NP-318719: Direct measurement of pulse length and retrieval of longitudinal phase space distribution of electron beams with laser pulses

PI: Yong Ma, University of Michigan

Collaborators:

Tanner Nutting*, Rebecca Fitzgarrald*, Nicholas Ernst*, Qian Qian*, Paul Campbell, Louise Willingale, Alexander Thomas, Karl Krushelnick (**University of Michigan**)

Laurence Bradley*, Brendan Kettle, Stuart Mangles (Imperial College London)

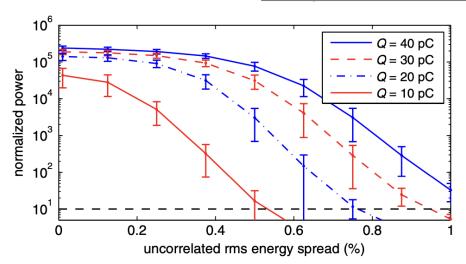
Hannah Jager*, Elias Gerstmayr, Matthew Streeter, Gianluca Sarri (Queen's University Belfast)

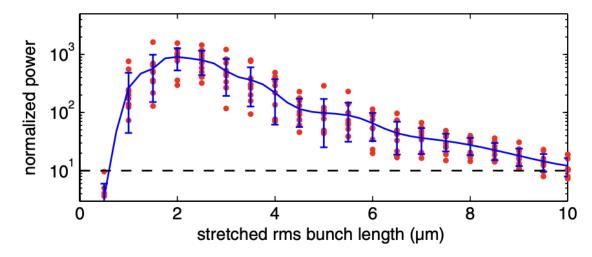
Daniel Seipt (Helmholtz Institute Jena)

Amina Hussein (University of Alberta)

*Ph.D. students

Funding resource: DOE/HEP DE-SC0022109 (received)

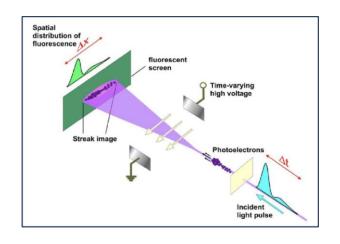

Motivation: Diagnosis of electron longitudinal phase space distribution


Slice energy spread for XFEL

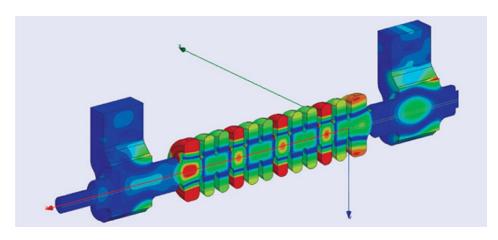
$$\sigma_{\delta} \ll \rho$$
, $\rho = \left[\frac{1}{16} \frac{I_0}{I_A} \frac{K_0^2 [y]^2}{\gamma_0^3 \sigma_{\perp}^2 k_u^2} \right]^{1/3}$ Pier

Pierce FEL parameter, ~0.1%

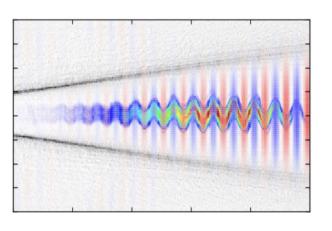
FEL power VS energy spread & bunch length



Maier et al., PRX 2, 031019 (2012)



