

eRD107: Longitudinally separated Forward HCal (LFHCal)

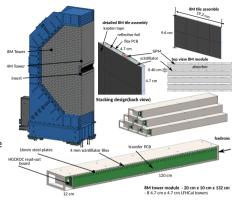
April 17, 2025

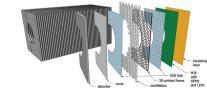
Friederike Bock (ORNL) for the eRD107 consortium

Participating institutes: ORNL, BNL, FNAL, ISU, GSU, Yale, UCR, UTK, UTA, Valpo, Debrezen

The General Idea

Concept:

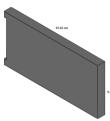

- CALICE AHCal inspired Fe-Scintillator calorimeter with SiPM on-tile-readout (modification since last review)
- Two main parts:
 - ► LFHCal built mostly out of 10x20x132 cm³ 8M modules (modified length to accommodate larger amount of services in barrel)
 - ▶ Insert built out of 2 halves surrounding the beam pipe

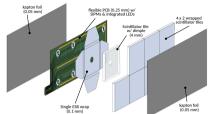

LFHCal:

- ▶ 60 layers of steel interleaved with scintillator material
- ► Transverse tower size 5x5 cm²
- ► Multiple consecutive tiles summed to 7 longitudinal segments per tower

Insert:

- ▶ 60 layers of steel interleaved with scintillator
- ► Hexagonal tiles of 8 cm² each read-out individually

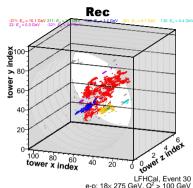

1/23

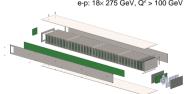


LFHCal 8M Scintillator Tile assembly

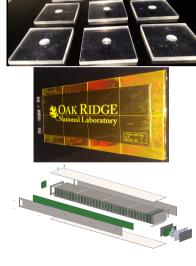


2/23


- Tiles of $\approx 0.4x5x5$ cm³ with dimples individually wrapped in ESR foil assembled in a grid of 4x2 tiles
- 8 tiles are backed by a flexible PCB equipped with 8 SiPMs and LEDs sandwiched with Kapton foil
- Flexible PCB wrapped around side of absorber to connect with long PCB along the side of the module
- Tiles either injection molded or machined out of cast sheets

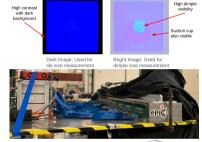


Read-out LFHCal & insert


- High granularity needed to try to distinguish shower maxima close to beam pipe
- LFHCal: read out in 7 layers longitudinally (5 or 10 SiPMs summed) desirable min measurable tower energy 3-5 MeV, max 20-30 GeV in single tower segment
- insert: read out every single tile desirable min measurable tower energy $\sim 0.1-0.5~\text{MeV}/$ tile
- SiPMs mounted to flexible PCBs, passive signal transfer to back side of calorimeter using long transfer PCB
- 1 SiPM-HGCROC (up to 70 channels) per 8M module (56 channels) in the back, 320 HGCROCs for insert readout

Reminder: Remaining eRD107 Milestones

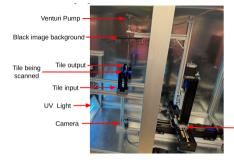
- Tile production optimization using machining & injection molding
 - ► Evaluation of tolerance compliance for machined tiles
- Test module assembly & beam test
 - ► First prototype of full 8M module
 - ► Integration of final read-out
 - ► Test beam evaluation of prototype (optionally with ECal in front)



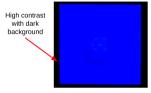
eRD107 - Progress - executive summary

- Prototype tile production using machining & injection molding
 - ► Evaluation of tolerance compliance for machined tiles completed
- 2 Integration of final read-out
 - ► Third iteration of sensor board produced and operated in TB
 - ► First passive summing test board produced
 - ► First test beam with HGCROC read-out for LFHCal completed reading every single SiPM & analysis ongoing
- Preparations for 2025 TB-campaigns & TB analysis
 - ► Test beam analysis from 2023 & 2024 on-going, aiming at paper combined paper for late summer
 - Preparations for large scale 8 x 8M module test beam CERN at SPS & PS in Oct/Nov ongoing

Largest fraction of TB components and efforts from 2024 & 2025 have been financed by PED, $\approx 1/20$ for 2024 from remaining R&D funds.



