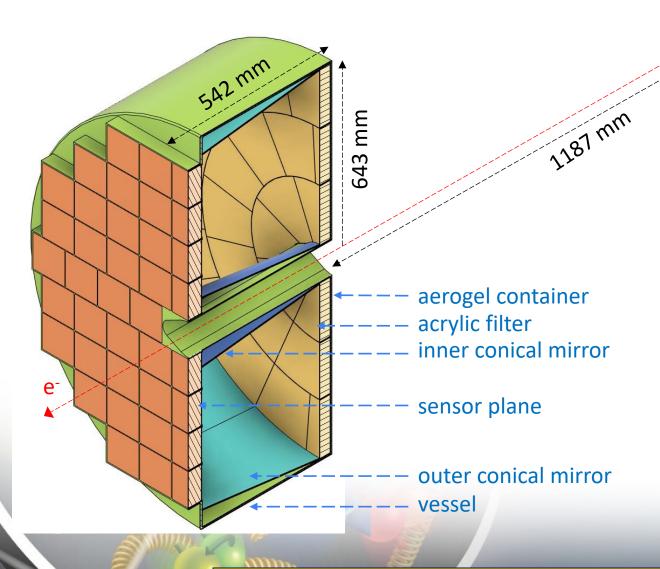

Outline

- > Requirements
- ➤pfRICH detector layout
- ➤ Design considerations
- ➤ Subsystem description
- ➤ Modeling results
- ➤ Detector prototyping in FY24
- ➤pfRICH Detector Subsystem Collaboration
- ➤ Design and construction schedule
- >ES&H

Requirements

- \triangleright ePIC backward RICH must provide PID coverage in the η range determined by the reach of the barrel DIRC and the acceptance of the crystal calorimeter in the e-endcap, therefore \sim -3.5 < η < \sim -1.65, at a minimum
- This part of the detector acceptance corresponds to the current fragmentation and low x physics, and is essential to support the claim of a complete hermetic coverage of the pseudorapidity range -3.5 < η < 3.5 by tracking, calorimetry and PID detectors
- \triangleright Yellow report requirement: $3\sigma \pi/K$ separation up to 7 GeV/c
- > Additional requirement: provide ~20 ps timing reference for ePIC ToF detectors

Particle momentum spectra in ePIC e-endcap


5 x 41 GeV

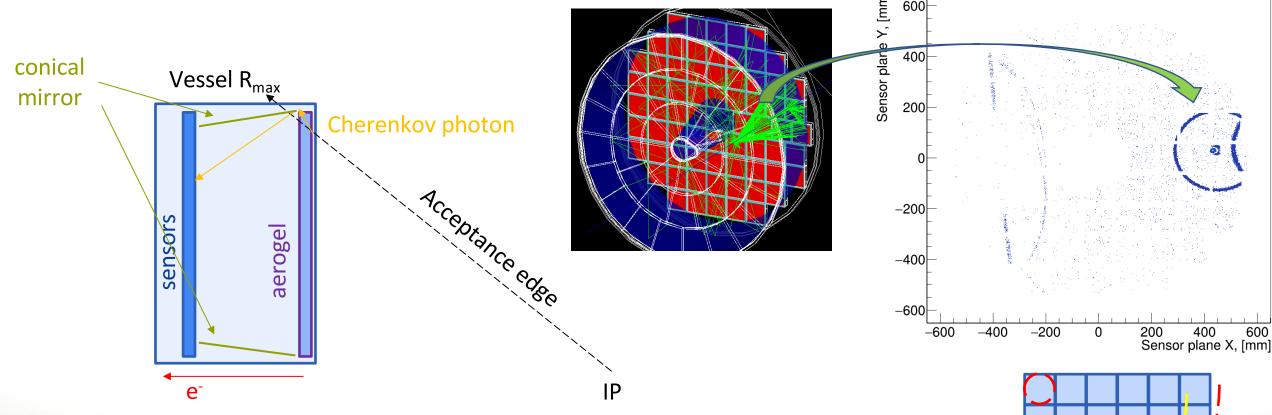
- \triangleright Momentum dependency of $\pi/K/p$ distributions is similar
 - \triangleright With a π :K ratio ~3
- ➤ There is not much above ~7 GeV/c, especially at lower beam energies

18 x 275 GeV

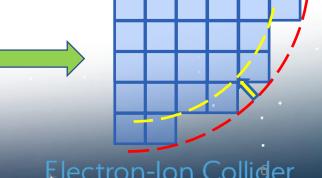
Electron-Ion Collider

Overall detector description

- > Three radial bands
- > Opaque dividers
- > 2.5 cm thick, 42 tiles total

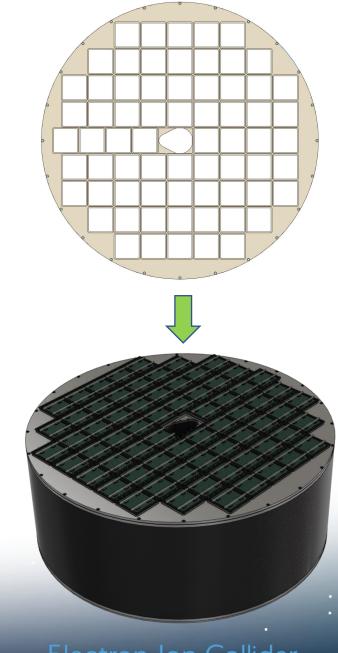

> Vessel

- > Lightweight structure
- Reinforced carbon fiber and 3D printed materials
- > Filled with nitrogen