Motivation: Diagnosis of electron longitudinal phase space distribution


Streak camera

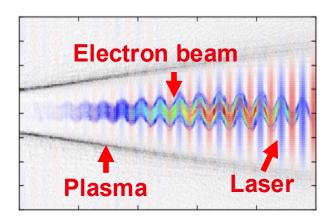
TDS RF deflector for RF accelerators

Laser deflector

ps resolution

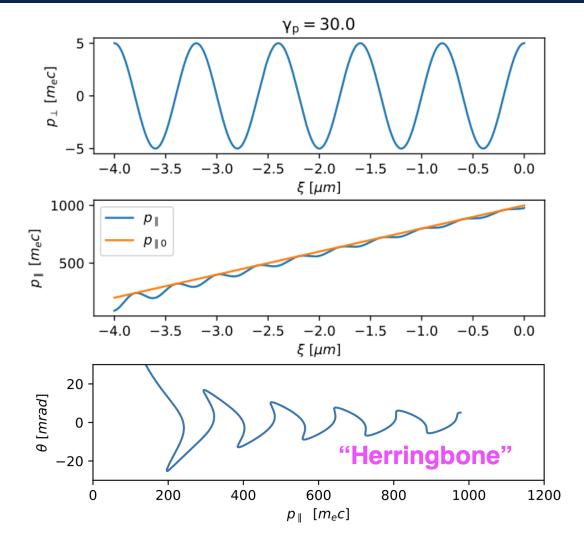
~10s - 100s fs resolution

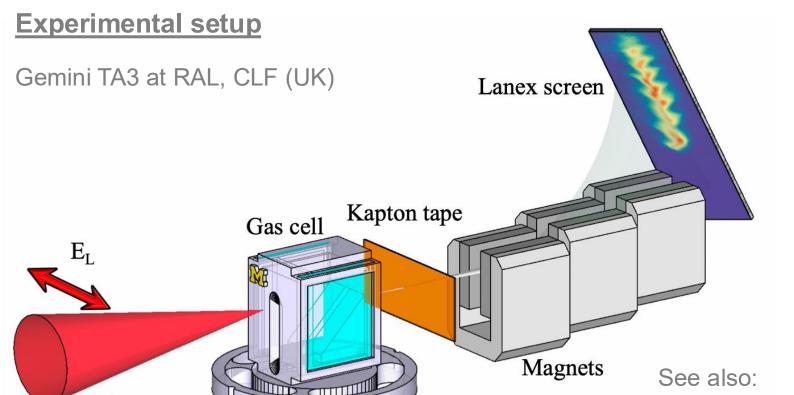
Sub-fs resolution (half- τ_L)


Also indirect methods, such as CTR, EO, etc.

With or without plasma

Theory:

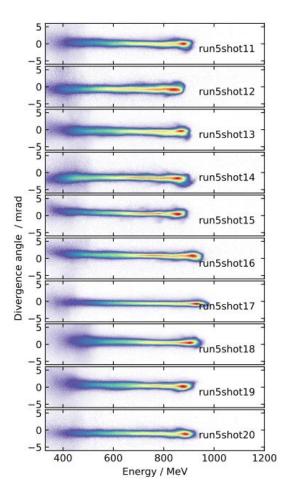

Coupled motion of electrons in laser-plasma wakefield and oscillations in the laser fields



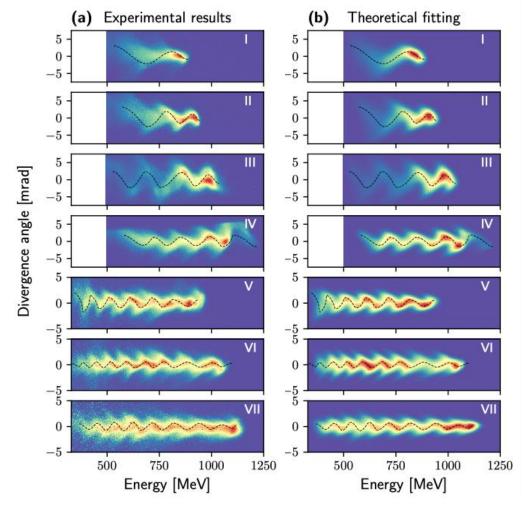
$$p_{\parallel} \simeq p_{\parallel 0} - rac{\gamma_p^2}{p_{\parallel 0}} (rac{1}{2} lpha^2 p_{\parallel 0} \mathbf{x}_{\perp}^2 + \mathbf{p}_{\perp}^2)$$

$$\mathbf{x}_{\perp} = \mathbf{x}_{\perp s} + \mathbf{x}_{\perp t}$$
 $\mathbf{p}_{\perp} = \mathbf{p}_{\perp s} + \mathbf{p}_{\perp t}$

(See details of the theory in the back-up slides)


Laser polarization perpendicular to magnet deflection plane Modulation of the electron spectral can be observed

- M. Streeter et al., PRAB 25, 101302 (2022);
- A. Hussein et al., Scientific Reports (2019) 9:3249;
- B. Kettle et al., PRL 123, 254801 (2019);
- R. Spesyvtsev et al., Proc. SPIE 11036 2019

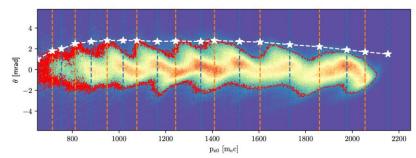


Laser

Typical unmodulated spectra

"Herringbone" structures

Fitting process reveals great details of electron beam, i.e., phase space distribution


$$p_{\parallel} \simeq p_{\parallel 0} - rac{\gamma_p^2}{p_{\parallel 0}} (rac{1}{2} lpha^2 p_{\parallel 0} \mathbf{x}_{\perp}^2 + \mathbf{p}_{\perp}^2)$$

$$p_x(\zeta) = \hat{p}_{xs}(\zeta)a_0\cos(k_z\zeta + \Omega) + \hat{p}_{xt}(\zeta)p_{xt}$$

