

Machine Learning Applications for Improving Accelerator Operations

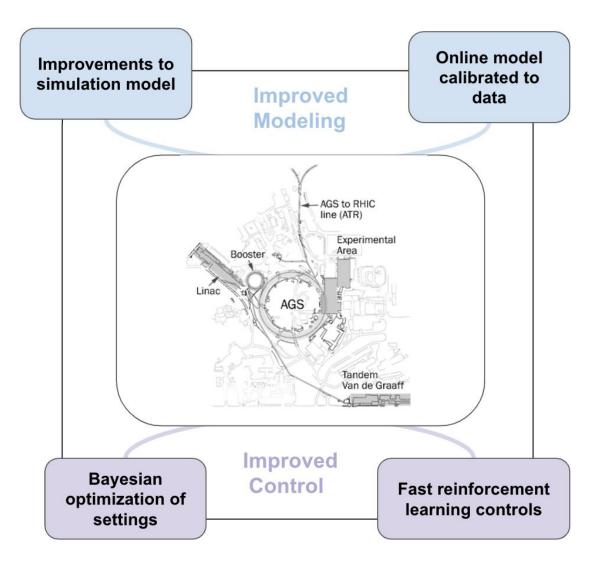
Weijian (Lucy) Lin

PI: Georg Hoffstaetter de Torquat, Kevin Brown

RHIC & AGS Annual Users' Meeting May 22, 2025

Improve Accelerator Operations with ML

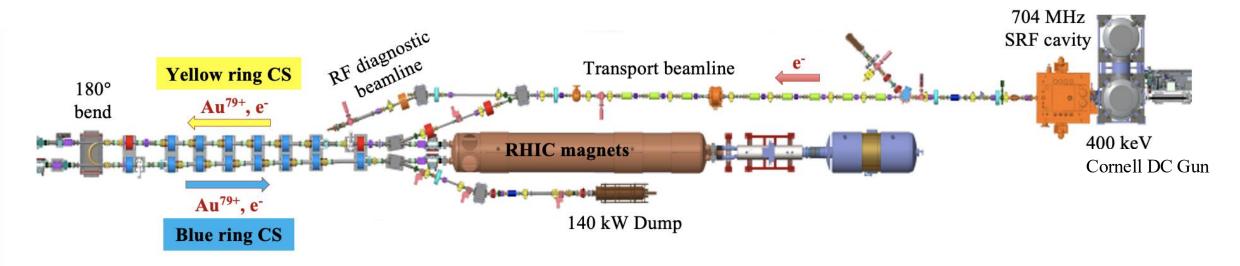
- Figure-of-merits (FOM) for machine learning (ML) algorithms ("experimental outputs"): beam size, emittance, beam intensity, polarization
- Possible areas where ML is useful:
 - Cooling optimization
 - Injection optimization
 - Digital-twin & Error detection
- Useful ML methods:
 - Bayesian Optimization (BO)
 - Neural Network (NN)
 - Reinforcement Learning (RL)



Cooling Optimization

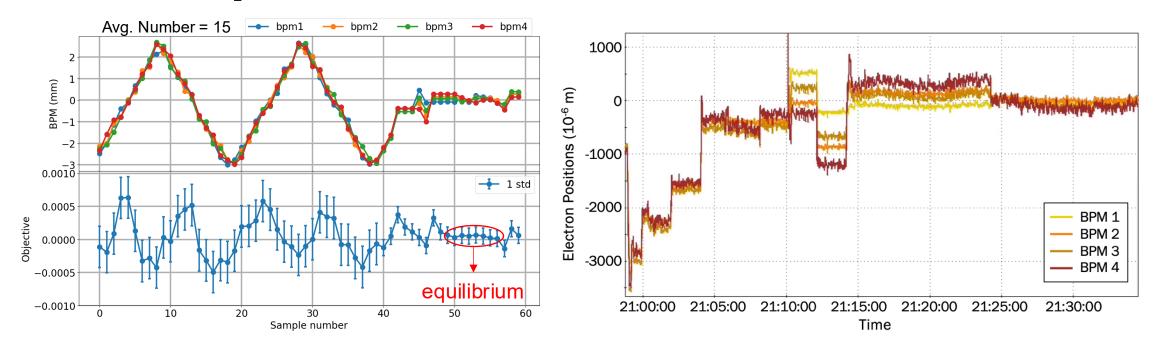
- ♦ Low Energy RHIC electron Cooling (LEReC)
- **♦** Coherent electron Cooling (CeC)

