Backward Hadronic Calorimeter

Work plan and priorities

Leszek Kosarzewski

The Ohio State University

nHCal DSC meeting 21.3.2025

Outline

- nHCal DSC
- Work plan priorities
- Sampling fraction
- Jet and diffractive dijet study
- Muon identification study for VM reconstruction
- Position resolution study
- Tasks
- Summary

Backward Hadronic Calorimeter for ePIC - nHCal DSC

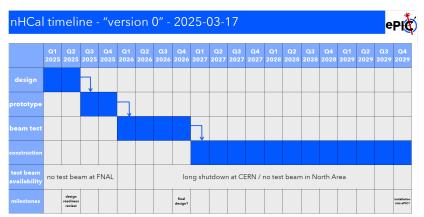
- Official name: nHCal Negative Hadronic Calorimeter
- Started as part of Mobility Project at CTU in Prague few months in BNL (initially for ATHENA)
- Leadership
 - L. Kosarzewski Detector Subsystem Leader (DSL)
 - C. Riedl Detector Subsystem Technical Leader (DSTC)
- Original idea by:
 - Oleg Tsai:
 - https://wiki.bnl.gov/athena/images/6/60/ATHENA_bnHCal_Notes_v1.pdf
 - Brian Page, Xiaoxuan Chu, Elke Aschenauer: [Phys. Rev. D 101, 072003 (2020)]
- Cost estimates: 6.5 M\$ (EIC project+in kind contributions)
- Small but growing DSC: OSU, CTU in Prague, UIUC, help from BNL

Main webpage

https://wiki.bnl.gov/EPIC/index.php?title=Backward_Hcal

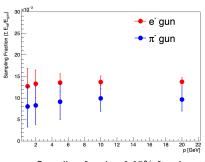
Weekly meetings page (many updates!)

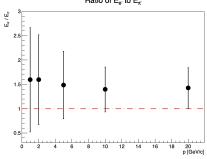
https://indico.bnl.gov/category/549/



Plan for Q1-Q2 2025 and part of Q3 2025 before preliminary design review in autumn

Work plan priorities


Plan for Q1-Q2 2025 and part of Q3 2025 before preliminary design review in autumn


Order	Task	Priority	Progress
1	Determine detector geometry: tile, absorber and overall thickness	very high	started
2	Tile tests in different configurations: SiPM on tile, WLS fibers etc.		
3	Finalize jet/diffractive dijet reconstruction study to optimize the tiles	high	in progress
4	Study of muon track identification with nHCal	high	
5	Study of K_{L} identification with nHCal		
6	Re-check position resolution study with full ePIC geometry	medium	
7	Investigate shower reconstruction in high material region	medium	
8	Prototype construction - on hold until geometry fixed		
9	Prepare for beam tests		

https://docs.google.com/document/d/ 1SSqGlWChuWoEM8sNbOCyXTGGEHa-pAdBQcOMXvHJgLw/edit?usp=sharing

Sampling fraction

- Sampling fraction 0.95% for pions, but needs to be revisited
 - Used pion energy instead of energy deposits as a reference
- ullet e/hpprox 1 ratio suggests compensation
- \bullet May need more frequent sampling to better measure low energy neutrons eg. below $E_k=1~{\rm GeV}$
- Baseline: tile thickness 4 mm, steel absorber 4 cm, total 45 cm
- Check a few different configurations and optimize:
 - e/h responseenergy resolution
 - neutron detection efficiency
- Switch from stainless steel to steel in epic repository

https://docs.google.com/document/d/

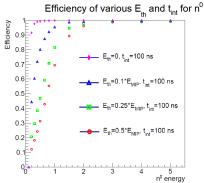
1p9QSd1E2REgA7cfunoBBrwUadJ3kUskcXmOGAKWCxcE/edit?usp=sharing

Neutron detection efficiency check

Integration time dependence

0.2

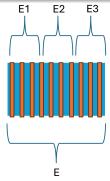
0.1


Efficiency of various E_{th} and t_{int} for n^0 0.9

0.9 $E_{tr} = 0.1^{+}E_{Mip}, t_{rr} = 10000 \text{ ns}$ 0.7

0.6 $E_{tr} = 0.1^{+}E_{Mip}, t_{rr} = 10000 \text{ ns}$ 0.7

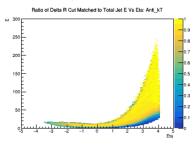
0.8 $E_{tr} = 0.1^{+}E_{Mip}, t_{rr} = 1000 \text{ ns}$ 0.9 $E_{tr} = 0.1^{+}E_{Mip}, t_{rr} = 1000 \text{ ns}$ 0.9 $E_{tr} = 0.1^{+}E_{Mip}, t_{rr} = 1000 \text{ ns}$ 0.9 $E_{tr} = 0.1^{+}E_{Mip}, t_{rr} = 1000 \text{ ns}$ 0.9 $E_{tr} = 0.1^{+}E_{Mip}, t_{rr} = 1000 \text{ ns}$ 0.9


