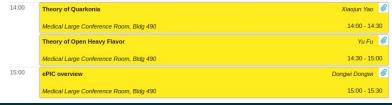
Report for the RHIC AGS Users Meeting Heavy Flavor Workshop

Rongrong Ma (BNL) and **Gregory Ottino (LBNL)** RHIC/AGS Users Meeting 2025

RHIC 25:

A quarter century of discovery

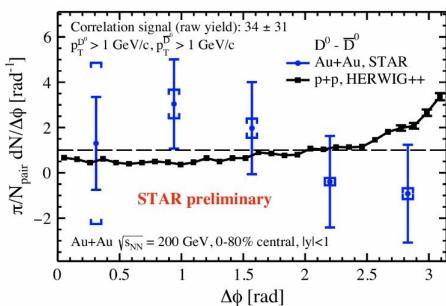

Overview

Current RHIC experiments

Results from our friends from the LHC

09:00	STAR Heavy Flavor Physics Overview	Kaifeng Shen
	Medical Large Conference Room, Bldg. 490	09:00 - 09:30
	sPHENIX Heavy Flavor Overview	Alexander Patton
	Medical Large Conference Room, Bldg. 490	09:30 - 10:00
10:00	PHENIX Heavy Flavor Overview	Dr Ming Liu
	Medical Large Conference Room, Bldg. 490	10:00 - 10:30
1:00	LHC Open Heavy Flavor	Deepa Thomas
	Medical Large Conference Room , Bldg. 490	11:00 - 11:30
	LHC Quarkonia	Maria Elena Ascioti
	Medical Large Conference Room , Bldg. 490	11:30 - 12:00
L2:00		
3:00		
3:00		
3:00		
3:00		
13:00	Theory of Quarkonia	Xiaojun Yao 🏽 🎚

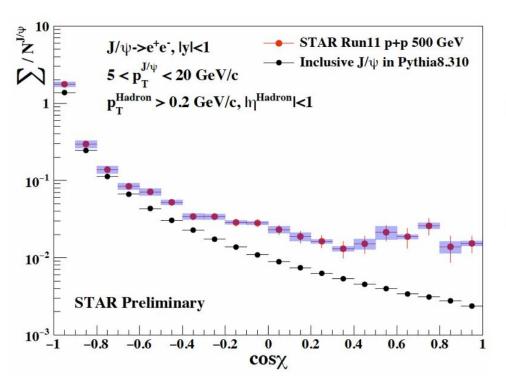
Theoretical developments and the EIC



D0-anti D0 Correlations

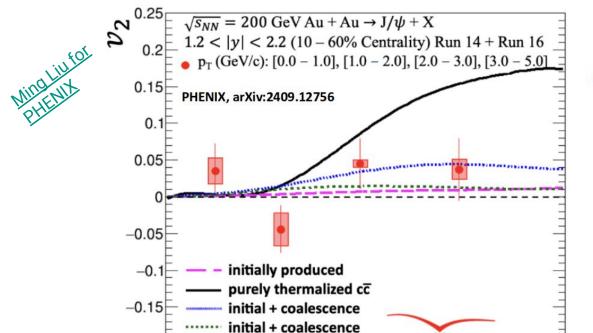
 \triangleright Weaker correlation is expected in heavy ion collisions compared to that in p+p collisions at $\Delta \phi \approx \pi$, due to energy loss and thermalization in QGP

Phys. Lett. B 647 (2007) 366-370


Kaifeng Shen for STAR

■ No azimuthal correlation is seen within current uncertainties

J/ψ Energy Correlators at STAR



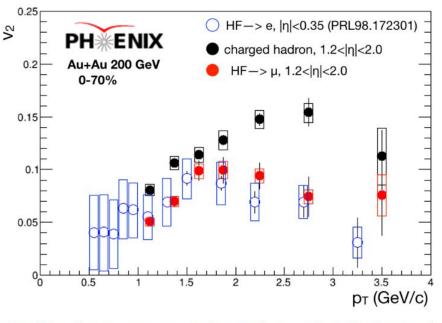
The J/ ψ energy correlator has been measured firstly at RHIC-STAR