> HRPPD photosensors

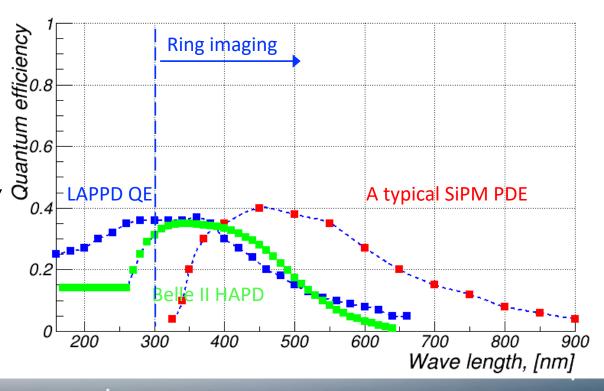
- > 120 mm size
- ➤ Tiled with a 1.5mm gap
- > 68 sensors total

Angular acceptance optimization


- > Use side wall mirrors to increase η acceptance
 - \triangleright Achieve -3.5 < η < -1.5 coverage (hence overlap with the DIRC)
 - Make mirrors conical to avoid inefficiency on the sensor plane

Vessel and mirrors

- ➤ Outer vessel shell
 - > Honeycomb carbon fiber sandwich
- > Inner shell
 - ➤ Molded prepreg laminate
- > Front (aerogel support) wall
 - ➤ Molded prepreg laminate
- > Rear (sensor support) plate
 - > 3D printed using reinforced carbon
- > Mirrors
 - Molded laminate substrate
 - Aluminum evaporation + coating



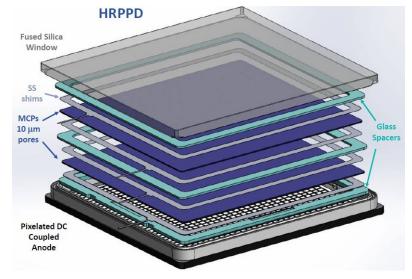
All built in-house by the pfRICH DSC member groups

Electron-Ion Collider

Choice of aerogel

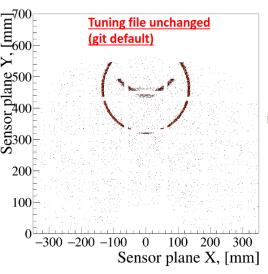
- > A relatively moderate momentum reach is required for this RICH detector
- > HRPPD PDE is expected to be substantially smaller than of the SiPMs
 - > And peak value shifted to the UV range, where it cannot be used for ring imaging
- ➤ Consider using a high n ~ 1.040 ... 1.050
 - > 300 nm acrylic filter cutoff for imaging
 - > <N_{pe}> ~ 11-12
 - For ToF still make use of the UV range for abundant Cherenkov light produced in the window
 - ➤ Natural choice for simulations: Belle II (n ~ 1.045)
 - Natural hardware reference: Chiba University aerogel recently produced for J-PARC (n = 1.040)
 - Test samples will be produced by the end of 2023

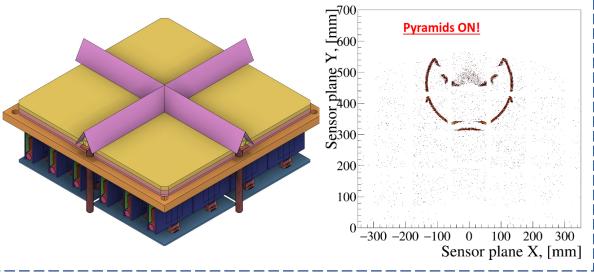
Choice of photosensors and electronics

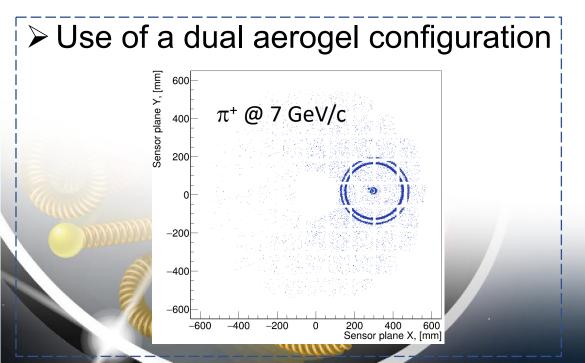

- ➤ Basic requirements:
 - ➤ Provide a timing reference better than ~20 ps for the barrel and forward ToF subsystems
 - ➤ Provide spatial resolution ~1mm
 - > Have small Dark Count Rate
 - > Have reasonable power dissipation in mW per channel
 - > a low material budget cooling system in front of the PWO EmCal
 - > as little influence on the thermal environment around the EmCal as possible
 - > Allow for a compact solution to leave more space for the proximity gap

- ➤ High intrinsic SPE timing resolution
- ➤ Low Dark Count Rate (compared to SiPMs)
- Low cost (compared to other MCP-PMTs)

