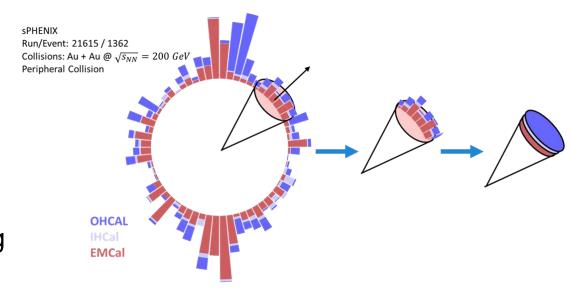
PPG04 IRC Meeting

Tanner Mengel, Virginia Bailey sPHENIX PCM
March 3, 2025

PPG04 Physics Goals

- Characterize UE and its fluctuations in Au+Au 200 GeV data
- Quantify sources and determine spatial correlations of UE fluctuations
- Characterize performance of 3 background subtraction methods in data.
 Investigate their ability to suppresses UE fluctuations from different sources and inform unfolding of future jet measurements
 - Multiplicity method: <u>T. Mengel et. al. Phys. Rev. C 108, Letter 021901</u>
 - Area method (STAR, ALICE): Phys. Lett. B 659 (2008) 119-126
 - Iterative subtraction (ATLAS, CMS): Phys. Rev. C 86, 024908

Current Priority Items



- Embedding pythia into MB data (Ben Kimelman)
 - Currently running embedding jobs for run 54912
 - ~20% of jobs failed in first pass have been resubmitted
- In-plane/out-plane random cones analysis (Tanner Mengel)
 - Investigate sources to UE fluctuations for cones placed in and out of plane. The negative and positive δE_T tails will be affected by different sources- this will tell us the sensitivity to a given source for to each method
- Implement flow estimation into iterative subtraction (Virginia Bailey)
 - Event plane angle reconstruction from sEPD available (s/o Ejiro!), this needs to be integrated with DetermineTowerBackground module on jetbackground
 - Use v2 from this to cross-check with STAR measurement

UE Characterization Objects

- Calorimeter windows: Sliding window within acceptance with different area sized
- Random cones: R = 0.4 rigid cones placed in calo acceptance
 - Not biased by jet clustering algorithm
 - Allows for determination of sources of background fluctuations
 - Two types of cones: basic, randomized $\eta\phi$
- **High energy probes:** $E_T^{probe} = 30 \text{ GeV}$ added to event and found in reconstructed R = 0.4 jet candidates
 - Not biased by fragmentation but is constructed using anti-kT
 - Matched geometrical to probe $\eta \phi$
- Embedded PYTHIA Jets: Fully embedded pythia dijet events into data
 - Full interplay between UE fluctuations and jet finding algorithm,

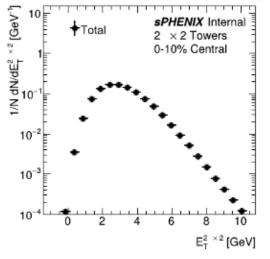
Analysis Details

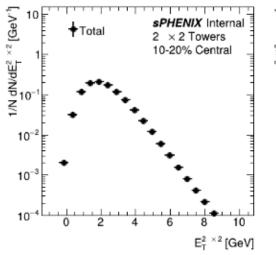
- Using initial calo calibrations provided by PPG03 for run 2024 Au+Au calo data
 - Just updated on Friday
- Tower reconstruction info:
 - EMCAL and HCAL calibrated to EM Scale
 - Standard software ZS by ADC threshold used in central prod. (60,30,30)
 - Excluding event-by-event masked towers from all analysis inputs

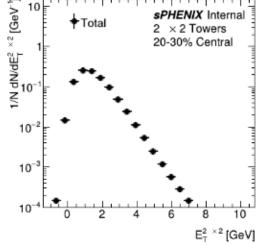
Event selection cuts:

- sPHENIX min. bias definition
- $|z_{vrtx}| < 20 \text{ cm}$
- Centrality 0-80%

Run Number	Production Tag	CDB Tag	Number of Events [millions]
54912	Ana.450	2024p009	1