No significant $\cos(\chi)$ dependence of the J/ψ energy correlator at $\cos(\chi) > 0$, while the measurement is different compared to that in pythia8 (~7 σ)

First J/ψ flow v_2 at the Forward Rapidity

Systematic Uncertainty

- PHENIX v2 in the forward rapidity, consistent with zero
 - Open charm, none-zero v2!
 - Light quark contributions?
 - ➤ J/Psi formation
 - weak "recombination" in the forward rapidity?
 - Run2016 Au+Au, in progress
 - 4x more stat!


5/20

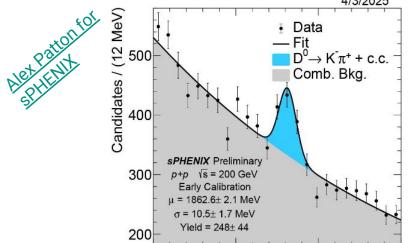
17

p_T (GeV/c)

Open Heavy Flavor v_2 at the Forward Rapidity

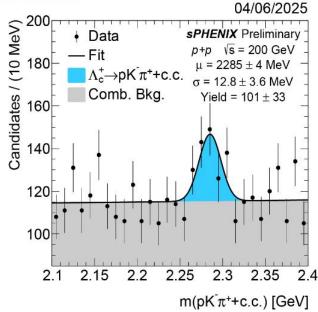
PHENIX, arXiv:2409.12715

- First observation of none-zero open heavy flavor v2 at the forward rapidity
 - · Consistent with mid-rapidity HF results
 - Smaller than light hadron v2
 - Similar magnitude in central and forward rapidity!


5/20/25

D^0 and Λ_c Reconstruction at sPHENIX

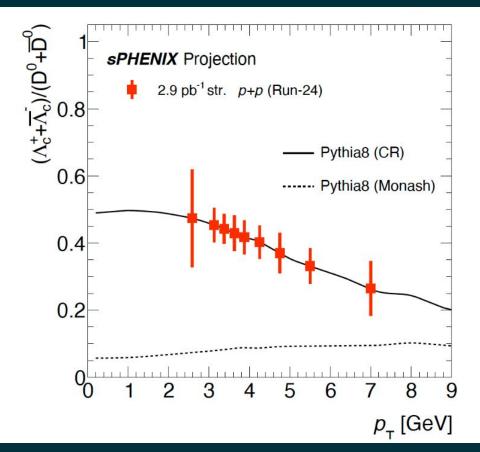
- sPHENIX took a large p+p dataset thanks to streaming readout
- We have our first heavy flavor signatures, including $\Lambda_{\mathcal{C}}^+$ which is new to RHIC in p+p
- Use Λ_C^+/D^0 ratio to probe hadronization models


1.9

 $m(K^{+}\pi^{\pm})$ [GeV]

1.8

1.7

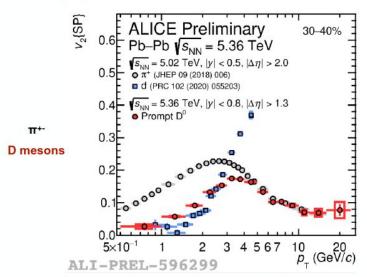


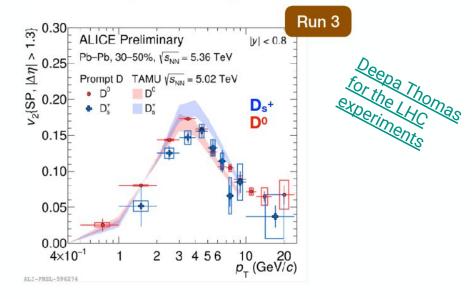
-

Projection for Λ_c/D^0 ratio at sPHENIX

Alex Patton for SPHENIX

- First measurement of p+p Λ_C^+/D^0 at RHIC
- Huge benefit from streaming readout
- Need good understanding of tracking efficiency for this measurement