> ASIC: EICROC by OMEGA group

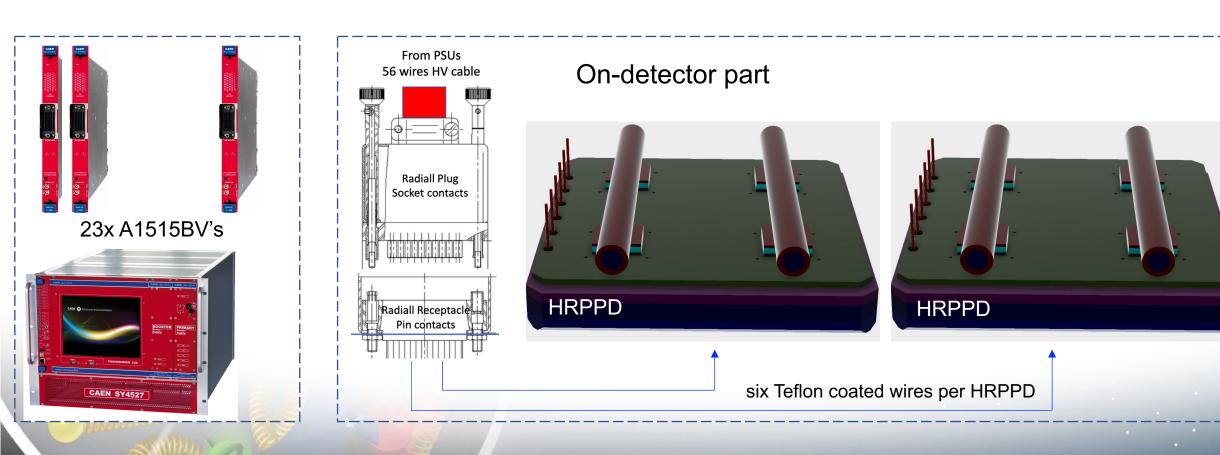

- ➤ Meets the requirements
- Will be available in 256+ channel configuration
- ➤ Will be developed for ePIC AC-LGADs anyway

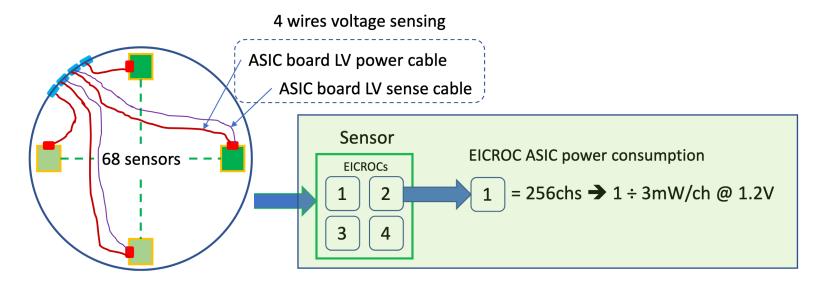



More information in the LAPPD / HRPPD and electronics talks

Performance enhancements

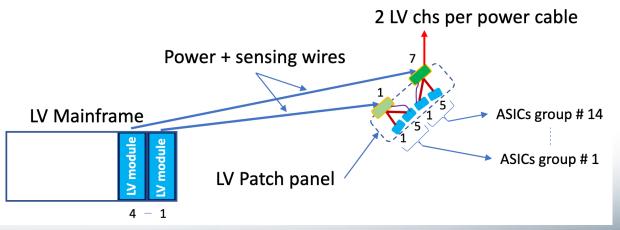
➤ Installation of small funneling mirrors around each sensor dead area boundaries




- > Both options implemented in software
- > Both give a substantial increase in photon yield
- ➤ Recently added to the baseline configuration as a consequence of a complex ePIC detector tracker optimization (pfRICH expansion volume was shortened by ~5cm)

HV system

- > CAEN HV mainframes and stackable HV modules
- CERN-approved Radiall connectors



LV system

Wiener LV mainframe and modules

- Each Sensor
 - 4EICROCs x 256chs = 1024chs/sensor → @3mW/ch → ~3W/se
- Whole detector
 - 68sensors x 2.5A → 170A@1.2V → 204W
 - Add 20% extra current for the ancillary electronic components
 - 170A + 20% = 204A@1.2V → 245W
 - Add 20% extra current for safety margin
 - 204A + 20% = 245A@1.2V → 294W