Low Energy RHIC electron Cooling (LEReC)



- LEReC is used to increase the luminosity, it was successfully improved the luminosity in 2020 and 2021 runs → The new EIC pre-cooler layout follows the same principle
- Cooling rate: velocity of decrese in ion beam size $\lambda = (1/\overline{\delta})(\overline{d\delta}/dt)$
- Ions are assumed in the center position (x=0, y=0)
- **Goal**: use Bayesian optimization (BO) to maximize $-\lambda$ by aligning electron orbit with ion orbit

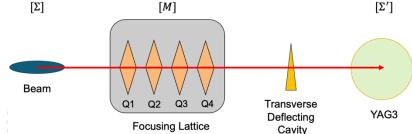
LEReC experiment result



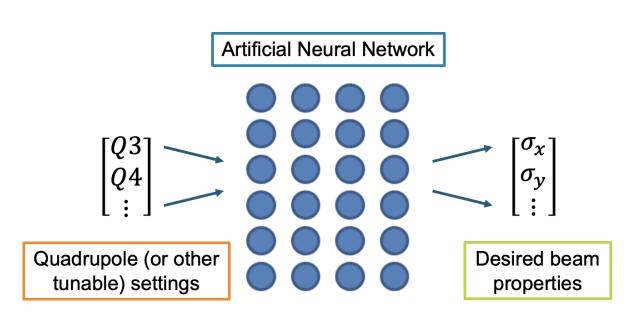
- Bayesian optimization algorithm trained with 40 initial samples to optimize transverse cooling rate λ
- The system reaches optimal status when cooling balances growth from intra-beam scattering (IBS), so λ approaches 0 once the system reaches equilibrium
- Algorithm converged quickly (reach close neighborhood in 3 steps)
- Tune electrons from the farthest positions to the center and maintain the trajectories

Coherent electron Cooling (CeC)

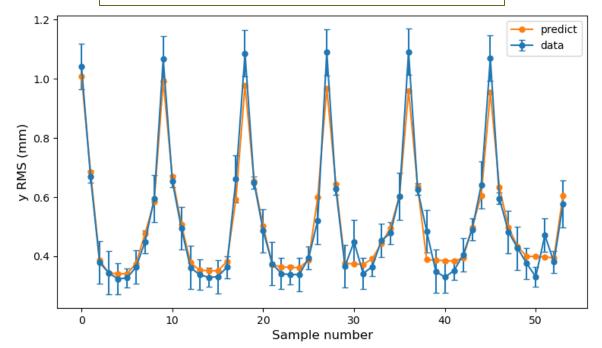
Designed to cool 26.5 GeV/u ion beam circulating in RHIC's yellow ring.



- Scan two quads (Q3, Q4) with opposite polarity to measure electron beam slice emittance: > 1 hour for entire scan routine
- Train a ML model to establish mapping between quadrupole settings and beam size
- Trained ML model predicts best Q3-Q4 combinations without additional scans
- Useful for faster general beam tuning & as starting point of optimization

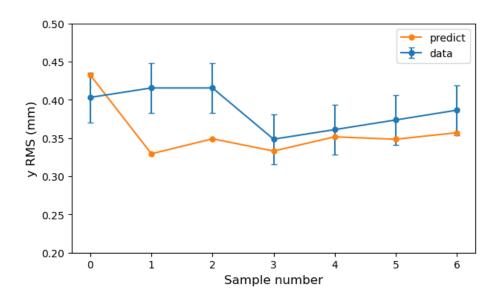


Test new routine on CeC system



Remaining 7 rounds: 7 data points using Q3-Q4 settings predicted by NN model

- Trained NN accuracy on 54 data points: 93.65%
- Tested 7 proposed Q3-Q4 combo settings
- Obtained Y RMS values around 0.3 0.4 mm range: satisfactory preliminary results
- Successfully cut scan time by 50%