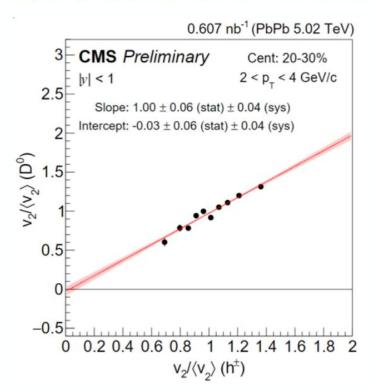


v₂ of Charm Quarks

Heavy Flavor v_2: quantify HQ interaction strength at low p_T and constrains its path length dependent

energy loss at high p_T

- D⁰ meson v₂ measured to very low p_T < 1 GeV/c
- Low p_T: $v_2(\pi^{+-}) > v_2(D)$
 - D-meson v₂ from charm quark flow + recombination with the light-flavor quark
- High p_T: $v_2(\pi^{+-}) \sim v_2(D)$


FFFFFF

Path length dependent E.loss

 D_{s^+} v_2 close to non-strange D v_2 —> tendency to be smaller up to $p_T = 4$ GeV/c (different contribution of hadronic phase?)

HF vs LF v₂

Study of the correlation between v_2 of D^0 and the charged hadrons

Deepa Thomas experiments

Vary initial eccentricity by Event Shape Engineering q_2 while keeping same centrality

 $D^0 v_2$ exhibits an approximate linear proportionality to the bulk flow

 $D^0 v_2$ is entirely driven by initial shape as light flavors

J/ψ in 4 muon channel

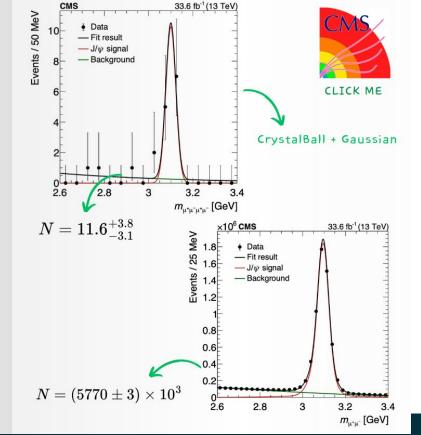
J/ψ in 4-mu

$$\frac{\mathcal{B}(J/\psi \to \mu^+\mu^-\mu^+\mu^-)}{\mathcal{B}(J/\psi \to \mu^+\mu^-)} = \frac{N(J/\psi \to \mu^+\mu^-\mu^+\mu^-)}{N(J/\psi \to \mu^+\mu^-)} / \frac{\epsilon_{J/\psi \to \mu^+\mu^-\mu^+\mu^-}}{\epsilon_{J/\psi \to \mu^+\mu^-}}.$$

where:

$$N(J/\psi \to \mu^+\mu^-\mu^+\mu^-) = 11.6^{+3.8}_{-3.1}$$

The significance of the signal is above 7 standard deviations, evaluated from the likelihood ratio of the default signal+bkg fit and the bkg-only fit


$$\mathcal{B}(J/\psi \to \mu^+\mu^-\mu^+\mu^-) = [10.1^{+3.3}_{-2.7} (\text{stat}) \pm 0.4 (\text{syst})] \times 10^{-7}$$

Standard Model prediction:

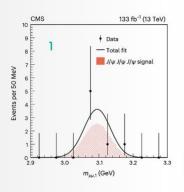
$$(9.74 \pm 0.05) \times 10^{-7}$$

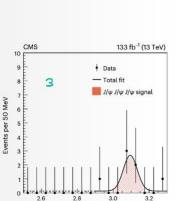
Maria Elena Ascoti for the LHC experiments

Triple J/ψ in CMS

Triple-J/ψ in CMS

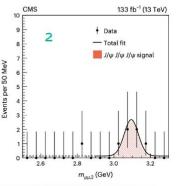
- Data analysis starts by selecting events with > 6 muons, each passing the p_T and η criteria
- The muons are then paired to reconstruct the charmonia candidates within the kinematical and mass range acceptance.
- All selected muon pairs are further required to share the same primary vertex (PV).