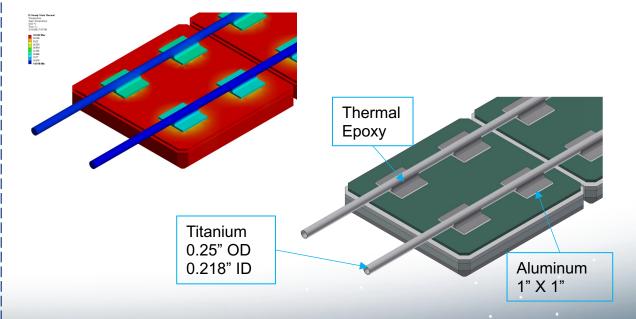
Cooling system

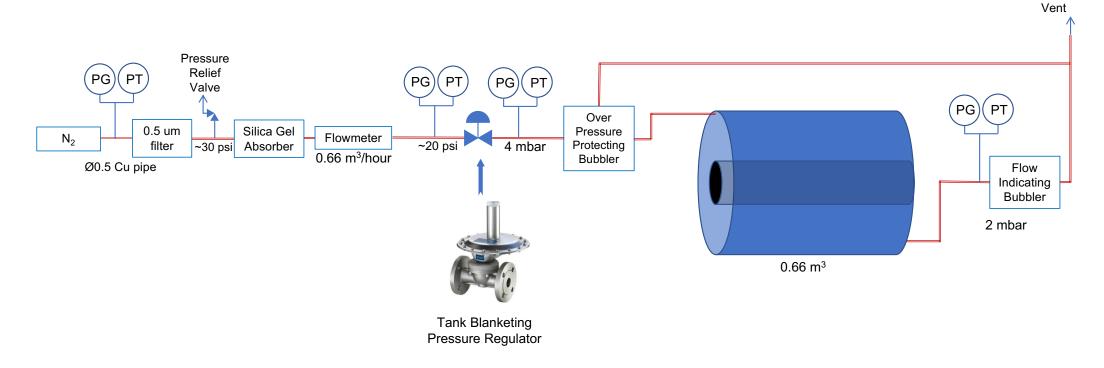
Off Detector

- Chilldyne Circulator
 - 8 lpm
 - -10 psi
 - 5°C to 40°C

- 9.8 l/min @ 43.4 psi
- -20°C to 40°C ±0.1°C
- 800 W @ 10°C

- Flowmeters
- Flow Transmitters

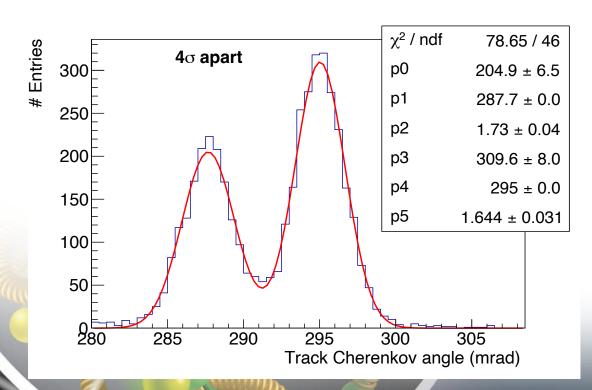



On Detector

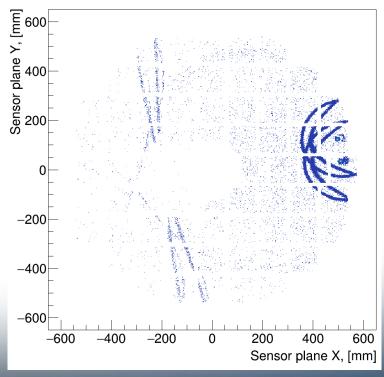
- Heat dissipation: 400W
- Tube @ ∆2°C: ~3 lpm
- ∆P ~0.25 psi

- 9 Modules:
 - ~50W,
 - ~∆17°C
 - Water ~∆1.2°C

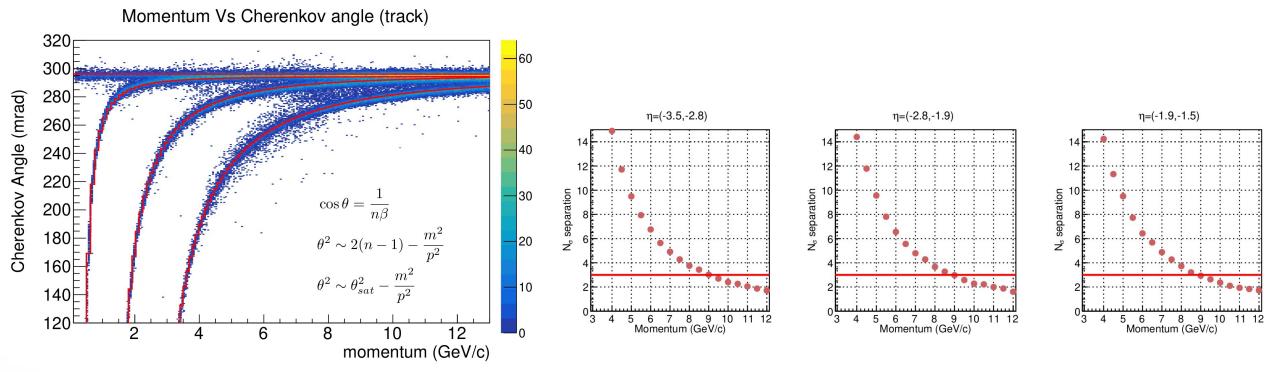
Gas system



- > Assume nitrogen only configuration
- ➤ One volume exchange per hour at a pressure 2-4 mbar
- Gas quality (industrial, ultra-pure,...) needs to be finalized


Monte-Carlo simulations: performance highlights

- > Standalone GEANT4 code with a particle gun or HEPMC3 import
- > Simulation with (almost) all known optical effects included
- > Event-level digitization / reconstruction chain
 - $\succ \chi^2$ based algorithm with a full combinatorial hit-to-track ambiguity resolution


 π and K @ 7.25 GeV/c: >4 σ separation

7 GeV/c π and K @ η = -1.9: <5% misidentification rate (plot accumulated over 1000 two-track events)

$e/\pi/K/p$ separation

 $e/\pi/K/p$ response integrated over the whole η acceptance

 π/K N_{σ} separation in η bins

 \triangleright Comfortably reach 7+ GeV/c momentum range with a higher than $3\sigma \pi/K$ separation level

Geometric efficiency for timing purposes

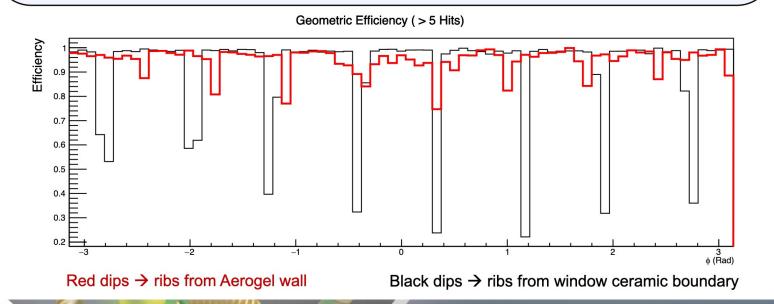
High energy charged particle produces
dozens of p.e.'s in the HRPPD window

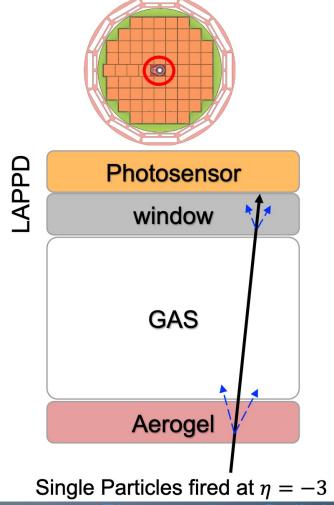
charged particle (missing the "active" area)