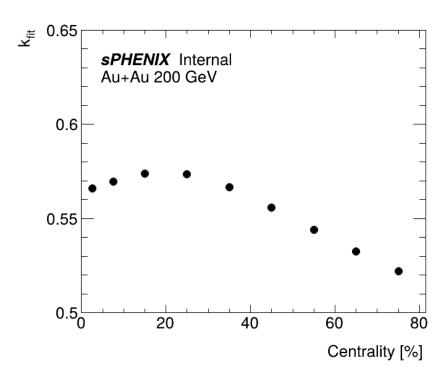

• 1e6 events are found in run 54912 with this selection criteria

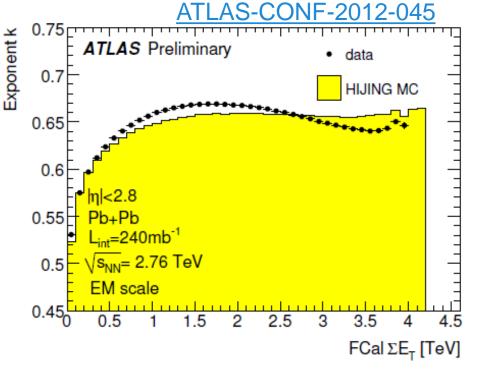

Calo Windows



- Using sliding windows with different area sizes
 - Re-towered EMCAL, and HCALS. $|\eta| < 1.1$
 - Any window with masked tower is excluded
- No pedestal subtraction

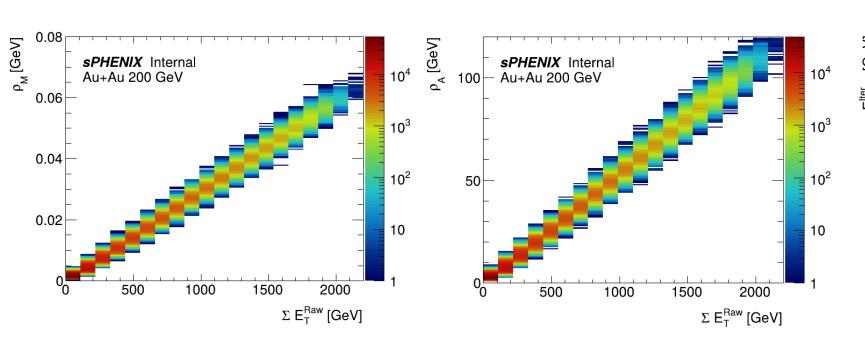
R	Acone	Window Size	A_{window}
0.2	0.13	3 × 4	0.11
0.3	0.28	5×6	0.27
0.4	0.5	7 × 8	0.5
0.5	0.79	9 × 10	0.81
0.6	1.13	11 × 12	1.19
0.7	1.54	13×13	1.52
0.8	2.01	15 × 15	2.02

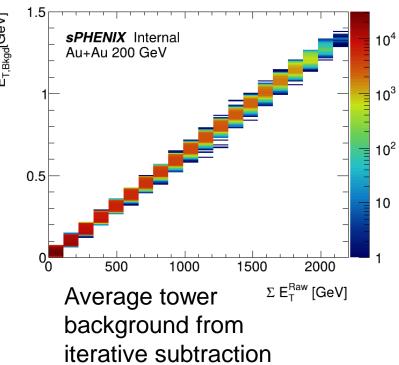




UE fluctuations spatial correlations

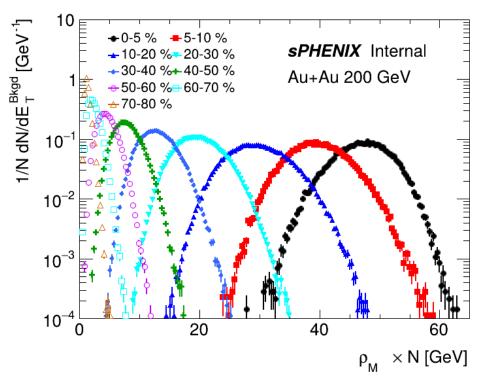
- Spatial correlations of UE fluctuations extracted by fit
 - $\bar{\sigma}^{nxm}/\bar{\sigma}^{1x1} = (nxm)^k$
 - k > 1/2 for all centralities
- Correlation peaks at 20-30% then begins to approach \sqrt{A} scaling