$$p_{xt} = \sigma_{p_{xt}} \cdot \mathcal{N}$$

transient solutions represented by standard normal distributions ${\mathcal N}$

$$p_z = (p_{z0} - \sigma_{\Delta p_z}) - \underbrace{\begin{pmatrix} \gamma_p^2 & 1 \\ 2 & \alpha^2 p_z \end{pmatrix}}_{p_{z0}} \underbrace{\begin{pmatrix} \hat{x} & a_0 \\ k_z \eta \mathcal{Z} & \sin(k_z \zeta + \Omega) + \hat{x}_t \sigma_{xt} \mathcal{N} \end{pmatrix}^2 + \underbrace{\begin{pmatrix} \hat{p}_{xs} e_0 \\ \mathcal{Z} & \cos(k_z \zeta + \Omega) + \hat{p}_{xt} \sigma_{p_{xt}} \mathcal{N} \end{pmatrix}^2}_{\mathcal{Z}}$$

- 1. Extracted from experimental spectrum
- Longitudinal momentum distribution (chirp)
- Temporal beam charge profile
- Transverse momentum envelope (steady state)

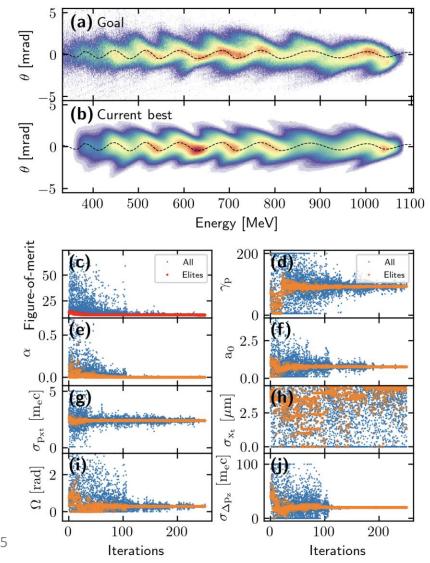
Transverse momentum width (transient)

$$\gamma_p, \alpha, a_0, \sigma_{p_{xt}}, \sigma_{x_t}, \Omega, \text{ and } \sigma_{\Delta p_z}$$

2. Guessed parameters (all single value):

- γ_p (plasma density)
- α (wake strength)
- a₀ (laser intensity *)
- σ_{pxt} Transient momentum
- σ_{xt} Transient real space
- Ω Phase
- σ_{Δpz} Slice energy spread
- * (eta, Z are not independent parameter)

Problem of multi-parameter optimization: Electron spectral reconstruction


Goal: Experimental spectrum

Genes:

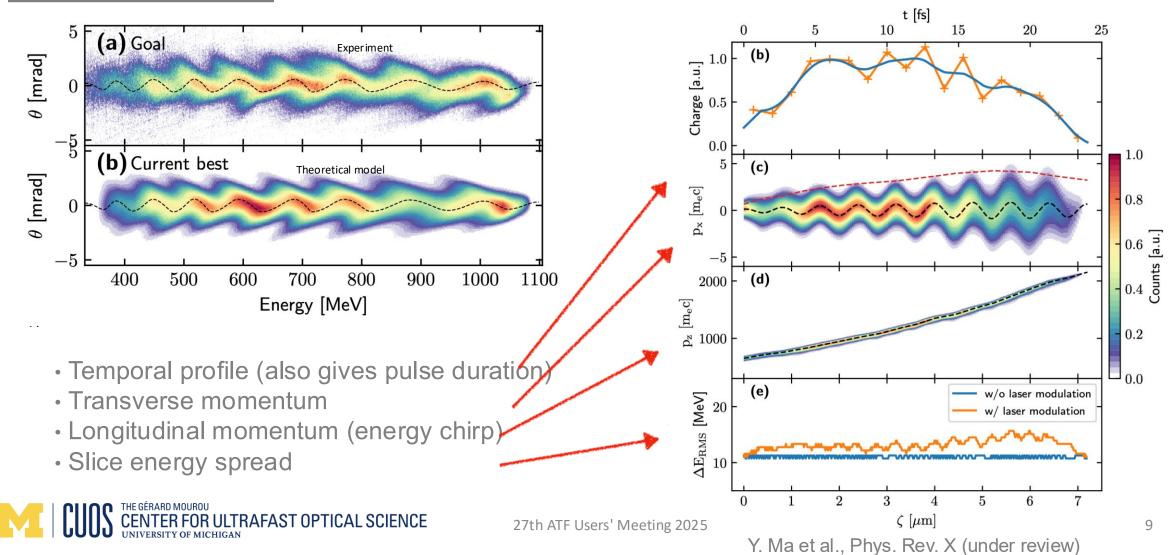
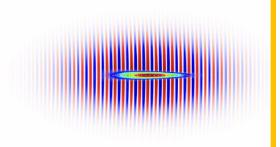
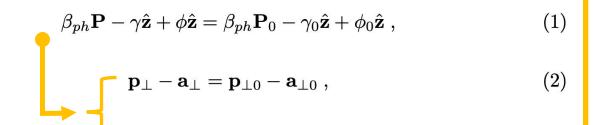