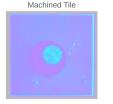
Scintillator Production - Tolerance evaluation (1)



- Yale setup created for fully automated tile dimension scanning using X-Y translation stage, camera & UV light source
- Evaluation of outer dimensions of machined tiles & dimple size
- Large scale evaluation possible without significant human intervention

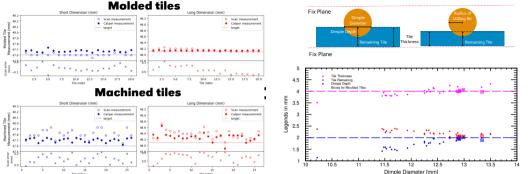


Yale

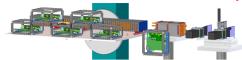


Dark Image: Used for

Bright Image: Used for dimple size measurement


Molded Tile

Scintillator Production - Tolerance evaluation (2)


- Measured dimensions molded and machined tiles with calipers (for external size) and automated measurement
- Molded tiles compliant within measurement uncertainties with specifications
- Machined tiles with significant variations beyond acceptable limits
- Variations in particular on thickness beyond expected values
- ⇒ Need to incorpate these variations in design and possible specification modifications for the machined tile production

Test beam - August 2024


Dates: 28th Aug-11th Sept 2024 **Location:** PS - T09 **Main purpose:** First full module test & H2GCROC tests **Setup:**

- Full 8M module testing 65 layers of absorber & scintillator per layer 8 channels (swapping scintillator geometry either 8M module or insert)
- Readout with multiple CAEN DT5202 64ch CITIROC SiPM readout units (2nd week) and H2GCROCs (1st week)
- Had to be postponed from May to August due to delays in deliveries of components & new H2GCROC firmware and boards tested during the ALICE FoCal TB in May 2024

Main expected measurements:

- Energy resolution estimates for hadrons and electrons for full length module with both read-out versions
- Assessment of longitudinal leakage
- Longitudinal shower development
- Read-out validation
- Part of campaign with EEEMC in front

HGCROC online monitoring

μ for calibrations

i ioi cui	
Run 281	Run 281
FPGA 2	FPGA 2
ASIC 1	ASIC 1
Channel 64	Channel 63
Run 281	Run 281
FPCA 2	FPGA 2
ASIC 1	ASIC 1
Channel 55	Channel 56
Run 281	Run 281
FPGA 2	FPGA 2
ASIC 1	ASIC 1
Channel 45	Channel 46
Run 281	Run 281
FPGA 2	FPGA 2
ASIC 1	ASIC 1
Channel 37	Channel 36
Run 281	Run 281
FPGA 2	FPGA 2
ASIC 1	ASIC 1
Channel 34	Channel 33
Run 281	Run 281
FPGA 2	FPGA 2
ASIC 1	ASIC 1
Channel 25	Channel 26
Run 281	Run 281
FPGA 2	FPGA 2
ASIC 1	ASIC 1
Channel 16	Channel 14
Run 281	Run 281
FPGA 2	FPGA 2
ASIC 1	ASIC 1
Channel 7	Channel 6