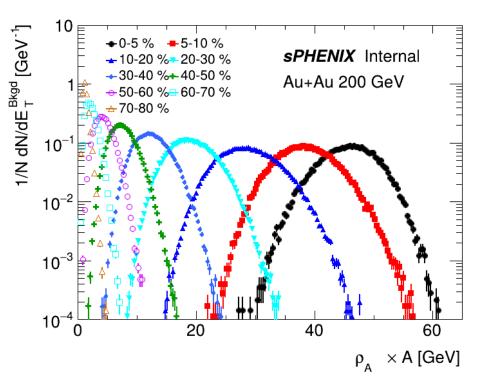




Background estimations

- Event background densities are estimated with iterative method, multiplicity method, area method
- All background estimations have linear dependence with $\sum E_T^{raw}$ and intersect at origin

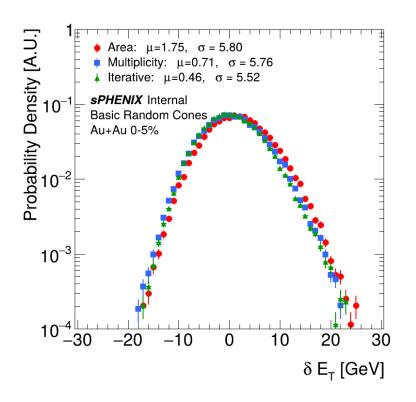


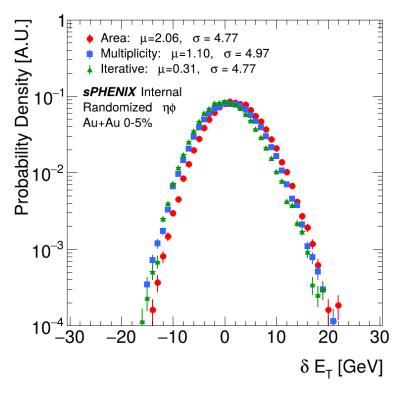


Background estimations

- Good agreement between background contribution estimates between both ρ methods
- UE is significant in most central events and is well behaved

Random Cones

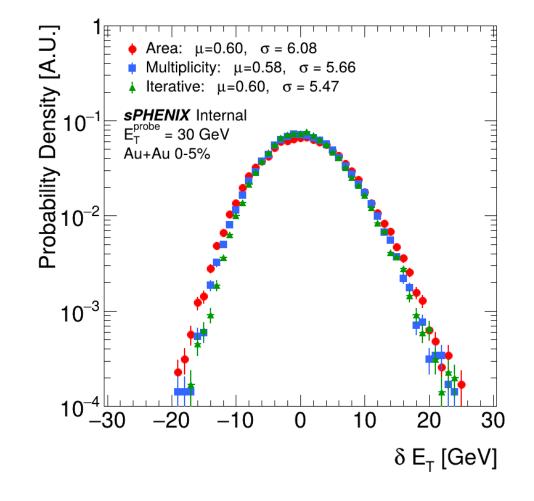



- R = 0.4 rigid cones placed within calo acceptance $|\eta| < 0.6$
 - Must contain 0 masked towers
- Randomized tower η , ϕ suppressed event correlations

$$\delta E_T^{\text{Area}} = \sum_{i=0}^N E_{T,i} - \rho_A \cdot A_{cone},$$

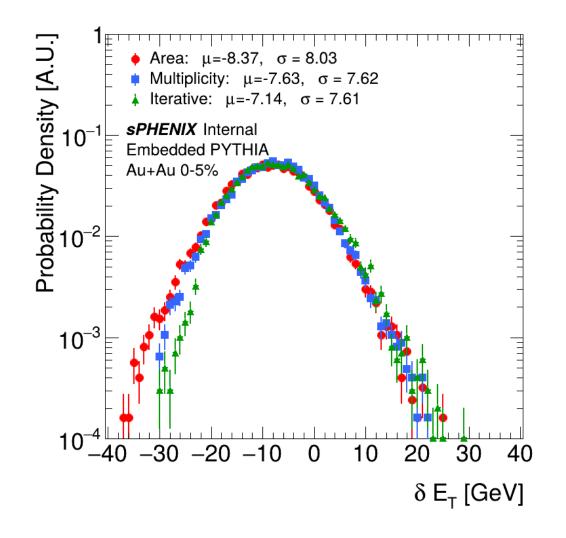
$$\delta E_T^{\mathrm{Mult}} = \sum_{i=0}^N E_{T,i} - \rho_M \cdot N,$$