 $\gamma_p, \alpha, a_0, \sigma_{p_{xt}}, \sigma_{x_t}, \Omega, \text{ and } \sigma_{\Delta p_z}$

Figure-of-merit:

Difference between "guessed spectrum" and exp spectrum



Information retrieved


Direct laser electron interaction

Simplified with plane wave

Decouple from plasma Free space interaction

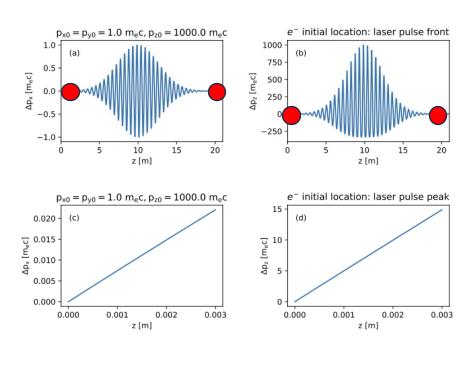
Method can be used for electron beams from any type of accelerators

$$p_x = p_{x0} + a_x - a_{x0} {,} {(4)}$$

$$p_y = p_{y0} (5)$$

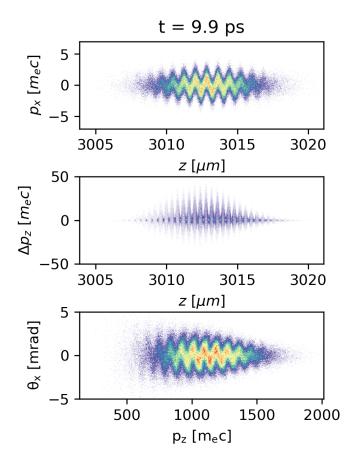
$$p_z = \frac{1 + (a_x - a_{x0} + p_{x0})^2 + p_{y0}^2 - (\gamma_0 - p_{z0})^2}{2(\gamma_0 - p_{z0})} \ . \tag{6}$$

$$\Delta p_z = p_z - p_{z0} = \underbrace{\frac{(a_x - a_{x0})^2 + 2(a_x - a_{x0})p_{x0}}{2(\gamma_0 - p_{z0})}}.$$
 (7)

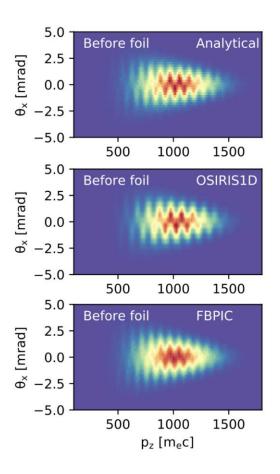

Constant of motion

(3)