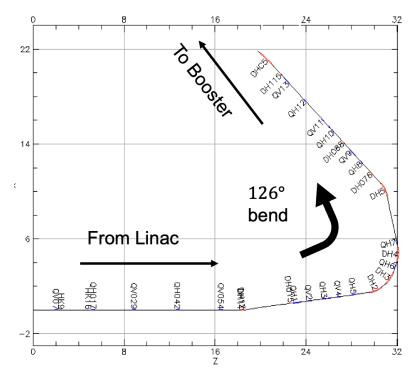


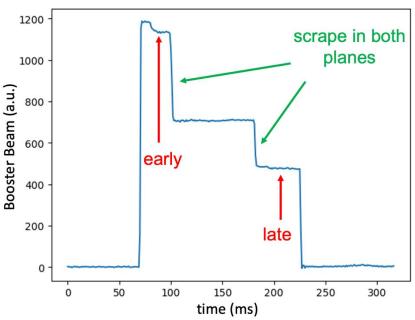
Injection Optimization

Linac to Booster (LtB) Transfer Line

AGS Booter injection

- Booster injection process sets maximum beam brightness for rest of acceleration through RHIC
- Known emittance effect on polarization loss
- Intentional horizontal and vertical scraping reduce emittance to RHIC requirements
- Goal: minimize emittance / maximize beam intensity after scraping
- Controls: Linac to Booster (LtB) transfer line optics
- Method: Bayesian optimization (BO)

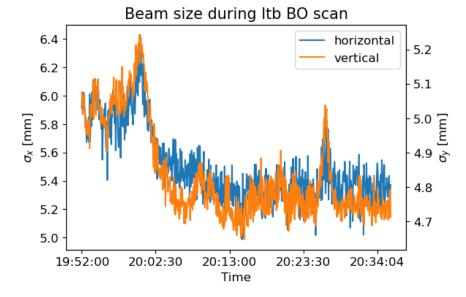


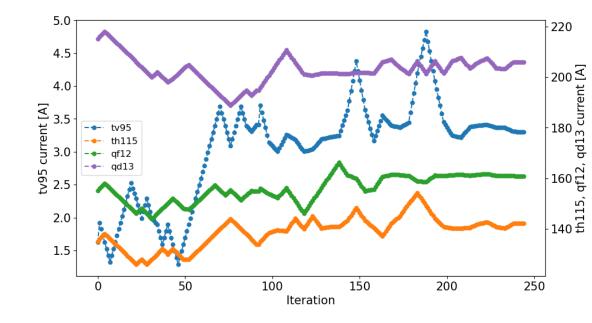


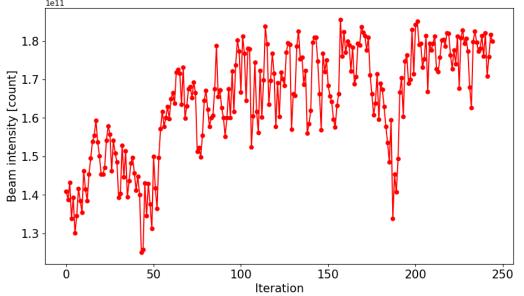
LtB optimization result

- Controls: Power supply currents of two correctors and two quadrupoles at the end of the LtB line
- Beam size decrease in both planes in the BtA line in correspondence with intensity increase

$$\mathcal{L} = \frac{1}{4\pi} \cdot N_b f_{rev} \cdot \frac{N^2}{\beta^* \varepsilon} \sim \frac{N^2}{beam \ size}$$

