

27th Accelerator Test Facility (ATF) Users' Meeting

AE131 – Harmonic Nonlinear Inverse Compton Scattering

Yusuke Sakai & All ATF members (BNL)

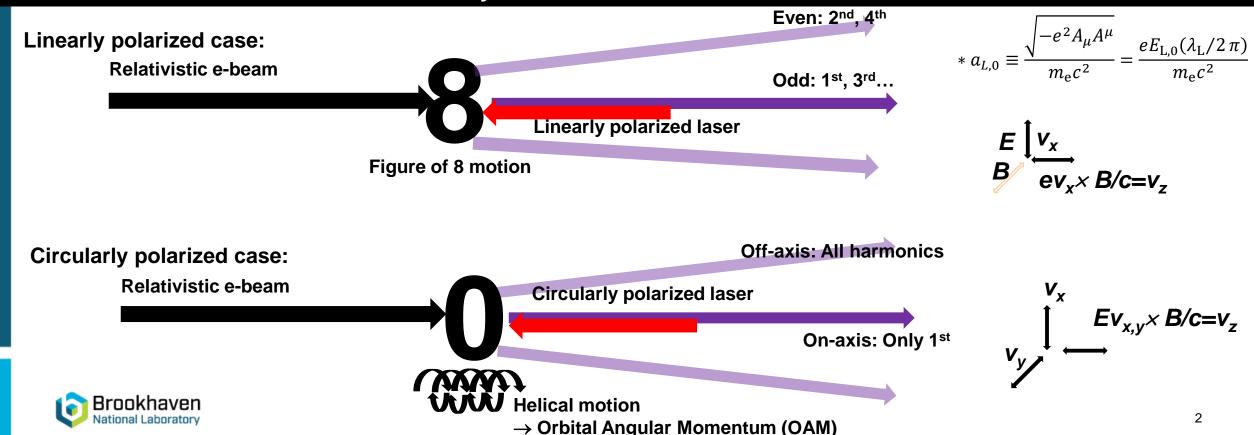
James Rosenzweig (UCLA)

4/30/2025

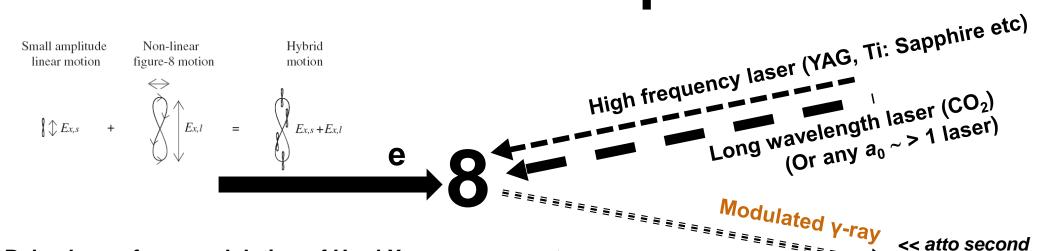
Funding source: DOE Accelerator Stewardship (DE-SC0009914)

@BrookhavenLab

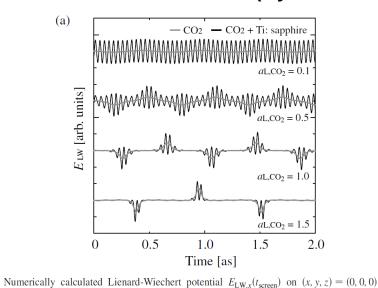
This year: TBD


Accelerator Facilities Division

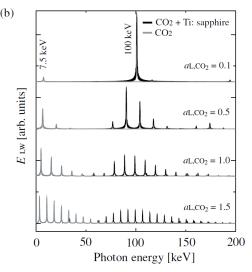
Goals of experiment AE131


Harmonic Nonlinear Inverse Compton Scattering {Basically, re-establish CO₂ ICS}

- **❷** Bi-harmonic Compton interaction study: Sub attosecond X-ray pulse modulation
- **☼** X-ray OAM investigation: Higher order harmonics by circular polarized CO₂ laser
- Sub 100 keV hard X-ray optics R & D: Spectrum measurement, Collimation & Focusing

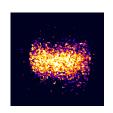

Nonlinear ICS: $a_L \sim 1^*$ laser induce Transverse motion \rightarrow Relativistic, nontrivial Longitudinal oscillation \rightarrow Slow down electron's velocity or Effective mass increase \rightarrow Redshift & Harmonics

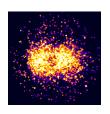
Bi-harmonic Compton interaction

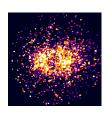

Pulsed waveform modulation of Hard X-ray component at less than $< 10^{-18}$ s time scale (Cycle of 10 keV X-ray)

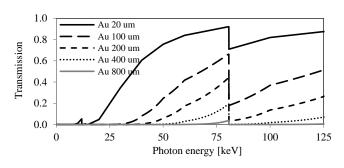
Fourier Transform

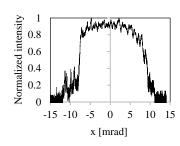
Observation of Blue & Red shifts & hv_{Short} ± n hv_{Long}

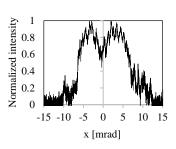

probe light?