Conservation of transverse canonical momentum

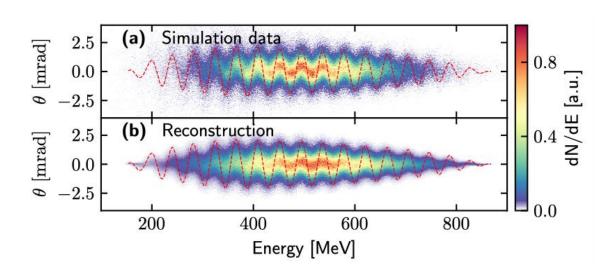

Longitudinal momentum modulation

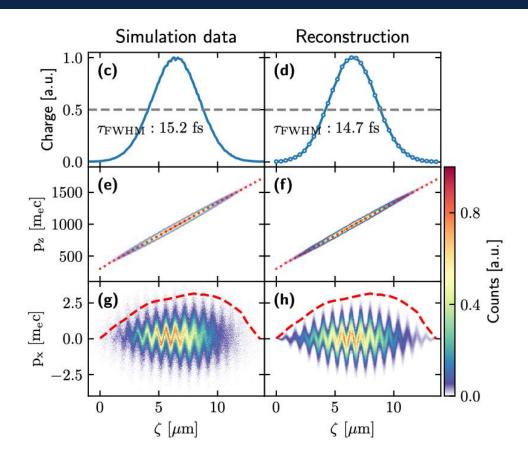
Electron momentum gain in laser field



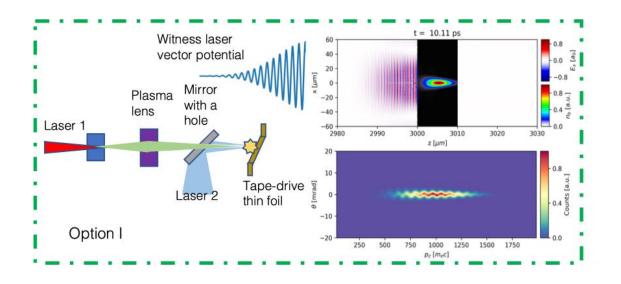
Net gain due to broken symmetry

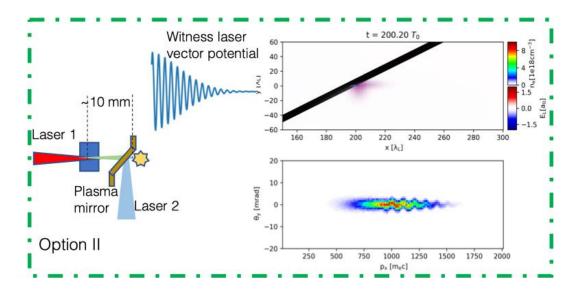
Considering 3D focused laser




Benchmarking with PIC simulations

Reconstruction of electron beam longitudinal phase space and transverse momentum distribution





Agreement between simulation and reconstruction: Validation of the method

Laser deflector for LWFA electrons

Tape-drive plasma mirror to truncate the laser pulse

Why ATF?

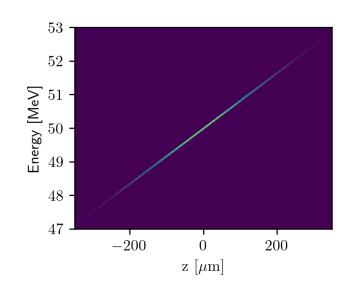
Uniqueness of ATF: Linac + multi-wavelength lasers

ATF

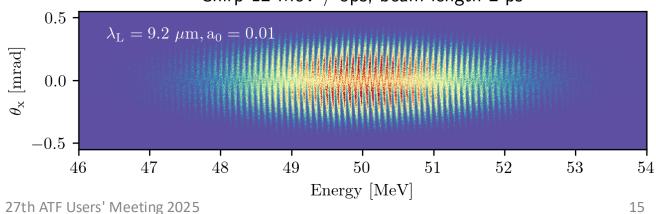
- Independent LINAC electron beams and laser pulses
- Stable electron beams with chirp control
- High quality electron beams, e.g., small slice energy spread
- Multi-wavelength lasers, i.e., NIR
 & CO2 laser.
- •

Laser deflector with LWFA

- Unstable electron source: high shot-shot fluctuations on energy, charge, pointing jitter, etc.
- Hard to control beam chirp
- Engineering challenges: ebeam transportation, focusing, etc.


Laser deflector with a CO2 laser

Electron beam


- Beam energy, 47 53 MeV
 Energy chirp, 2.4 MeV / ps
- Slice energy spread, ~ 50 keV
- Bunch length, ~2 ps

CO2 laser

- Wavelength, 9.2 um
- Pulse length, 2 ps
- Spot size, 300 um
- a₀, 0.01

Chirp 12 MeV / 5ps, beam length 2 ps

THE GÉRARD MOUROU
CENTER FOR ULTRAFAST OPTICAL SCIENCE
UNIVERSITY OF MICHIGAN

Laser deflector: basic requirements (for periodic modulations)

Electron beam chirp S, slice energy spread $\delta \mathcal{E}$ and laser wavelength $\lambda_{\mathcal{L}}$

Slice energy spread < energy range covered by a laser wavelength

$$\delta \mathcal{E} < (\mathcal{E}_{max} - \mathcal{E}_{min}) / \mathcal{N}$$

$$\mathcal{N} = c \, \tau_{\mathcal{L}} / \lambda_{\mathcal{L}}$$

$$\delta \mathcal{E} < \left[(\mathcal{E}_{max} - \mathcal{E}_{min}) / \tau_{\mathcal{L}} \right] (\lambda_{\mathcal{L}} / c)$$

$$= S \, (\lambda_{\mathcal{L}} / c)$$

Therefore,

$$\lambda_{\mathcal{L}} > \delta \mathcal{E} \ c \ / \ S$$

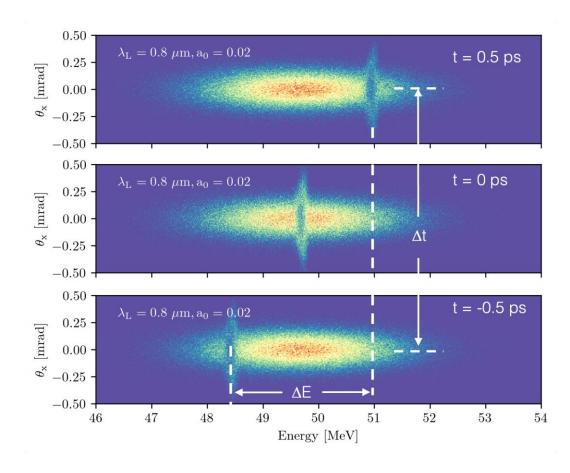
$$\delta \mathcal{E} = 50 - 100 \text{ keV}$$

$$S = 2.4 \text{ MeV}$$
 / ps for a beam length of 2 ps.