4 GeV e⁻ for first energy resolution

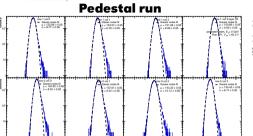
layer 1-8

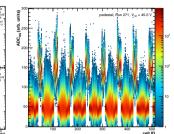
- u c • c		st chick g	y i cooia			iayei	
Run 331	Run 331		Run 331	Run 331	Run 331	Run 33T	Run 331
FPGA 2	FPGA 2		FPGA 2	FPGA 2	FPGA 2	FPCA 2	FPGA 2
ASIC 1	ASIC 1		ASIC 1	ASIC 1	ASIC 1	ASIC 1	ASIC 1
Channel 64	Channel 63		Channel 65	Channel 69	Channel 70	Channel 67	Channel 68
Run 331 FPGA ASIC 1 Channel 55	Run 331 FPGA 2 ASIC 1 Channel 56		Run 331 FPGA 2 ASIC 1 Channel 58	Run 331 FPGA 2 ASIC 1 Channel 62	Run 331 FPGA 2 ASIC 1 Channel 61		Run 331 FPGA 2 ASIC 1 Channel 59
Run 331	Run 331	Run 331	Run 331	Run 331	Run 331	Run 331	Run 331
FPGA 2	FPGA 2	FPGA 2	FPGA 2	FPGA 2	FPGA 2	FPGA 2	FPGA 2
ASIC 1	ASIC 1	ASIC 1	ASIC 1	ASIC 1	ASIC 1	ASIC 1	ASIC 1
Channel 45	Channel 46	Channel 47	Channel 48	Channel 52	Channel 51	Channel 50	— Channel 49
Run 331	Run 331	Run 331	Run 331	Run 331	Run 331	Run 331	Run 331
FPGA 2	FPGA 2	FPGA 2	FPGA 2	FPGA 2	FPGA 2	FPGA 2	FPGA 2
ASIC 1	ASIC 1	ASIC 1	ASIC 1	ASIC 1	ASIC 1	ASIC 1	ASIC 1
Channel 37	Channel 36	Channel 39	Channel 38	Channel 42	Channel 43	Channel 40	Channel 41
Run 331	Run 331	Run 331	Run 331	Run 331	Run 331	Run 331	Run 331
FPGA 2	FPGA 2	FPGA 2	FPGA 2	FPGA 2	EPGA 2	FPGA 2	FPGA 2
ASIC 1	—ASIC 1	ASIC 1	ASIC 1	ASIC 1	ASIC 1	ASIC 1	ASIC 1
—Channel 34	Channel 33	Ghannel 32	Channel 31	Channel 27	Channel 28	Channel 29	Channel 30
Run 331	Run 331		Run 331	Run 331	Run 331	Run 334	Run 331
FPGA 2	FPGA 2		FPGA 2	FPGA 2	FPGA 2	FPGA 2	FPGA 2
ASIC 1	— ASIC 1		ASIC 1	ASIC 1	ASIC 1	ASIC 1	ASIC 1
Channel 25	Channel 26		Channel 24	Channel 20	Channel 19	Channel 22	Channel 21
Run 331	Run 331		Run 331	Run 331	Run 331	Run 331	Run 331
FPGA 2	FPGA 2		FPGA 2	FPGA 2	FPGA 2	FPGA 2	FPGA 2
ASIC 1	ASIC 1		ASIC 1	ASIC 1	ASIC 1	ASIC 1	ASIC 1
Channel 16	Channel 14		Channel 12	Channel 9	-Channel 11	Channel 10	Channel 13
Run 331	Run 331	Run 331 FPGA 2 ASIC 1 Channel 5	Run 331	Run 331	Run 331	Run 331	Run 331
FPGA 2	FPGA 2		FPGA 2	FPGA 2	FPGA 2	FPGA 2	FPGA 2
ASIC 1	ASIC 1		ASIC 1	ASIC 1	ASIC 1	ASIC 1	ASIC 1
— Channel 7	Channel 6		Channel 4	Channel 0	Channel 1	Channel 2	Channel 3

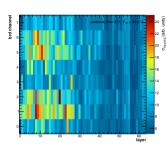
2023/2024 Test Beam analysis

Test Beam data:

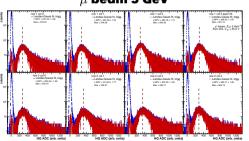
- 2023: Data primarily used for scintillator evaluation
- 2024: Two large data sets with HGCROC & CAEN read-out collected with massive support from ePIC collaborators from various institutes

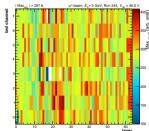

Test Beam analysis:

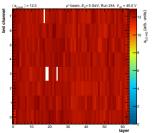

- Large participation in test beam analysis from grad students & under-grad students
- Common framework developed and being used for all existing TB campaigns, analysis full done in this
- Current focus on establishing stable calibrations (single cell level) for all channels & runs within
 each data set
- Aiming at full publication in late summer based off the 2023 & 2024 test beam campaigns