Threshold dependence

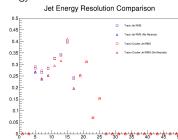
Sam Corey, OSU

- Revisit for different configurations during sampling fraction study
- ullet Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th} , $t_0=0$
- Checked with simulation only no digitization
- E_{MIP} is 0.75 MeV per layer
- E_{th} has the biggest impact
- ullet 100 ns is good enough, but lower energy neutrons may need longer times
- ullet 60% efficiency for $E=300~{
 m MeV}$ neutrons $E_{th}=0.1 imes E_{MIP}=75~{
 m keV}$ and $100~{
 m ns}$

Readout segmentation and Veto layer

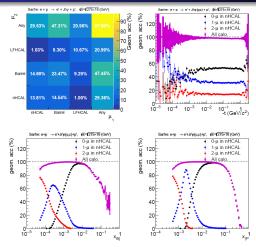


- Independent vs. integrated readout from layers
 - Affects 3D clustering etc. (loss of information)
 - If removed, most likely no effect on energy resolution
 - Can reduce channels by up to factor of 10
 - Using 3 segments gives each segment $\approx \lambda_0$ (similar to LFHCAL)
 - Any suggestions about which quantity may decide that? (detection efficiency?)
 - May be harder to detect low energy neutrons with integrated readout due to higher threshold
- Investigate if adding extra scintillator layer as a charged veto helps isolate neutral showers
 - ullet This extra layer needs to be thicker eg. $2~\mathrm{cm}$ to leave enough signal
 - Can have better granularity than standard tiles

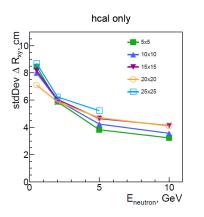

Geometry versions to investigate

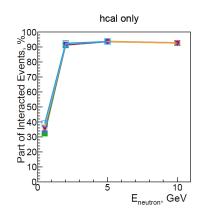
- Tile and absorber thickness
 - 1 4 cm steel, 4 mm scintillator, 10 layers 45 cm total
 - 2 4 cm steel, 3 mm scintillator, 10 layers 44 cm total
 - 3 cm steel, 4 mm scintillator, 13 layers 45.2 cm total + air gaps
- Oetector length
 - 4 cm steel, 4 mm scintillator, 10 layers 45 cm total
 - 2 4 cm steel, 4 mm scintillator, 12 layers 54 cm total + air gaps
 - 4 cm steel, 4 mm scintillator, 15 layers 63 cm total + air gaps
- Oetector length
 - e/h response
 - energy resolution
 - neutron detection efficiency

Reconstruction performance

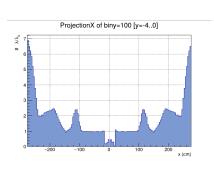


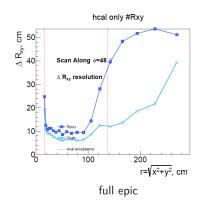
Energy resolution

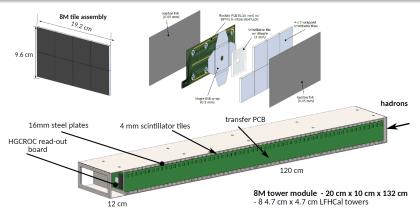



- Optimize tiles for neutron identification vs. charged hadron identification
 - Preliminary studies show that 10 cm x 10 cm tiles are good enough based on cluster distances
- Use realistic track/cluster matching (coming soon from reco software group)
 - In the meantime look at MC truth clusters
 - Calculate jet energy resolution for 2 samples (including neutrals and excluding neutrals)
- This is my focus in coordination with Brian

Muon identification study for VM reconstruction



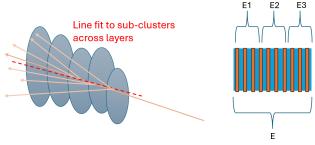

- Study of VM meson reconstruction complete: https://doi.org/10.5281/zenodo.14200156
- Need to optimize tiles for the muon detection
- Study muon identification efficiency and purity
- Similar study for decays containing K_L (part of it started)


- Shoot single neutrons and compare ideal projections to RECO clusters
- Vary energy and tile size to obtain scaling
- ullet Even large tiles up to 25 cm seem to be OK
- Need track projections and cluster matching in realistic DIS events next steps