With
$$\delta \mathcal{E}$$
 = 100 keV, $\lambda_{\mathcal{L}}$ > 12.5um.

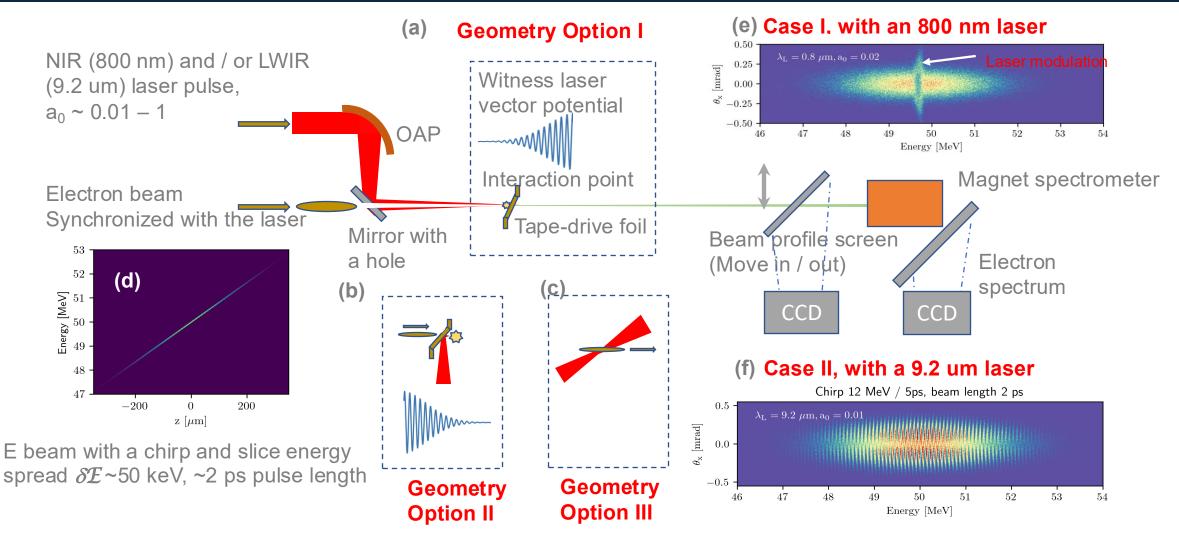
With
$$\delta \mathcal{E} = 50 \text{ keV}$$
, $\lambda_{\mathcal{L}} > 6.25 \text{ um}$.

The CO2 laser $\lambda_{\mathcal{L}} = 9.2$ um will work


But not the NIR lasers with $\lambda_{\mathcal{L}} \sim 1$ um.

Laser deflector with IR lasers

We cannot achieve single-shot longitudinal phase space reconstruction with NIR lasers due to their too short wavelengths.


But, we can still reconstruct the energy chirp & temporal profile by multi-shot scanning with stable electron beams and a short laser pulse.

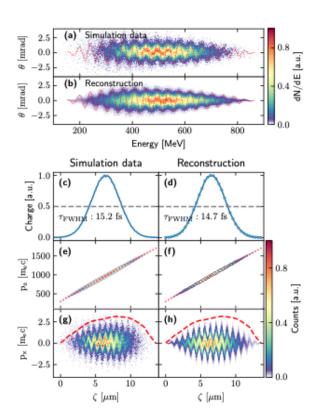
NIR laser @ 800 nm, 100 fs pulse duration

Proposed setup on ATF

Experimental requirements

Electron beam (provided by ATF)

- Beam energy, 50 55 MeV *
 Energy chirp, 2.4 MeV / ps or bigger
- Slice energy spread, ~ 50 keV
- Bunch length, ~2 ps
- Transverse size at IP, ~300 um or smaller.


Ti:Sapphire laser

- Wavelength, 0.8 um
- Pulse length, ~100 fs
- a_0 , 0.01 0.1

CO2 laser

- Wavelength, 9.2 um
- Pulse length, 2 ps
- Spot size, ~100 300 um
- a_0 , 0.01 0.1
- Rep. Rate, 0.01 Hz
- *Central energy doesn't matter much, as long as we have the same energy chirp
- Rep. Rate of e-beam 1.5 Hz setup or sync with lasers for experiments

Summary

We propose a platform for single-shot reconstruction of electron longitudinal phase space using a laser deflector

Utilize the unique capability at ATF, i.e., electron beam, CO2 laser and NIR laser.