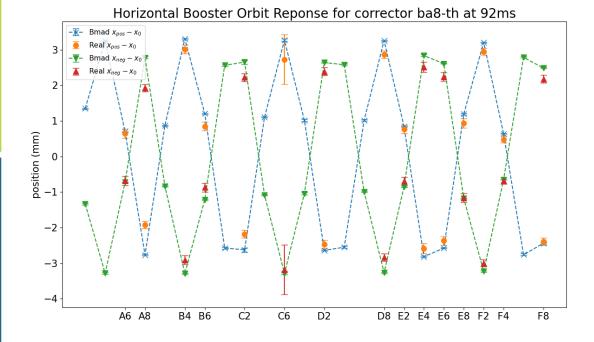


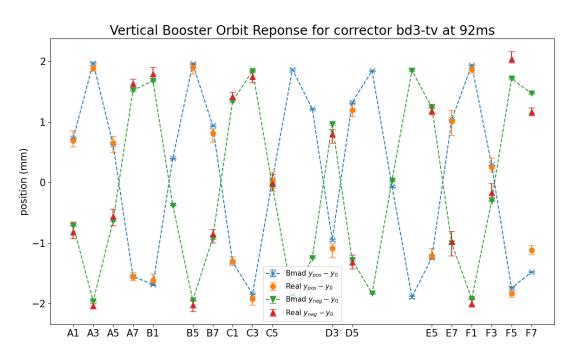




Digital-twin and Error Detection

- ♦ Alternating Gradient Synchrotron (AGS) Booster
- NASA Space Radiation Laboratory (NSRL)



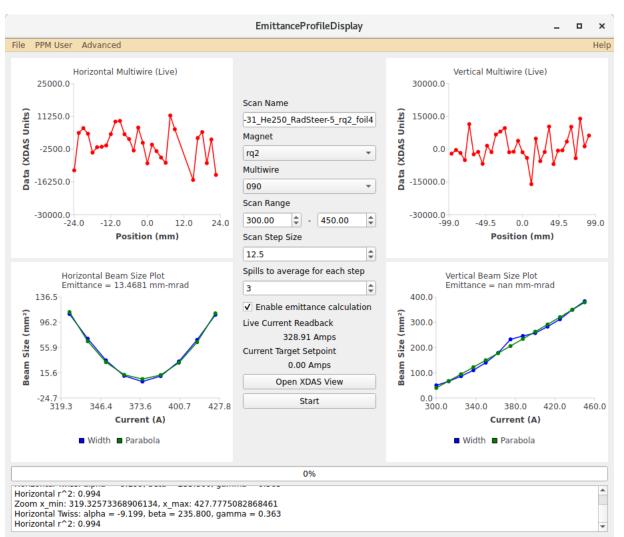


Orbit response data in AGS Booster

- Good agreements between AGS Booster data and physics simulation (Bmad) model are reached, despite some faulty BPMs
- Bayesian Uncertainty Quantification (UQ) is being used to probe and quantify sources of errors that could lead to the discrepancies between simulation and measurement
- Goal: produce accurate real-time predictions for operators and give tuning suggestions to improve beam quality

Automated quad scan software for NSRL

- Script package with GUI interface for fast and easy emittance measurement in the NSRL line
- User sets quadrupole, beam profile monitor, scan current range, and step size
- Measured data will be used to calibrate simulation model
- Can be adapted for other beam lines at BNL: Booster to AGS (BtA) and Tandem versions in progress



Summary

- Machine learning methods have been developed and tested at multiple experiments and accelerators at the RHIC complex
- Promising results indicate that ML algorithms can be powerful tools for various optimization problems, suitable for fast and complicated tuning in real time
- Digital-twin development is underway to establish accurate models for different accelerators, with a focus on the injection compound, which will remain for the EIC
 - Better understanding of beam behavior in the early stages of the acceleration chain
 - Facilitate offline development of optimization routines
- Important beam qualities such as emittance and polarization will benefit from incorporation of ML algorithms in the control system

Acknowledgment

 Petra Adams, Kevin Brown, Bhawin Dhital, Yuan Gao, Levente Hajdu, Kiel Hock, Yichao Jing, John Morris, Trevor Olsen, Vincent Schoefer, Kai Shih

• Eiad Hamwi, Georg Hoffstaetter de Torquat, David Sagan

Yinan Wang

Auralee Edelen, Ryan Roussel

Armen Kasparian, Kishan Rajput, Malachi Schram

