Backward Hadronic Calorimeter

Work plan and priorities

Leszek Kosarzewski

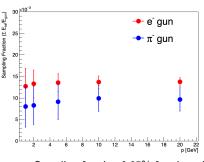
The Ohio State University

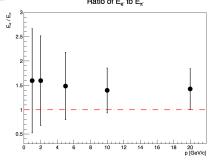
nHCal DSC meeting 18.3.2025

Outline

- Work plan priorities
- Sampling fraction
- 3 Jet and diffractive dijet study
- Muon identification study for VM reconstruction
- Position resolution study
- Tasks
- Summary

18.3.2025


Work plan priorities


- 1 Determine detector geometry: tile, absorber and overall thickness high priority
- ② Tile tests in different configurations: SiPM on tile, WLS fibers etc.
- Finalize jet/diffractive dijet reconstruction study to optimize the tiles for these measurements - priority
- Study of muon track identification with nHCal priority
- \bullet Study of K_L identification with nHCal
- Re-check position resolution study with full ePIC geometry with clustering bug fixed - medium priority
- Investigate shower reconstruction in high material region medium priority
- Opening Prototype construction on hold until geometry fixed
- Prepare for beam tests

 $\label{local-padel} https://docs.google.com/document/d/ \\ 1SSqGlWChuWoEM8sNbOCyXTGGEHa-pAdBQcOMXvHJgLw/edit?usp=sharing$

Sampling fraction

- Sampling fraction 0.95% for pions, but needs to be revisited
 - Used pion energy instead of energy deposits as a reference
- $e/h \approx 1$ ratio suggests compensation
- May need more frequent sampling to better measure low energy neutrons eg. below $E_k = 1 \,\mathrm{GeV}$
- Baseline: tile thickness 4 mm, steel absorber 4 cm, total 45 cm
- Check a few different configurations and optimize:
 - e/h response energy resolution
 - neutron detection efficiency
- Switch from stainless steel to steel in epic repository

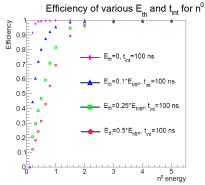
https://docs.google.com/document/d/

1p9QSd1E2REgA7cfunoBBrwUadJ3kUskcXmOGAKWCxcE/edit?usp=sharing

Neutron detection efficiency check

Integration time dependence

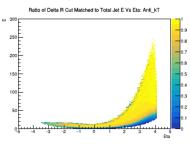
Efficiency

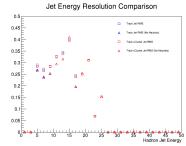

0.2

0.1

Efficiency of various E_{th} and t_{int} for n⁰ 0.9 ____ E_{th}=0.1*E_{MIP}, t_{int}=10000 ns 0.8 ____ E_{th}=0.1*E_{MIP}, t_{int}=1000 ns 0.6 ____ E_{th}=0.1*E_{MIP}, t_{int}=500 ns 0.5 ____ E_{th}=0.1*E_{MIP}, t_{int}=100 ns 0.4 0.3

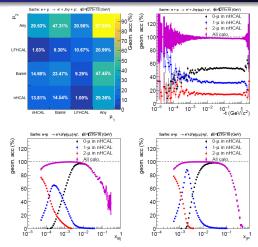
____ E_{th}=0.1*E_{MIP}, t_{int}=25 ns


Threshold dependence

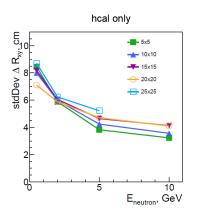

Sam Corev. OSU

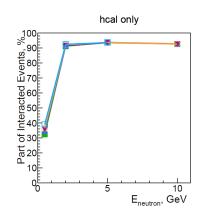
- Revisit for different configurations during sampling fraction study
- Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th} , $t_0 = 0$
- Checked with simulation only no digitization
- E_{MIP} is 0.75 MeV per layer
- E_{th} has the biggest impact
- 100 ns is good enough, but lower energy neutrons may need longer times
- ullet 60% efficiency for $E=300~{
 m MeV}$ neutrons $E_{th}=0.1 imes E_{MIP}=75~{
 m keV}$ and $100~{
 m ns}$

Reconstruction performance

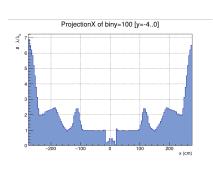


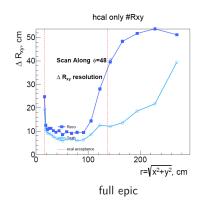
Energy resolution


- Optimize tiles for neutron identification vs. charged hadron identification
 - Preliminary studies show that 10 cm x 10 cm tiles are good enough based on cluster distances
- Use realistic track/cluster matching (coming soon from reco software group)
 - In the meantime look at MC truth clusters
- This is my focus in coordination with Brian

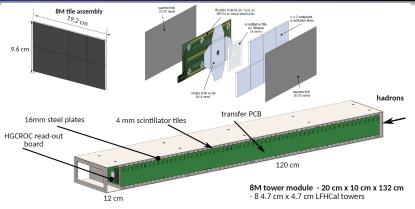

Muon identification study for VM reconstruction

- Study of VM meson reconstruction complete: https://doi.org/10.5281/zenodo.14200156
- Need to optimize tiles for the muon detection
- Study muon identification efficiency and purity
- Similar study for decays containing K_L (part of it started)