For all muons	$p_{\rm T} > 3.5 \text{GeV for } \eta < 1.2$ $p_{\rm T} > 2.5 \text{GeV for } 1.2 < \eta < 2.4$
For all J/ ψ mesons	$p_{\rm T} > 6 {\rm GeV} \ {\rm and} \ y < 2.4$ 2.9 < $m_{u^+u^-} < 3.3 {\rm GeV}$


For all muons $V_{
m sign}^{3J/\psi}=5.0^{+3}$

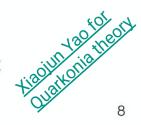
$$N_{
m sign}^{3J/\psi} = 5.0_{-1.9}^{+2.6} \,\, ullet \,\, N_{bkg} = 1_{-0.8}^{+1.4}$$

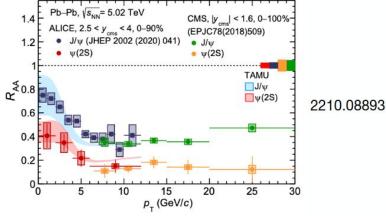
6.7 STD. DEV. FROM THE NULL HYPOTESIS

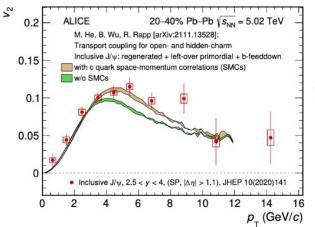

$$\sigma(pp o J/\psi J/\psi J/\psi X) = 272 + 141 ({
m stat}) \pm 17 ({
m syst}) {
m fb}$$

m_{uu.3} (GeV)

31


Phenomenology with Dissociation and Regeneration

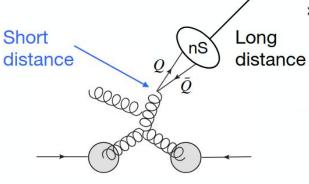

Texas A&M University (TAMU) model

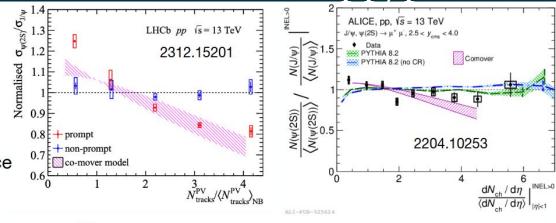

$$\frac{\mathrm{d}N_{\mathcal{B}}(\tau)}{\mathrm{d}\tau} = -\Gamma_D[T(\tau)] \Big(N_{\mathcal{B}}(\tau) - N_{\mathcal{B}}^{\mathrm{eq}}[T(\tau)] \Big)$$

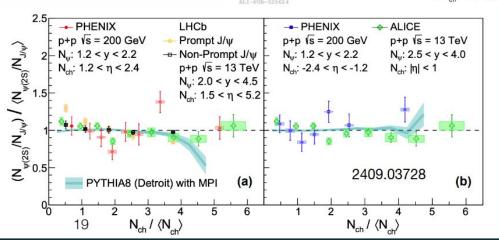
$$\downarrow$$
 #(bound state) Equilibrium number, time-dependent

- Dissociation rate from $g+\mathcal{B} \to Q+\bar{Q}$ $2\times (q/g+Q \to q/g+Q)$
- · Phenomenological factors, interference
- New development:
 T-matrix summation + lattice input