Experimental goal: to observe clear electron spectrum modulations caused by laser pulses.

THANK YOU

Electron Beam Requirements

Parameter	Units	Typical Values	Comments	Requested Values
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values	Typical value
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	Typical value
Bunch Length	ps	1-10	Bunch charge & emittance vary with length	~2 ps
Peak current	Α	100	Variable with bunch charge and length	Typical value
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to provide bunch lengths down to the ~10 fs level	NO NEED
Focused transverse size at IP (s)	μm	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	<300 μm
Normalized Emittance	μ m	1 (at 0.3 nC)	Variable with bunch charge	Typical value
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed	Typical value
Trains mode		Single bunch	ch Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	

CO₂ Laser Requirements

Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO ₂ Regen. Amplifier	en. Amplifier Wavelength		9.2	Wavelength determined by mixed isotope gain media	Typical value
	Peak Power	GW	~3		Typical value
	Pulse Mode		Single		Typical value
	Pulse Length	ps	2		Typical value
	Pulse Energy	mJ	6		Typical value
	Repetition Rate	Hz	1.5	3 Hz also available if needed	Typical value
CO ₂ CPA Beam	Wavelength	mm	9.2	Wavelength determined by mixed isotope gain media	Typical value
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	2-3	Up to 5 TW operation will be available in a limited number of shots upon the user's request.	Typical value
	Pulse Mode		Single		Typical value
	Pulse Length	ps	2	3-year development effort to achieve <500 fs at >10 TW and deliver to users is in progress.	Typical value
	Pulse Energy	J	~5	10J will be available in a limited number of shots upon the user's request.	Typical value
	Strehl Ratio		~0.5	Recommended conservative estimate subject to verification.	Typical value
	Repetition Rate	Hz	0.01	Burst operation at up to 0.05 Hz for a limited period is possible upon user's request. This regime should be avoided to extend the lifetime of the HV spark gaps in the amplifier's PFN	0.01
	Polarization		Linear	Adjustable linear polarization along with circular polarization can be provided upon request	Linear and Circular

Other Experimental Laser Requirements

Ti:Sapphire Laser System	Units	Stage I Values	Stage II Values	Comments	Requested Values
Central Wavelength	nm	800	800	Stage I parameters are presently available and setup to deliver Stage II should be available summer 2025	800
FWHM Bandwidth	nm	20	13		13
Compressed FWHM Pulse Width	fs	<50	<75	Transport of compressed pulses will initially include a very limited number of experimental interaction points. Please consult with the ATF Team if you need this capability.	75
Chirped FWHM Pulse Width	ps	≥50	≥50		
Chirped Energy	mJ	10	200		
Compressed Energy	mJ	7	~20	20 mJ is presently operational with work underway this year to achieve our 100 mJ goal.	6
Energy to Experiments	mJ	>4.9	>80		
Power to Experiments	GW	>100	>1000		1

Nd:YAG Laser System	Units	Typical Values	Comments	Requested Values
Wavelength	nm	1064	Single pulse	
Energy	mJ	100		
Pulse Width	ps	14		
Wavelength	nm	532	Frequency doubled	_
Energy	mJ	0.5		
Pulse Width	ps	10		

Special Equipment Requirements and Hazards

- Electron Beam
 - Beam chirp of 2.4 MeV / ps or bigger
 - Slice energy spread ~ 50 -100 keV
- CO₂ Laser
 - Linear and circular polarization
- Ti:Sapphire and Nd:YAG Lasers
 - No special requirements
- Hazards & Special Installation Requirements
 - Large installation (chamber, insertion device, etc.): N/A
 - Cryogens: N/A
 - Introducing new magnetic elements: N/A
 - Introducing new materials into the beam path: Tape-drive plasma mirror (plastic or copper)
 - Any other foreseeable beam line modifications: No.