18.3.2025



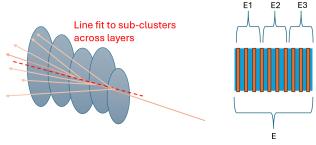
- Shoot single neutrons and compare ideal projections to RECO clusters
- Vary energy and tile size to obtain scaling
- \bullet Even large tiles up to 25 cm seem to be OK
- Need track projections and cluster matching in realistic DIS events next steps


High material impact on shower reco

- Investigate impact in more details
 - Basic distributions, hits etc. vs. radial distance
 - Check the true stop vertex of MCparticle
- Try to determine optimal clustering parameters
- Revisit position resolution study with full geometry previous one may be affected by the clustering bug

Prototype construction

- LFHCAL module designs: https://indico.bnl.gov/event/25021/
 - Direct: https://indico.bnl.gov/event/25021/attachments/57749/99174/8M% 20Tower%20Assem_Combined_Oct1.pdf
- Reuse spare LFHCAL module? Eg. place tiles at the beginning and ignore the rest.
 - Modules produced with electron beam welding in a vacuum.
- Produce our own module? Most likely.


https://docs.google.com/spreadsheets/d/ 10w8v9TIoMQJZNTNtyoKcaHm0iRpucCt0eg8JCz44JwM/edit?usp=sharing

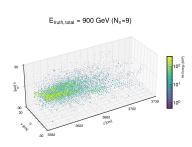
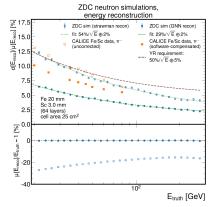
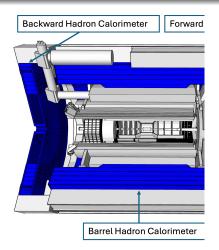
Summary

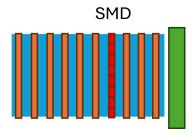
- Presented a work plan for most important tasks
- We need to discuss how the DSC will work on this

BACKUP

Position resolution improvement

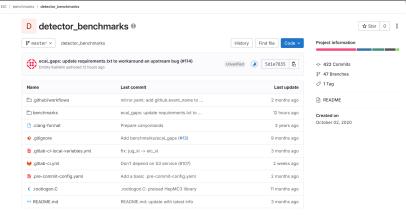
- Check if using max energy deposit in the first layer improves position resolution
- O 3D clustering
 - Store subclusters for every layer
 - Code for BIC from Sylvester: https://eicweb.phy.anl.gov/EIC/juggler/-/blob/main/JugReco/src/components/ImagingClusterReco.cpp
 - Fit a line through the clusters across the layers (and compare to a reco track)
- Independent vs. integrated readout from layers
 - Affects 3D clustering etc.
 - If removed, most likely no effect on energy resolution
 - Can reduce channels by up to factor of 10
 - Any suggestions about which quantity may decide that?


Figure 7: Examples of 4 reconstructed 3D shower shapes in the ZDC for events with 1 neutron $(N_n=1)$, 2 neutrons $(N_n=2)$, 4 neutrons $(N_n=4)$, and 9 neutrons $(N_n=9)$. The color code represents hit energy in terms of $E_{\rm MIP}$. The marker size is displayed proportionally to hit energy for display purposes.

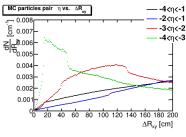
- Potential to use machine learning to improve shower reconstruction
- Studies done by LFHCAL Insert/ZDC group (UC Riverside)
 - Applied Graph Neural Networks (GNN): https://arxiv.org/abs/2406.12877
 - [Nucl.Instrum.Meth.A 1047 (2023) 167866]
- Revisit later

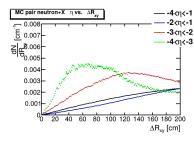
- \bullet Can we extend from 45 cm in z to eg. 70 cm?
 - · Limited by oculus and room for electronics
 - Increases cost estimate?
 - Improves energy resolution quantify?
 - Other benefits?



Veto

- Investigate if adding extra scintillator layer as a charged veto helps isolate neutral showers
- $oldsymbol{2}$ This extra layer needs to be thicker eg. $2~\mathrm{cm}$ to leave enough signal
- Oan have better granularity than standard tiles
- Revisit option of adding an SMD layer with high position resolution
- Initially no plans to reuse STAR EEMC SMDs, because of too low light yield
 https://wiki.bnl.gov/athena/images/6/60/ATHENA_bnHCal_Notes_v1.pdf
- Similar idea to KLM
- 4 Another option to use smaller tiles


18.3.2025


Benchmarks for CD/CI

- Develop benchamrks for CD/CI
- https://eicweb.phy.anl.gov/EIC/benchmarks/detector_benchmarks
- https://indico.jlab.org/event/420/contributions/8307/attachments/6911/9434/20210504-Automated_workflows.pdf
- Useful for automated checks: hit distributions, acceptance etc.
- Ideal task for bachelor and undergraduate students
- Submitted a thesis proposal at Warsaw University of Technology
 - May be piked up by a student around February-March 2025

MC particle projection distances in diffractive dijet events

- Neutron MC particle vs. charged MC particle separation
- ullet 0.7% of charged MC particles are within 30 cm from a neutron