$$\delta E_T^{\text{iter}} = \sum_{i=0}^N E_{T,i}^{Sub},$$



High energy probes

- $E_T^{probe} = 30 \text{ GeV}, \, \eta < 0.6$
- Probe is added on top of data (not embedded) and results in a circular R =0.4 anti-kT jet
- Geometrically matched back to probe $\eta\phi$

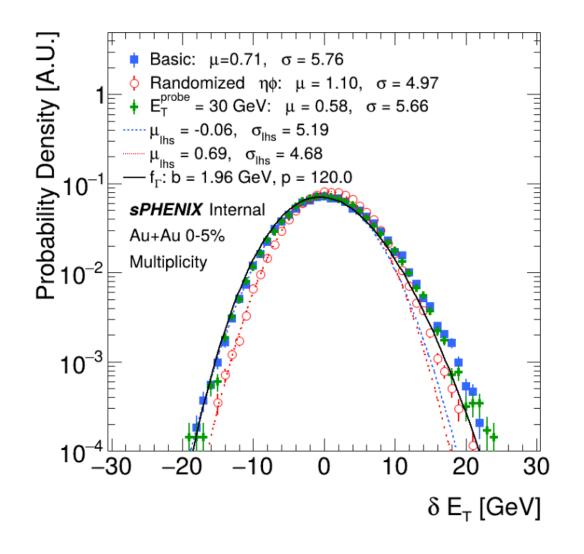

$$\delta E_{ ext{T,Area}} = E_{ ext{T,jet}}^{ ext{Uncorr.}} -
ho_A \cdot A_{ ext{jet}} - E_{ ext{T,truth}}$$

$$\delta E_{ ext{T,Mult}} = E_{ ext{T,jet}}^{ ext{Uncorr.}} -
ho_M \cdot (N_{ ext{const}} - \langle N_{ ext{signal}} \rangle) - E_{ ext{T,truth}}$$

$$\delta E_{ ext{T,Iter}} = E_{ ext{T,jet}}^{ ext{sub.}} - E_{ ext{T,truth}}$$

Embedded Jets

- Pythia8 embedded into MB Au+Au
- Plots are currently WRONG
 - Vertex between data and PYTHIA events are not aligned
 - Ben is running full embedding simulation now- plots in note will be updated when complete
- Reco jets are matched back to truth particle level jets
- $E_{T,jet}^{reco} > 5$ GeV, $E_{T,jet}^{truth} > 10$ GeV



Residual Distributions

SPHENIX

- $\sigma_{l.h.s}$ is lower bound for magnitude of fluctuations (statistical)
- Gaussian can be extrapolated to positive δE_T to show difference in tails
- Shapes are not gaussian (even without non-statistical fluctuations)
- Better described by single tower E_T spectra

$$f_{\Gamma}(\delta E_T) = A \cdot \frac{b}{\Gamma(p)} \cdot (b \cdot \delta E_T + p)^{p-1} \cdot e^{-(b \cdot \delta E_T + p)}$$

Most Central Events

SPHENIX

- The standard deviation for central events using unbiased sampling is found to be $\sigma = 5.5 \pm 0.5$ GeV.
- Similar proportionality between UE fluctuations and left-hand side extrapolation seen at ALICE