HRPPD

quartz window

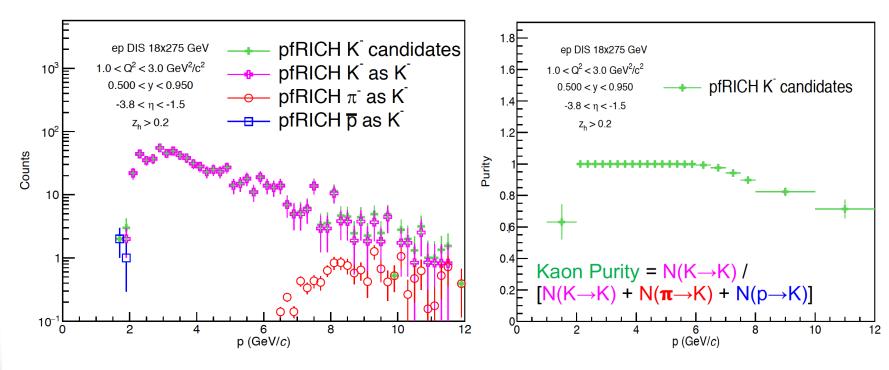
Photocathod


ceramic body


ceramic body

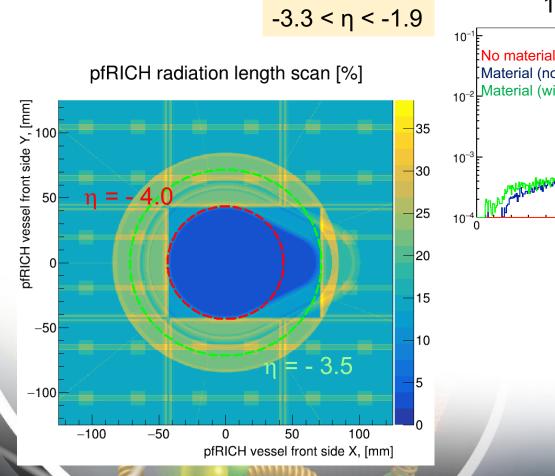
- > Cherenkov light cone produced in the window creates a ~12mm spot on the photocathode
- ➤ Tiling HRPPDs as a "flat wall" with minimal gaps provides >90% geometric efficiency ...
- > ... and it is complemented by timing from ring imaging photoelectrons to achieve ~100%

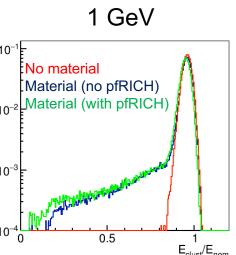
Geometric efficiency for timing purposes

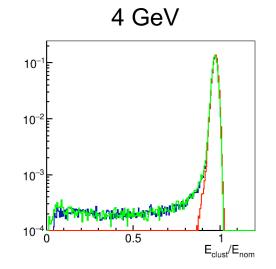

- \triangleright Timing provided by both aerogel (<N_{pe} $> \sim$ 12) and HRPPD window photons (<N_{pe}> above 80)
 - ➤ Their combined geometric acceptance will be ~100%
 - ToF meas. ← # photon hits created by particles
 - pfRICH receives photon hits from aerogel, acrylic filter, gas in expansion volume, and LAPPD window
 - Efficiency (η, φ): prob. of particle creating N_{pe} > 5.
 - 20 ps t_0 resolution by having 6 photons, assuming 50 ps single photon time resolution (timing resolution 20ps = 50ps $I\sqrt{6}$).

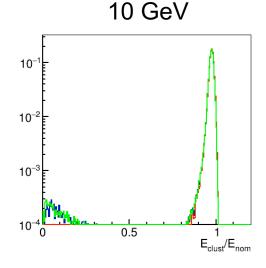
SIDIS modeling results

- > PYTHIA 18 x 275 GeV simulation
- > Parameterized pfRICH hadron PID response, assuming 100% kaon detection efficiency

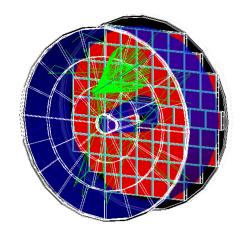



High Kaon Purity ~ 95% at 7 GeV/c


→ this goes beyond the requirement of SIDIS physics in the YR


pfRICH material effect on the backward EmCal

- > pfRICH GEANT implementation imported in ePIC framework as a GDML file
 - > Material implemented to the best of our knowledge (vessel, HRPPDs, cooling system, etc)

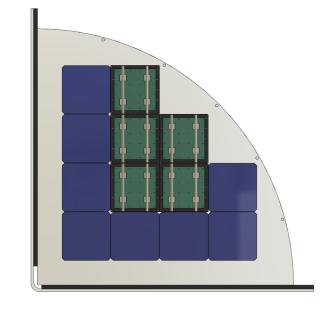


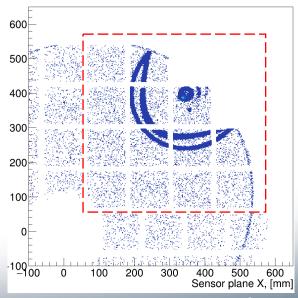
- No effect on (~gaussian) peak width
- Lower energy tails (the largest at 1 GeV)
- ➤ No effect for high energy electrons (10 GeV)
- Minimal effect from pfRICH overall

pfRICH Detector Subsystem Collaboration (DSC)