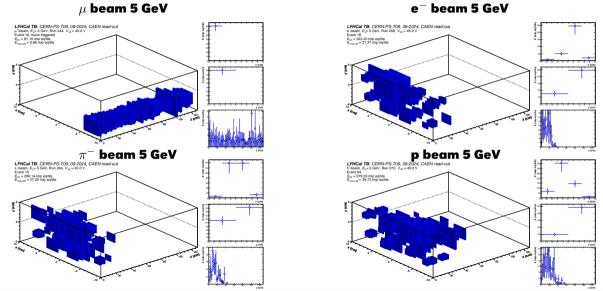
Calibrations



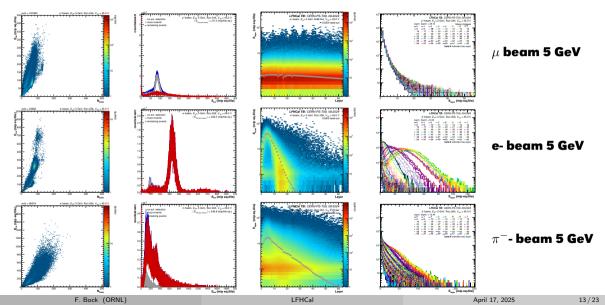




 μ beam 5 GeV



First Calibrated Event displays from last year



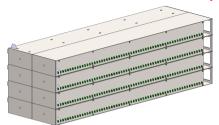
First Highlights from last year

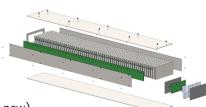
Test Beam Plans 2025

Requested time: 1 week each **Main purpose:** Resultion studies

Location: CERN SPS (29th Oct) & PS (17th Nov.)

Setup:


- Very similar to 2024 setup, with more modules
- 8 full 8M modules (ideally 40x40x132 cm)
- Readout with H2GCROCs
- Same setup in both areas

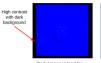

Main expected measurements:

- Energy resolution for hadrons and electrons
- Assessment of longitudinal/transversal leakage
- Longitudinal shower development
- Final-Flexible PCB validation & first long PCB validation

Where we are?:

- 8 Absorber structures produced (last 3 at Nickel-plating right now)
- Flex-PCB design available & SiPMs to be delivered in June
- First design of long board available, will be send for prototype production within the next weeks
- Evaluation board for passive summing created and under test

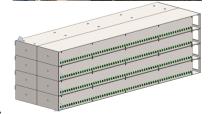
eRD107 - milestones & executive summary

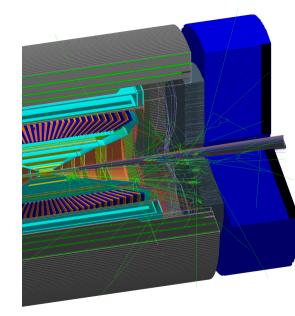


Milestones

- Tile production optimization using machining & injection molding
 - ► Evaluation of tolerance compliance for machined tiles
- Test module assembly & beam test
 - ► First prototype of full 8M module
 - ► Integration of final read-out
 - ► Test beam evaluation of prototype (optionally with ECal in front)

Executive summary


- Prototype tile production using machining & injection molding
 - ► Evaluation of tolerance compliance for machined tiles completed
- Integration of final read-out
 - ► Third iteration of sensor board produced and operated in TB
 - ► First passive summing test board produced
 - ► First test beam with HGCROC read-out for LFHCal completed reading every single SiPM & analysis ongoing
- Preparations for 2025 TB-campaigns & TB analysis
 - ► Test beam analysis from 2023 & 2024 on-going, aiming at paper combined paper for late summer
 - ▶ Preparations for large scale 8 x 8M module test beam CERN at SPS & PS in Oct/Nov ongoing



Dark Image: Used for

Thanks!

eRD107 - Progress - executive summary - 2024

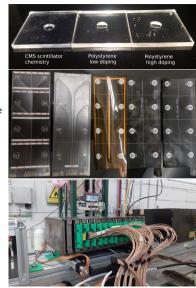
① Reconstruction optimization

- ► Realistic implementation of geometry in ePIC software stack
- ► ML assisted absorber optimization in full geometry setup

2 Prototype tile production using machining & injection molding

- ► Ongoing machining studies for tile production
- ► First tile production with injection molding at Fermilab with different tile chemistries

3 Tile Characterization


- Light yield studies of machined & injection molded tiles with different dimple sizes, machining techniques and wrappings ongoing
- ► Position scan of response on-going

Sensor board development

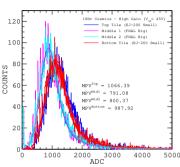
- ► Third iteration of sensor board produced in three different processes
- Tests of calibration circuits ongoing