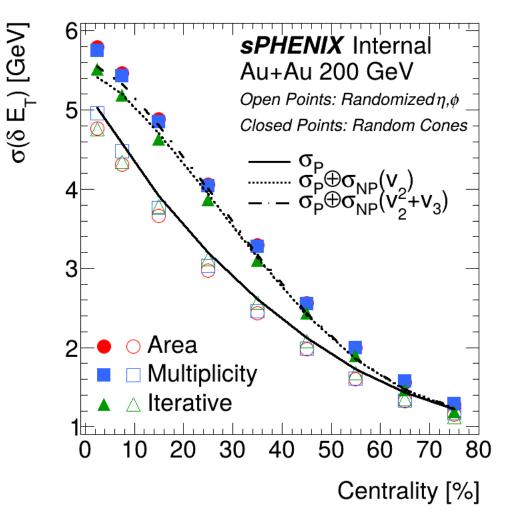
	$\sigma~({\rm GeV}/c)$	$\sigma^{\text{l.h.s.}}$ (GeV/c)	$\mu^{\text{l.h.s.}}$ (GeV/c)		
$p_{\mathrm{t}}^{\mathrm{min}} = 0.15 \mathrm{GeV}/c$					
random cones	10.98 ± 0.01	9.65 ± 0.02	-0.04 ± 0.03		
track emb.	11.19 ± 0.01	9.80 ± 0.02	0.00 ± 0.03		
jet emb.	11.34 ± 0.02	9.93 ± 0.06	0.06 ± 0.09		

ALICE JHEP 03 (2012) 053

	μ [GeV]	σ [GeV]	$\sigma^{l.h.s.}$ [GeV]	$\mu^{l.h.s.}$ [GeV]			
Area Method							
Basic Cone	1.75	5.8	5.15	0.83			
Randomized $\eta \phi$	2.1	4.8	4.4	1.5			
High Energy Probe	0.6	6.1					
Multiplicity Method							
Basic Cone	0.71	5.8	5.2	-0.057			
Randomized $\eta \phi$	1.1	5	4.7	0.69			
High Energy Probe	0.58	5.7					
Iterative Method							
Basic Cone	0.46	5.5	4.8	-0.48			
Randomized $\eta \phi$	0.31	4.8	4.3	-0.34			
High Energy Probe	0.6	5.5					

Sources of UE fluctuations

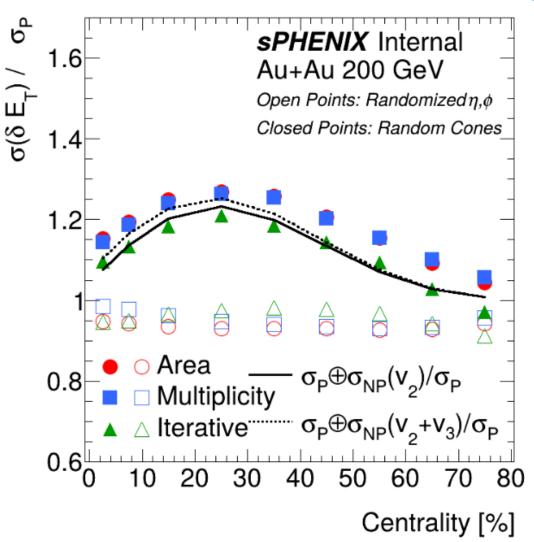
 UE fluctuations are well described by statistical and non-Poissonian multiplicity fluctuations


$$\sigma_P(\delta E_T) = \sqrt{\langle N \rangle (\sigma_{E_T}^2 + \langle E_T \rangle^2)}$$

 Estimate non-Poissonian contribution with STAR flow measurements

$$\sigma_{NP}^2 (\delta E_T) \approx 2\langle N \rangle^2 \langle E_T \rangle^2 (v_2^2 + v_3^2)$$

