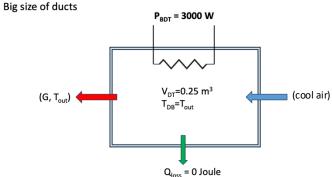
P_{boards} = 11 W (thermal power generated by each PDU unit)


T_{boards} = 30°C (maximum admissible boards temperature)

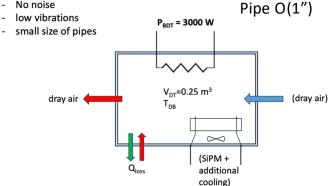

 P_{RDT} = 242 × 11 W = 2662 W (thermal power generated by each detector box) $P_{dRICH} = 6 \times 2662 \text{ W} = 15972 \text{ W}$ (thermal power generated by dRICH)

SiPM

Preliminary CFD (Computational Fluid Dynamics) Simulation


Boards

Disadvantages:


- Risk of condensation
- High noise
- High vibrations

Advantages:

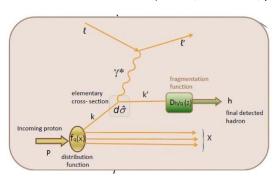
- Low risk of condensation
- No noise

- low vibrations

Duct O(10")

dRICH Performance Study

dRICH technological choices are supported by a structured performance and simulations activity

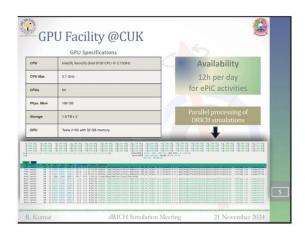

Essential to guide technological choices Effective entry-point for new collaborators

New performance study group being initiated

Focussed on SIDIS physics

Experience in Spin Physics and Nucelon Structure gained at HERMES (DESY), CLAS12 (JLab) and COMPASS (CERN)

INFN FE-BO-PV-TO-SA-LNS-TS (7 staff, 5 student/postdoc)


Close collaboration with Theory groups already active in inpact studies on (un-)polarized TMDs

INFN PV-TO (4 staff, 1 student/postdoc)

M. Contalbrigo

Significant reinforcement of the simulation group

- New group also provided resources to perform many new simulation 12h/ day allocation for ePIC
 - Substantial use of GPUs
- Simulations and Reconstruction in ElCrecon

INFN TS-CS U. of Salerno

Duke U.

Central U. of Karnataka

Central U. of Haryana

Ramaiah U. of Applied Science

(5 staff, 11 student/postdoc)