Institution	Main focus	Comments		
Brookhaven Lab	HRPPD integration, ASIC interface, detector and physic modeling, engineering support			
Chiba University	Aerogel production	No institutional commitment		
Duke University	Software support			
INFN Genova	HRPPD evaluation, modeling	Synergetic activities with		
INFN Trieste	HRPPD evaluation, modeling	dRICH (aerogel, software)		
Jefferson Lab	Engineering support, test beam data analysis			
Ljubljana University		Participating as experts		
Purdue University	Vessel & mirror design and construction			
Stony Brook University	Vessel & mirror design and construction			
Temple University	Aerogel QA station			
University of Glasgow	HRPPD & MCP-PMT evaluation			
Yale University	HRPPD QA station			

A Proximity-Focusing RICH for the ePIC Experiment
- Conceptual Design Report (Draft 1.1)


Babak Azmoun¹, Deb Sankar Bhattacharya², Daniel Cacace¹, Helen Caines³, Chandradoy Chatterjee², Jaydeep Datta⁴, Abhay Deshpande⁴, Christopher Dilks⁵.6; James Dunlop¹, Alex Eslinger⁶, Prakhar Garg⁴.³, Tom Hemmick⁴, Alexander Jentsch⁺,¹, Alexander Kiselev⁺.¹, Henry Klest⁴, Samo Korpar⁴, Peter Križan⁴, Jeffery Landgraf¹, Saverio Minutoli³, Charles-Joseph Naïm⁴, Mikhail Osipenko³, Brian Page⁵.¹, Sanghwa Park³, Matt Posik¹o, Rok Pestotnik⁻, Andrej Seljak⁻, Prashanth Shanmuganathan¹, Nikolai Smirnov³, Bernd Surrow¹o, Makoto Tabata¹¹, Silvia Dalla Torre², Zhoudunming Tu⁺.¹, Thomas Ullrich⁺.¹.³, Jan Vanek¹, Anselm Vossen⁵.₀, Craig Woody¹, and Zhengqiao Zhang¹


¹Brookhaven National Laboratory, Upton, New York 11973, USA
 ²INFN, Sezione di Trieste, Trieste, Italy[†]
 ³Yale University, New Haven, Connecticut 06520, USA
 ⁴Stony Brook University, Stony Brook, New York 11794, USA
 ⁵Duke University, Durham, North Carolina 27708, USA
 ⁶Jefferson Lab, Newport News, Virginia 23606, USA
 ⁷Ljubljana University and J. Stefan Institute, Ljubljana, Slovenia[§]
 ⁸INFN, Sezione di Genova, Genova, Italy
 ⁹Mississippi State University, Mississippi State, Mississippi 39762, USA
 ¹⁰Temple University, Philadelphia, Pennsylvania 19122, USA
 ¹¹Chiba University, Chiba, Japan

Electron-Ion Collider

Detector prototype tests in FY24

- \blacktriangleright Build a full chain pfRICH quadrant prototype and quantify its π/K separation performance and timing resolution at the Fermilab Test Beam Facility
 - > Verify composite and 3D printed materials usage in a vessel design
 - Evaluate Chiba Aerogel Factory tiles for pfRICH usage
 - Make use of the first five HRPPDs produced by Incom, in a fully integrated on-board ASIC configuration
 - > Evaluate conical mirror performance
 - Check detector component integration
 - > Evaluate elements of the HV, LV, cooling and gas systems
 - Use collected data with various particle species to tune reconstruction algorithms