- Investigate impact in more details
 - Basic distributions, hits etc. vs. radial distance
 - Check the true stop vertex of MCparticle
- Try to determine optimal clustering parameters
- Revisit position resolution study with full geometry previous one may be affected by the clustering bug

Prototype construction

- LFHCAL module designs: https://indico.bnl.gov/event/25021/
 - Direct: https://indico.bnl.gov/event/25021/attachments/57749/99174/8M% 20Tower%20Assem_Combined_Oct1.pdf
- Modules need to be produced with electron beam welding in a vacuum.
- More details in the link below:


https://docs.google.com/spreadsheets/d/ 10w8v9TIoMQJZNTNtyoKcaHm0iRpucCt0eg8JCz44JwM/edit?usp=sharing

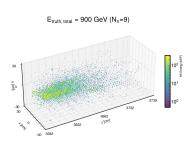
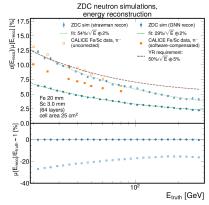
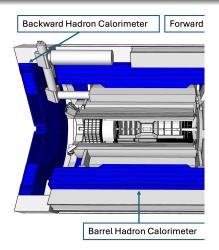
Summary

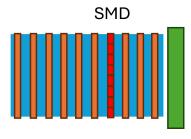
- Presented a work plan for most important tasks
- We need to discuss how the DSC will work on this

BACKUP

Position resolution improvement

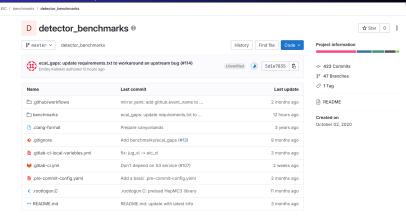
- Check if using max energy deposit in the first layer improves position resolution
- O 3D clustering
 - Store subclusters for every layer
 - Code for BIC from Sylvester: https://eicweb.phy.anl.gov/EIC/juggler/-/blob/main/JugReco/src/components/ImagingClusterReco.cpp
 - Fit a line through the clusters across the layers (and compare to a reco track)
- Independent vs. integrated readout from layers
 - · Affects 3D clustering etc.
 - If removed, most likely no effect on energy resolution
 - Can reduce channels by up to factor of 10
 - Any suggestions about which quantity may decide that?


Figure 7: Examples of 4 reconstructed 3D shower shapes in the ZDC for events with 1 neutron $(N_n=1)$, 2 neutrons $(N_n=2)$, 4 neutrons $(N_n=4)$, and 9 neutrons $(N_n=9)$. The color code represents hit energy in terms of $E_{\rm MIP}$. The marker size is displayed proportionally to hit energy for display purposes.

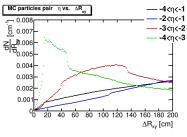
- Potential to use machine learning to improve shower reconstruction
- Studies done by LFHCAL Insert/ZDC group (UC Riverside)
 - Applied Graph Neural Networks (GNN): https://arxiv.org/abs/2406.12877
 - [Nucl.Instrum.Meth.A 1047 (2023) 167866]
- Revisit later

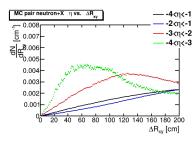
- \bullet Can we extend from 45 cm in z to eg. 70 cm?
 - · Limited by oculus and room for electronics
 - Increases cost estimate?
 - Improves energy resolution quantify?
 - Other benefits?



Veto

- Investigate if adding extra scintillator layer as a charged veto helps isolate neutral showers
- ${f 2}$ This extra layer needs to be thicker eg. $2~{
 m cm}$ to leave enough signal
- Oan have better granularity than standard tiles
- Revisit option of adding an SMD layer with high position resolution
- Initially no plans to reuse STAR EEMC SMDs, because of too low light yield
 https://wiki.bnl.gov/athena/images/6/60/ATHENA_bnHCal_Notes_v1.pdf
- Similar idea to KLM
- 4 Another option to use smaller tiles


21.3.2025


Benchmarks for CD/CI

- Develop benchamrks for CD/CI
- https://eicweb.phy.anl.gov/EIC/benchmarks/detector_benchmarks
- https://indico.jlab.org/event/420/contributions/8307/attachments/6911/9434/20210504-Automated_workflows.pdf
- Useful for automated checks: hit distributions, acceptance etc.
- Ideal task for bachelor and undergraduate students
- Submitted a thesis proposal at Warsaw University of Technology
 - May be piked up by a student around February-March 2025

MC particle projection distances in diffractive dijet events

- Neutron MC particle vs. charged MC particle separation
- ullet 0.7% of charged MC particles are within 30 cm from a neutron