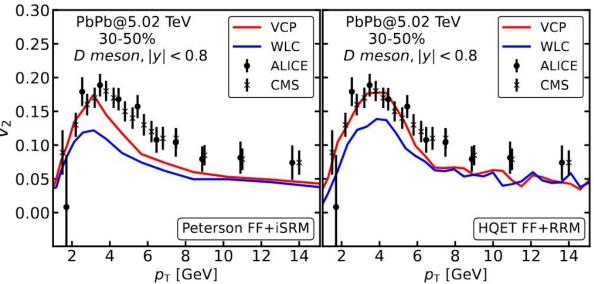
Wu, Tang, Rapp, 2503.10089




2005.14518

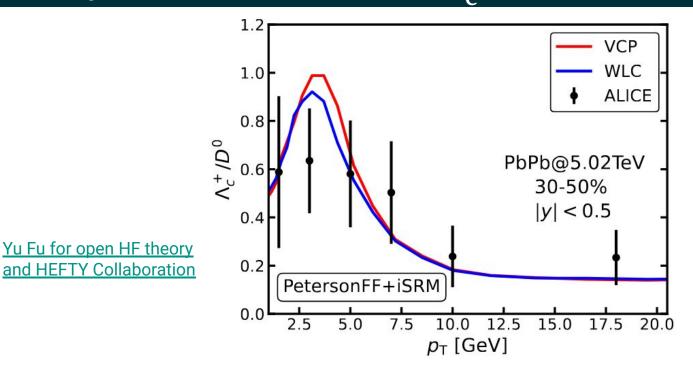

Quarkonium Production from AA to pp, pA

• $\frac{\psi(2S)}{J/\psi}$ v.s. event activity in pp



Universality of long-distance may break down in pp?

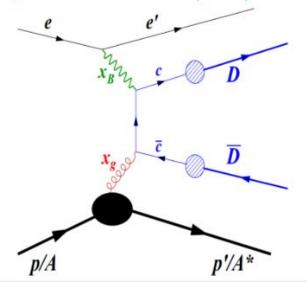
Elliptic flow: v₂ in open HF

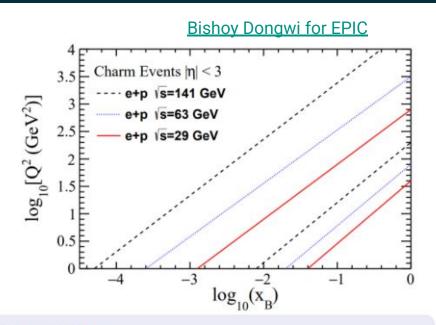

Yu Fu for open HF theory and HEFTY Collaboration

Larger sensitivity to in-medium QCD force

ALICE:PLB813(2021) CMS:PLB816(2021)

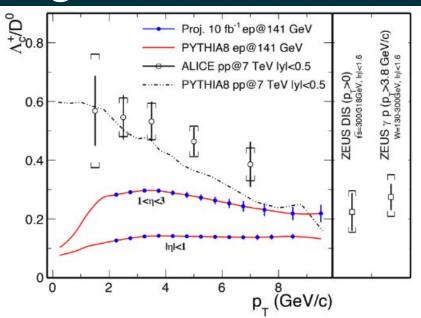
Baryon to meson ratio: Λ_c/D^0




Systematic investigation of hadro-chemistry underway

EIC Kinematic reach

M. Kelsey, et. al., PRD 104 (2021) 054002



- Unique and direct access to gluons, especially at high x
- Broad kinematic coverage:
 - Probe intrinsic charm

Charm quark fragmentation

aishoy Donami for EPIC

J. Arrington, et. al., arXiv:2102.08337

- Gain new insights into charm fragmentation ep vs. pp collisions
- DIS ratio R_{Λ_c/D^0} vs. p_T
- Projections: e+p 141 GeV, forward & central rapidity, 10 fb⁻¹ (No full ePIC recon.)

Summary

- Many exciting developments spanning RHIC, LHC, and the EIC
- Much complimentary work is on going at RHIC and LHC experiments in heavy flavor, and phenomenological developments can hopefully be stress tested on both sides of the Atlantic
- Results include progress on MC modeling, hadronization, flow, and under constrained aspects of QCD
- On the RHIC side looking forward to more STAR and PHENIX results, first results for HF from sPHENIX and towards the EIC