Experimental Time Request

CY2025 Time Request

Capability	Setup Hours	Running Hours
Electron Beam Only	10	
Laser* Only (in Laser Areas)	10	
Laser* + Electron Beam	20	80

Total Time Request for the 3-year Experiment (including CY2025-27)

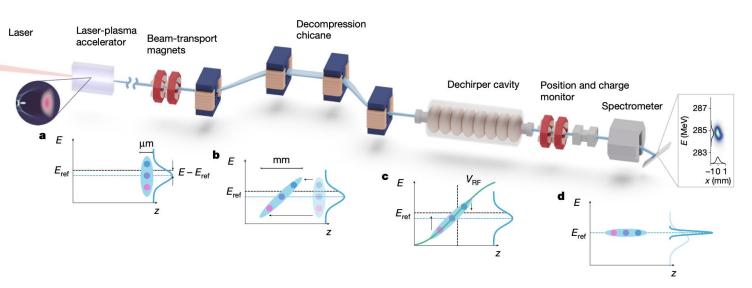
Capability	Setup Hours	Running Hours
Electron Beam Only	30	
Laser* Only (in Laser Areas)	30	
Laser* + Electron Beam	60	240

^{*} Laser = Near-IR or LWIR (CO₂) Laser

Backup – Electron beam chirper

Reversed procedure for introducing a linear chirp

Article


Active energy compression of a laser-plasma electron beam

https://doi.org/10.1038/s41586-025-08772-y

Received: 19 November 2024

Accepted: 11 February 2025

P. Winkler^{1⊠}, M. Trunk¹, L. Hübne S. A. Antipov¹, R. Brinkmann¹, T. I M. Schnepp², K. Schubert¹, M. Th A. R. Maier^{1™}

Backup – Coupled motion of electrons in laser driven plasma wakefields and oscillations in the laser fields

$$H = \sqrt{1 + (\mathbf{P}_{\perp} - \mathbf{a}_{\perp}(\mathbf{x}_{\perp}, \xi, t))^{2} + p_{\parallel}^{2}} - p_{\parallel}v_{p} - \psi(\mathbf{x}_{\perp}, \xi)$$

$$\frac{dP_i}{dt} = \frac{(\mathbf{P}_{\perp} - \mathbf{a}_{\perp})}{\gamma} \cdot \frac{\partial \mathbf{a}_{\perp}}{\partial x_i} + \frac{\partial \psi}{\partial x_i}$$

$$\left(rac{d^2}{d\zeta^2} + 2\Gammarac{d}{d\zeta} + \kappa_eta^2
ight)\mathbf{x}_ot = -rac{ik_\parallel\mathbf{a}_{ot0}(\zeta)}{2\eta}e^{ik_\parallel\zeta} + c.c.$$

3

Driven oscillator

$$\mathbf{x}_{\perp s} = rac{\mathbf{a}_{\perp 0}(\zeta)}{k_{\parallel} \eta \mathcal{Z}} \sin(k_{\parallel} \zeta)$$

$$\mathbf{p}_{\perp s} = rac{\mathbf{a}_{\perp 0}(\zeta)}{\mathcal{Z}}\cos(k_{\parallel}\zeta)$$

Steady state solutions

Laser

$$\mathbf{x}_{\perp t} = \mathbf{x}_1 \cos \kappa_{\beta} \zeta + \mathbf{x}_2 \sin \kappa_{\beta} \zeta$$

$$\mathbf{p}_{\perp t} = \mathbf{p}_1 \cos \kappa_{\beta} \zeta + \mathbf{p}_2 \sin \kappa_{\beta} \zeta$$

Transient solutions

Wakefield

$$\mathbf{x}_{\perp} = \mathbf{x}_{\perp s} + \mathbf{x}_{\perp t}$$

$$\mathbf{p}_{\perp} = \mathbf{p}_{\perp s} + \mathbf{p}_{\perp t}$$

General solutions

Backup – Coupled motion of electrons in laser driven plasma wakefields and oscillations in the laser fields

$$\gamma - P_{\parallel} v_p - \psi \simeq C_1$$

7

conservation of Hamiltonian

$$p_{\parallel} = \gamma_p^2 (C_1 + \psi) \left(v_p + \sqrt{1 - \frac{1 + \mathbf{p}_{\perp}^2}{\gamma_p^2 (C_1 + \psi)^2}} \right)$$
 8

$$p_{\parallel} \simeq p_{\parallel 0} - rac{1}{2} lpha^2 \gamma_p^2 \mathbf{x}_{\perp}^2 - rac{\mathbf{p}_{\perp}^2}{2(C_1 + \psi_0(\xi))}$$
 9 $p_{\parallel 0} \simeq 2\gamma_p^2 (C_1 + \psi_0(\xi))$

$$p_{\parallel} \simeq p_{\parallel 0} - rac{\gamma_p^2}{p_{\parallel 0}} (rac{1}{2} \alpha^2 p_{\parallel 0} \mathbf{x}_{\perp}^2 + \mathbf{p}_{\perp}^2)$$

 $\mathbf{x}_{\perp} = \mathbf{x}_{\perp s} + \mathbf{x}_{\perp t}$

 $\mathbf{p}_{\perp} = \mathbf{p}_{\perp s} + \mathbf{p}_{\perp t}$

Laser Wakefield

Wakefield acceleration

Transverse modulation