. One of the considered five-sensor configurations

Electron-Ion Collider

Cost and Schedule

Activity ID	BNL_Estir B	BNL_PM(Activity Name	Original Duration	Predecessors	Successors	Start	Finish	Budgeted Labor Units	Budgeted Labor Cost	Budgeted E Nonlabor	Budgeted Nonlabor Cost	Budgeted Total Cost	Total	2023 2024 2025 2026	2027 2028 2029 2030 2031 2032 2033
		ПОР									Units			Hour	/23 FY24 FY25 FY26	FY27 FY28 FY29 FY30 FY31 FY32 FY33
			etector (mRICH)/Proximity Focusing Ring Imaging Cherenkov (pfRICH) Preliminary Design (mRICH)	1494	L2_0180, L3_6010, EIPMPF_L_FY22	E1004_30060, E1004_30010, E1004_30020	03-Oct-2022		9400	\$968,912.43 \$135,744.60	2932000	\$3,292,597.96 \$0.00	\$4,261,510.39 \$135,744.60	625	Preliminary Design (mRICH)	▼ 22-Sep-2028, Modular Ring Imaging Cherenkov Dete
			, , ,		E1004 30000	E1004_30060, E1004_30010, E1004_30020 E1004_30060	03-Oct-2022	J	1500	\$135,744.60	100000	\$110.772.90		550		
			Prototyping (mRICH) SVT to Pre-Production Effort - HRPPD Sensors (mRICH)		_		03-Oct-2022		0	\$0.00	100000	******	\$110,772.90 \$0.00	552	Prototyping (mRICH) SVT to Pre-Production Effort - HRP	70.0 (BIOLI)
			Pre-Production Effort - HRPPD Sensors (mRICH)		E1004_30000 E1004_30020	E1004_30030 E1004_30040	03-Oct-2022 15-May-2023	12-May-2023	0	\$0.00	230000	\$0.00 \$247,356,95	\$0.00 \$247,356,95	470	Pre-Production Effort - HRPF	, , , , , , , , , , , , , , , ,
			, ,		_	_	15-May-2023		0		230000	*= ·· ,	V	4/0		
			PDR & Preliminary Design Complete (mRICH)		E1004_30000, E1004_30010	E1004_30070, PM_0101_3090	04 4 0000	18-Aug-2023	0	\$0.00	0	\$0.00 \$0.00	\$0.00 \$94.445.75	552	PDR & Preliminary Design Comp	
			Design Cooling System for Electronics (Photo Sensors) (mRICH)		E1004_30070	L2_0960, E1004_30110	21-Aug-2023		800	\$94,445.75	0		*	6/4	0 0,	r Electronics (Photo Sensors) (mRICH)
			Final Design - Finalize mRICH Design with All Required Services (mRICH)		E1004_30060	E1004_30080, E1004_30120, E1004_30140, E1004_30130,	21-Aug-2023	09-May-2024	1000	\$88,727.74	0	\$0.00	\$88,727.74	552		RICH Design with All Required Services (mRICH)
			Design Protective Gas System (mRICH)		E1004_30070	L2_0960, E1004_30110	21-Aug-2023	09-May-2024	0	\$0.00	0	\$0.00	\$0.00	6/4	Design Protective Gas Sy	` ,
			SVT to Procurement HRPPD Sensors (mRICH)		E1004_30030	E1004_30050	02-Jan-2024		0	\$0.00	0	\$0.00	\$0.00	470		rocurement HRPPD Sensors (mRICH)
			First Article (mRICH)		E1004_30070	E1004_30120	09-May-2024		0	\$0.00	40000	\$45,894.46	\$45,894.46	552	First Article (mRICH	
			FDR & Final Design Complete (mRICH)		E1004_30070, E1004_30100, E1004_30090	E1004_30120, PM_0101_5100		09-May-2024	0	\$0.00	0	\$0.00	\$0.00	674	◆ FDR & Final Design Com	
			Production Readiness Review (mRICH)		E1004_30070, E1004_30110, L2_0400, E1004_30080	E1004_30140, E1004_30130, E1004_30170, E1004_30200,	00.11 0005	01-May-2025	0	\$0.00	0	\$0.00	\$0.00	430		eadiness Review (mRICH)
			Procurement Fresnel Lenses (mRICH)		E1004_30120, E1004_30070	E1004_30160, E1004_30340		22-Oct-2025	0	\$0.00	6400	\$7,549.42	\$7,549.42	560		ment Fresnel Lenses (mRICH)
			Procurement Aerogel (mRICH)		E1004_30120, E1004_30070	E1004_30150, E1004_30340	02-May-2025	,	0	\$0.00	307200	\$341,526.70	\$341,526.70	430	<mark></mark>	ocurement Aerogel (mRICH)
			Procurement Mirrors (mRICH)		E1004_30120, E1004_30070	E1004_30180, E1004_30340	02-May-2025		0	\$0.00	25600	\$30,608.33	\$30,608.33	430		ocurement Mirrors (mRICH)
			Procurement Photo Sensors (mRICH)		E1004_30120, E1004_30070	E1004_30210, E1004_30340	02-May-2025		0	\$0.00	1493000	\$1,659,828.66	\$1,659,828.66	430		ocurement Photo Sensors (mRICH)
			Procurement Gas System (mRICH)		E1004_30120, E1004_30070	E1004_30340	02-May-2025		0	\$0.00	50000	\$58,979.84	\$58,979.84	740		ment Gas System (mRICH)
			Procurement Cooling System (mRICH)		E1004_30120, E1004_30070	E1004_30340, L2_0960	02-May-2025		0	\$0.00	200000	\$237,975.92	\$237,975.92	680	Proci	rement Cooling System (mRICH)
			Carbon Support Structure (mRICH)		E1004_30120	E1004_30250	02-May-2025		0	\$0.00	50000	\$60,362.56	\$60,362.56	440		Carbon Support Structure (mRICH)
			Carbon Support Structure - Labor (mRICH)		E1004_30240	E1004_30340	02-May-2025		200	\$18,865.10	0	\$0.00	\$18,865.10	440		Carbon Support Structure - Labor (mRICH)
	-		Aluminum Support Frame & Plates (mRICH)		E1004_30120	E1004_30270	02-May-2025		0	\$0.00	15000	\$18,108.77	\$18,108.77	440		Aluminum Support Frame & Plates (mRICH)
			Aluminum Support Frame & Plates - Labor (mRICH)		E1004_30260	E1004_30340	02-May-2025		200	\$18,865.10	0	\$0.00	\$18,865.10	440		Aluminum Support Frame & Plates - Labor (mRICH)
	-		Cooling Plates (mRICH)		E1004_30120	E1004_30290	02-May-2025		0	\$0.00	20000	\$24,145.03	\$24,145.03	440		Cooling Plates (mRICH)
	-		Cooling Plates - Labor (mRICH)		E1004_30280	E1004_30340	02-May-2025		200	\$18,865.10	0	\$0.00	\$18,865.10	440		Cooling Plates - Labor (mRICH)
E1004			Slow Control, GUI, Software Development (mRICH)		E1004_30120	E1004_30310	02-May-2025	07-Jan-2027	0	\$0.00	50000	\$60,362.56	\$60,362.56	440		Slow Control, GUI, Software Development (mRICH)
E1004	30310 bzihlma e		Slow Control, GUI, Software Development - Labor (mRICH)		E1004_30300	E1004_30340	02-May-2025	07-Jan-2027	800	\$125,348.11	0	\$0.00	\$125,348.11	440		Slow Control, GUI, Software Development - Labor (mRICH)
E1004	30320 bzihlma e	ewoolse	Procurement Light Monitoring System (mRICH)	150	E1004_30070, L2_0400	E1004_30330	02-May-2025	08-Dec-2025	0	\$0.00	100000	\$118,576.65	\$118,576.65	710	Procui	ement Light Monitoring System (mRICH)
	-		Fabrication Light Monitoring System Oversight (mRICH)		E1004_30320	E1004_30340	02-May-2025		800	\$84,257.14	0	\$0.00	\$84,257.14	710	Fabric	ation Light Monitoring System Oversight (mRICH)
E1004	-		Procurement HRPPD Sensors (mRICH)		E1004_30040	E1004_30340	21-Nov-2025		0	\$0.00	200000	\$215,093.00	\$215,093.00	470		Procurement HRPPD Sensors (mRICH)
E1004	30160 bzihlma e	ewoolse	Testing of Fresnel Lenses (mRICH)	180	E1004_30130, E1004_30150	E1004_30340	04-May-2026	22-Jan-2027	100	\$15,906.34	0	\$0.00	\$15,906.34	430		Testing of Fresnel Lenses (mRICH)
E1004	30210 bzihlma e	ewools:	Testing of Photo Sensors (mRICH)	180	E1004_30200	E1004_30340	04-May-2026	22-Jan-2027	400	\$63,625.37	0	\$0.00	\$63,625.37	430		Testing of Photo Sensors (mRICH)
E1004	30180 bzihlma e	ewoolse	Testing of Mirrors (mRICH)	180	E1004_30170	E1004_30190	04-May-2026	22-Jan-2027	400	\$38,302.90	0	\$0.00	\$38,302.90	430		Testing of Mirrors (mRICH)
E1004	30150 bzihlma e	ewoolse	Testing of Aerogel (mRICH)	180	E1004_30140	E1004_30160	04-May-2026	22-Jan-2027	500	\$18,166.60	0	\$0.00	\$18,166.60	430		Testing of Aerogel (mRICH)
E1004	30190 bzihlma e	ewools:	Testing Materials - Mirrors (mRICH)	180	E1004_30180	E1004_30340	04-May-2026	22-Jan-2027	0	\$0.00	32000	\$39,218.43	\$39,218.43	430		Testing Materials - Mirrors (mRICH)
E1004	30340 bzihlma e	ewoolse	Module Construction (mRICH)	420	E1004_30140, E1004_30130, E1004_30170, E1004_30;	E1004_30350, L2_0960, L2_0960, E1000_4350, E1004_303	25-Jan-2027	22-Sep-2028	0	\$0.00	12800	\$16,237.78	\$16,237.78	430		Module Construction (mRICH)
E1004	30350 bzihlma e	ewoolse	Module Construction - Labor (mRICH)	420	E1004_30340	E1004_30360	25-Jan-2027	22-Sep-2028	2500	\$247,792.57	0	\$0.00	\$247,792.57	625		Module Construction - Labor (mRICH)
E1004	30360 bzihlma e	ewoolse	Module Construction - Complete (mRICH)	0	E1004_30340, E1004_30350	L2_0600		22-Sep-2028	0	\$0.00	0	\$0.00	\$0.00	625		 Module Construction - Complete (mRICH)
Time of	Flight Detector (TC	IOF)		1376			03-Oct-2022	06-Apr-2028	54658	\$4,561,591.80	6293192	\$7,208,402.81	\$11,769,994.61	618		▼ 06-Apr-2028, Time of Flight Detector (TOF)
-																

