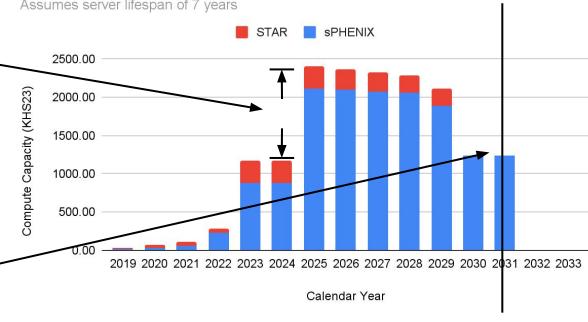


Data Preservation Hardware Resources

May 29, 2025



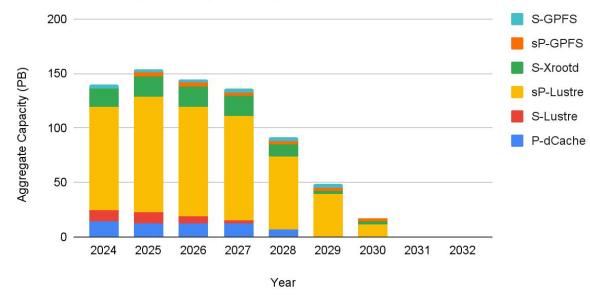
@BrookhavenLab

Evolution of CPU Resources

- Total CPU resources 2400kHS23
- ~50% of CPU resources purchased in FY25
- Resources split
 - 89% sPHENIX / 11% STAR
- 7 year life span assumed
- All CPU EOL by FY31
- Data preservation assumed to start 5 years after experiment end.

CPU Requirements After 2030

- Assumptions
 - Analysis resources required by STAR and sPHENIX assumed to be equivalent in absolute magnitude
 - Analysis resource requirements during data preservation period 50% of current level.
- Currently STAR analysis utilizes 20% of STAR CPU resources
 - Translates to 52.8 kHS23
- Total CPU requirement > 2030 52.8 kHS23
- CPU refresh cost 2031 = \$348,000
 - @ \$6600/kHS23 (current cost of CPU + network + integration)



Evolution of Disk Resources

- Multiple disk storage systems in use
 - Cost and performance vary by system type
- Total aggregate capacity 154PB
- 5 year life span for storage hardware

RHIC Aggregate Storage Capacity vs Time

P-dCache, S-Lustre, sP-Lustre, S-Xrootd, sP-GPFS...

Disk Requirements After 2030

- Assume 30PB required for analysis beyond 2030
 - 10PB STAR
 - 20PB sPHENIX
- Refresh required in 2030/2031 time frame
- Cost for 30PB assuming "JBOD" cost:
 - \$1.83M @ \$61K/PB at current pricing
 - \$1.414M @ \$47.2/PB assuming 5% per year reduction in \$/TB
 - Cost of network and metadata servers not included
- Two parts to "JBOD" costs, evolve at different rates
 - Server
 - Disk

Evolution of Tape Resources

- Expect new LTO generation every 5 years
 - LTO-10 expected this year
 - Typically migrate data to new media every 2 generations (repack)
- In 2030, expect LTO-11 available
 - Expect to repack data onto LTO-11 tapes as part of data preservation
- Expect \$/TB for disk falls by 5%/year
 - Currently \$5.45/TB dropping to \$4.21/TB in 2023
- RHIC data volume
 - RAW 563 PB
 - DST 187 PB

Media Cost: Multiple Scenarios

	# Tapes	Cost
DST	2605	\$790,209.00
2xDST	5210	\$1,580,418.00
RAW + DST	10422	\$3,161,370.66
2xRAW + DST	18240	\$5,532,532.32
2xRAW+2xDST	20845	\$6,322,741.32

Note RAW data volume ~ 2xDST volume

- RHIC IBM Library capacity ~32K cartridges, in Bldg 725
- RHIC Oracle Libraries ~ 70K cartridges EOL risk, high tape drive cost, in 515

Tape Drive Cost

- 45 LTO-11 tape drives required to copy RAW data in one year assuming LTO-6/8 drive read performance @ 400MB/sec
- 15 LTO-11 tape drives required to copy DST data in one year
- Tape drives ~\$5K
 - \$225K LTO-11 for RAW
 - \$75K LTO-11 for DST
- Additional tape drives required for concurrent data access
- Dual copy doubles tape drive cost*
 - May impact HPSS disk cache cost depending on implementation
- Doubling copy time halves tape drive cost