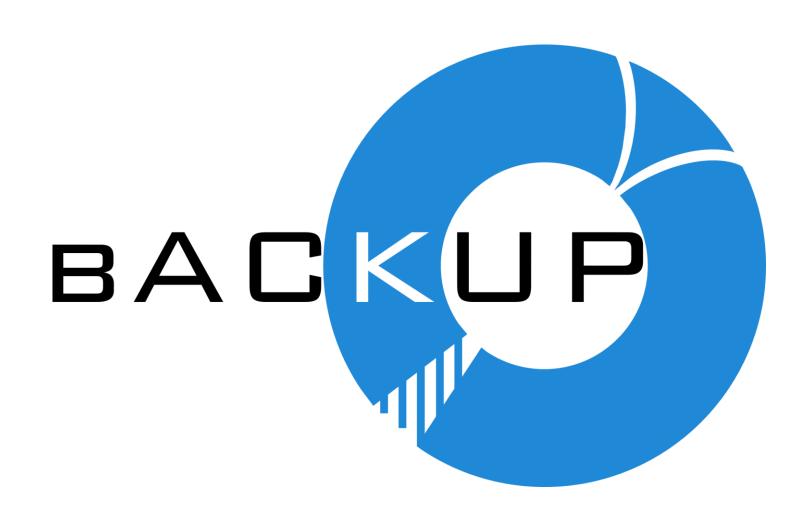
- Hydro contributes to UE fluctuations depending on centrality
 - v_2 : ~20% in 20-30%
 - v_3 : ~5% in 20-30%


STAR v2 measurement STAR v3 measurement

Suppression of UE fluctuations

- Flow contributes 0-25% to UE fluctuations depending on centrality
- Iterative method is less dependent on flow contributions
- Multiplicity method is closest to Poissonian limit most central events
- Area and multiplicity method have similar flow sensitivity

Current Conclusions

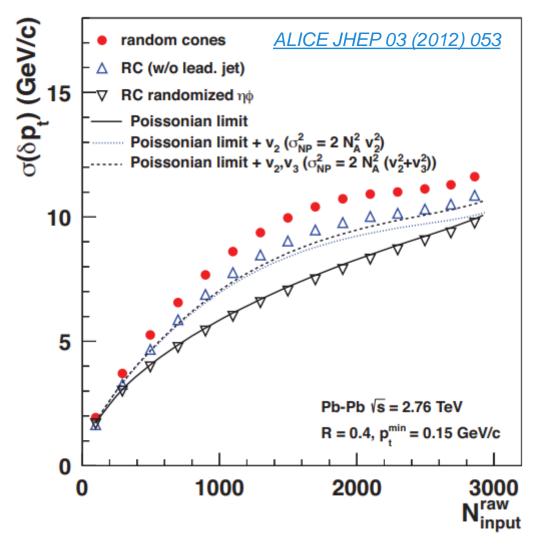

- We have characterized the UE pedestal and fluctuations in data.
 We have determined the relative contributions for UE fluctuations at sPHENIX
- Our results indicate that the iterative method mitigates fluctuations from odd-order flow coefficients (regional fluctuations) ~5% effect in 20-30% central
- UE fluctuations are spatially correlated approaching \sqrt{A} scaling in very peripheral events

Useful info

- Ana note overleaf: https://www.overleaf.com/8881559755wwffmkddgvzw#f407ff
- Ana note invenio (static): https://sphenix-invenio.sdcc.bnl.gov/communities/sphenixcommunity/requests/4d3db087

 -9c2c-438b-b83b-9042750abdbc
- Code repo: https://github.com/tmengel/UE-AuAu-PPG04/
- Conference note:

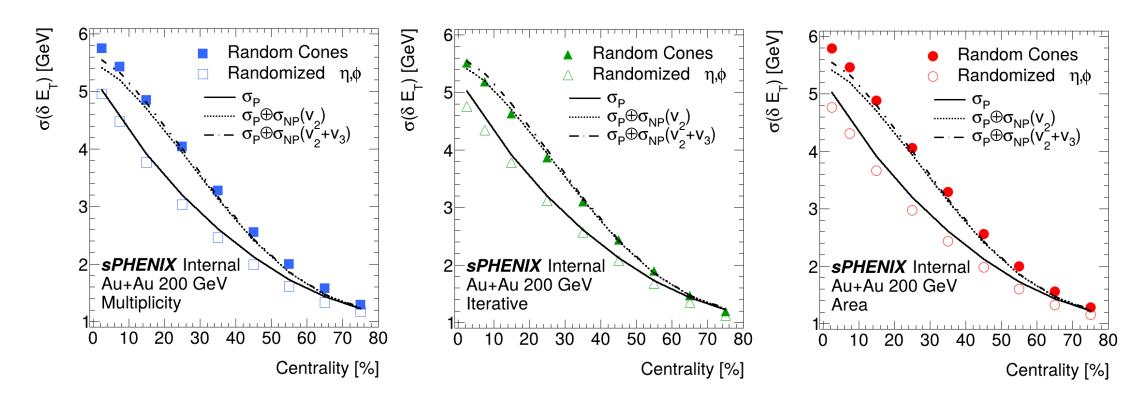
Multiplicity driven fluctuations


 UE fluctuations are well described by statistical and non-Poissonian multiplicity fluctuations