- > pfRICH is not yet incorporated in P6 (change control process)
 - > Expecting this process to converge on a time scale of a month
- > Its cost is consistent with the current P6 estimate
- A detailed costing sheet was produced for the collaboration review in March 2023
- Construction schedule needs to be adjusted

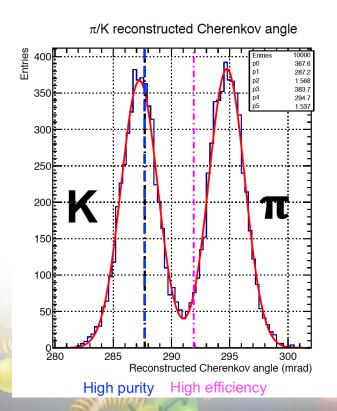
ES&H and QA

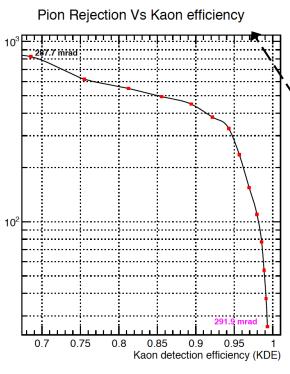
- > Avoid flammable gases as a Cherenkov radiator
- > Use off the shelf high voltage system proven to work for CMS
- > Develop safe assembly and installation procedures

- > Aerogel QA test station will be built at Temple University
- > HRPPD QA test station (replica of Incom's one) will be built at BNL

Summary

- ➤ pfRICH technical performance parameters are taken from the EIC community Yellow Report, adjusted via subsequent studies by the ePIC collaboration
- ➤ Proposed pfRICH detector performance goes beyond the established requirements
- ➤ Integration plans and procedures are defined
- Fabrication and assembly plans are consistent with the overall project schedule
- ➤ Design is mature enough to be ready for the Final Design Review in Fall 2024
- All subsystems fully costed, mostly using budgetary quotes and / or vendor feedback


pfRICH performance parameters


- \triangleright Pseudorapidity coverage: -3.5 < η < -1.5
- \triangleright Uniform performance in this $\{\eta,\phi\}$ range
- $> 3\sigma \pi/K$ separation up to ~ 9.0 GeV/c
- > <20ps t₀ reference for the ToF subsystems with a ~100% geometric efficiency

Backup

Detection efficiency vs rejection factor

- > Reconstructed Cherenkov photon emission angle is available on a track-by-track basis
 - ➤ in a real experiment as well
- > A cut on this quantity can be used as a trade off between KDE and PRF

For 7 GeV/c pions and kaons:

- Pion Rejection Factor (PRF) as a function of Kaon detection efficiency (KDE) is computed.
- The tunable theta cut is varied from Kaon Cherenkov angle (~287 mrad) to the overlap region (292 mrad).
- PRF > 250 is at 95% KDE.