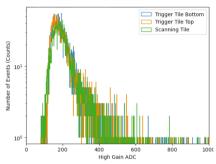
⑤ Preparations for third TB-campaign (Aug 2024) & TB analysis

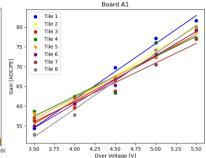
- ► Test beam analysis from Sept. & Oct. 2023 on-going
- ► Currently setting up in PS beam line, TB starting today



Tile production R&D


- First larger scale injection molding production by Fermilab with 3 different chemistries
- Additional scintillator machining studies on the way
- Produced tiles with different dimple sizes
- Additional production to come in the coming months to equipp August test beam modules





Scintillator Characterization & Optimization

- Started measuring cosmics MIP light yields for different SiPMs types
 - ► 1.3 × 1.3 mm
 - ightarrow pprox 12 14 p.e. for machined tiles
 - $\rightarrow~\approx 11-13$ p.e. for injection molded tiles,
 - ▶ 3 × 3 mm
 - $ightarrow \approx 60-76$ p.e for machined tiles

- Testing different scintillator materials (EJ-200, BC-408 & Fermilab injection molded with different chemistries)
- Systematic evaluation of impact of machining defects ongoing and large scale sample on-going
- Single photon spectra for every SiPM of the TB assemblies vs $V_{\rm civ}$

LFHCal: Test beams 2023

Dates:

SPS: 6th - 13th Sept.
 PS: 11th - 18th Oct.

Setup:

Parasitic to FoCal-H/FoCal-E at SPS and PS

Setup consists out of maximum 14 layers of 8M tile assemblies

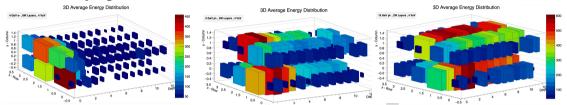
Sept: w/o absorber layers

Oct: w/ absorber layers (4 tungsten, 10 steel)

 Read-out: CAEN DT5202 64ch CITIROC SiPM readout unit or H2GCROC

Main expected measurements:

- Light yields per tile
- Shower profile measurements with different absorbers
- Cross talk estimates of different tiles
- Use it as testing setup for SiPM-H2GCROC
- If placed behind FoCal-H, measure part of leakage

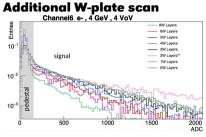


LFHCal TB 2023: Data obtained - CAEN read-out

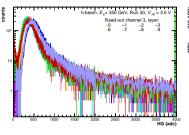
October campaign

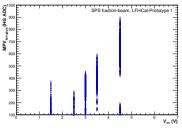
September campaign - Hodoscope setup

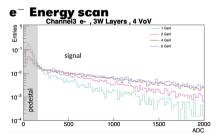
- Full V_{ov} scan e⁻/h
- Gain-scan
- Position scan
- Possibly leakage measurement of FoCal-H

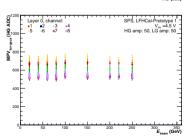

October campaign - mini-LFHCal

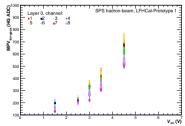
- Full V_{ov} & gain scan e^-/π^-
- Position scan
- Scan with additional W-plates upfront (e⁻)
- e⁻ shower development (1-5 GeV)
- π^- shower development (5,10,15 GeV)

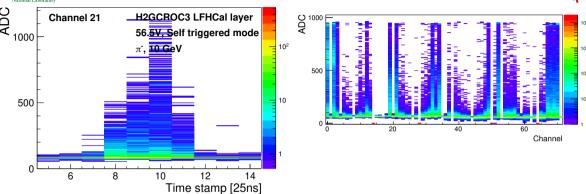



LFHCal TB 2023: First results - CAEN read-out






MIP response for scintillators



LFHCal TB 2023: First results - H2GCROCv3a

- H2GCROC read-out ready just in time for last 1.5 days of data taking (Oct.)
- Self-triggered data obtained
- Unfortunately externally triggered setup couldn't be operated due to beam stop of PS during last night
- New prototype board on time for delivery for testing significantly ahead of TB

F. Bock (ORNL) LFHCal April 17, 2025 23/23