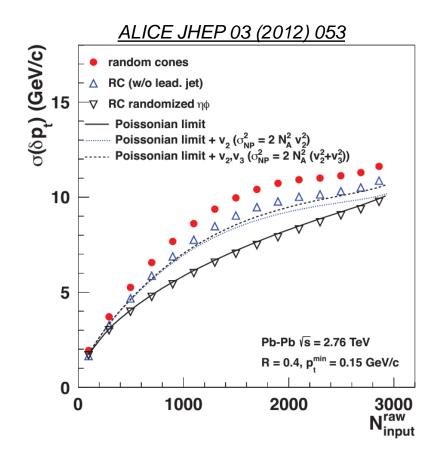
$$\sigma(\delta p_T) = \sqrt{N\sigma_{p_T}^2 + N\mu_{p_T}^2 + \sigma_{NP}^2}$$

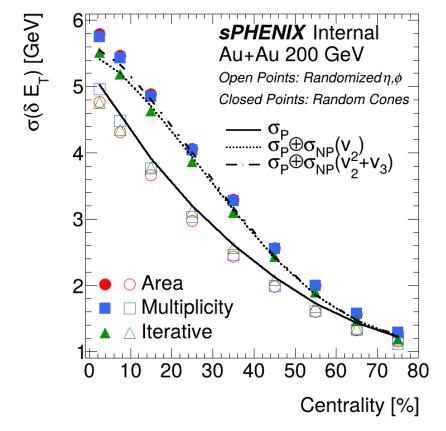
• Background p_T in jets is multiplicity dependent

$$p_T^{UE} = \mu_{p_T} \cdot N \pm \mu_{p_T} \sqrt{2N}$$


$$p_T^{corr.} = p_T^{reco} - \langle p_T^{bkgd} \rangle \cdot N_{bkgd}$$

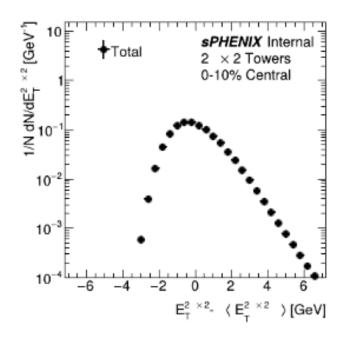
Comparisons between methods

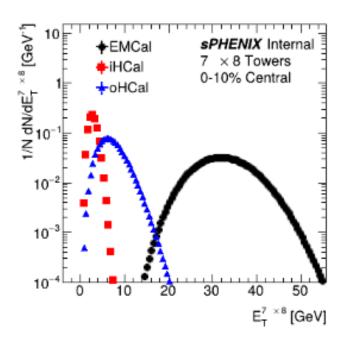

- All methods perform approximately the same, have similar pedestal value
- Iterative method is less dependent on flow contributions

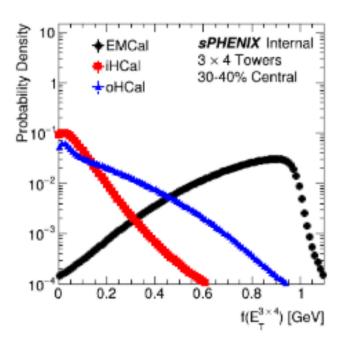


Fluctuations compared to LHC

- Similar increase due to flow contributions
- Same hierarchy between predicted standard deviation






Calo Windows

- Distributions of E_T^{nxm} for different window sizes
- E_T^{nxm} Average is centered around zero
- EMCAL is the bulk of E_T^{nxm} ZS is extremely important