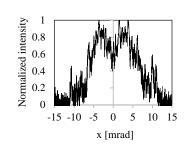


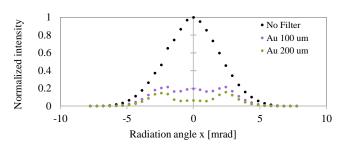

AE87: Established YAG-ICS setup


Nd: YAG laser 1064 nm & 70 MeV e-beam


→ Single shot measurement (~10⁶ photon yield / pulse at 87.5 keV) Observation of X-ray absorption by Au k-edge

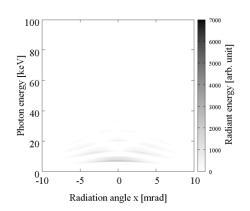


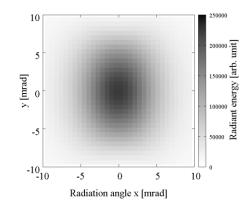




a) No-Filter

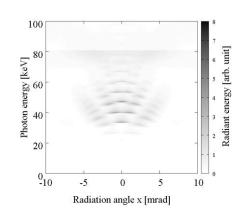
b) With 100 µm Au filter

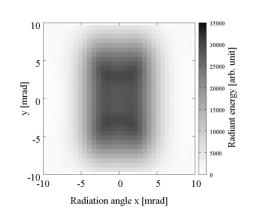

c) With 200 µm Au filter

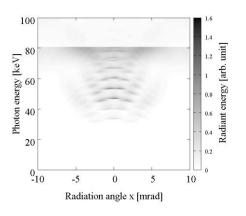

Numerical calculation

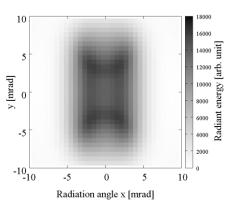
Computational prediction of Bi-Harmonic Spectrum

with Au K-edge filter / CO₂ laser 9.2 μm, Nd: YAG laser 1064 nm, & 70 MeV e-beam

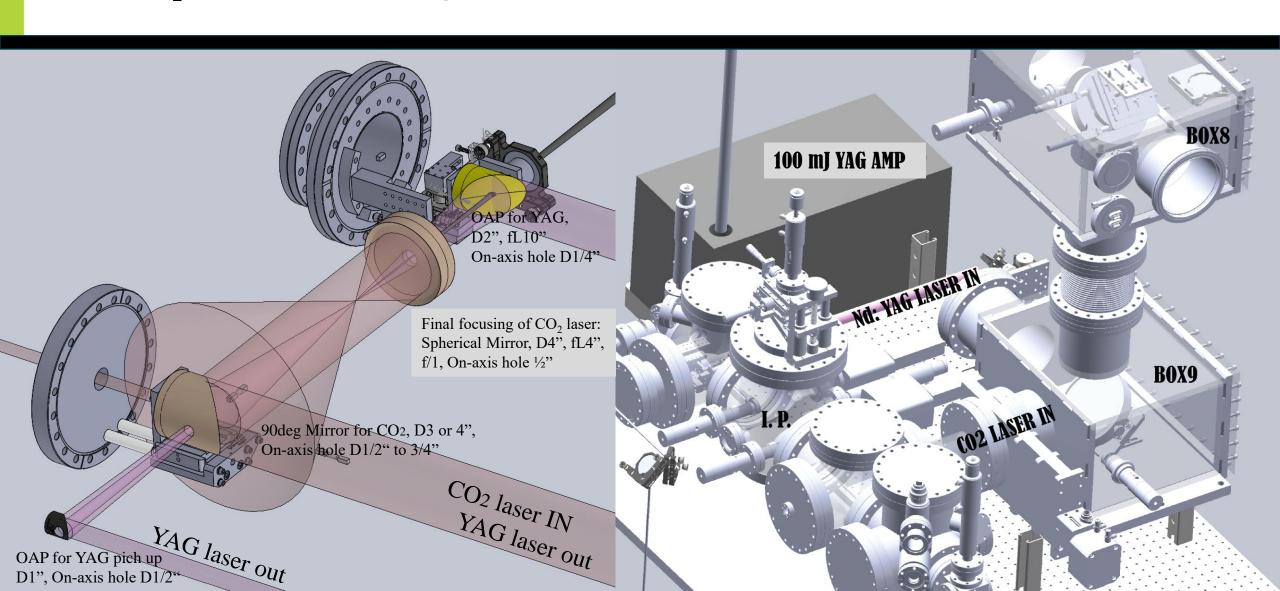

Only CO₂'s component NO-Filter






Bro

$\begin{array}{cc} \text{Bi-harmonic components} \\ \text{Au-100}\mu\text{m} & \text{Au-200}\mu\text{m} \end{array}$



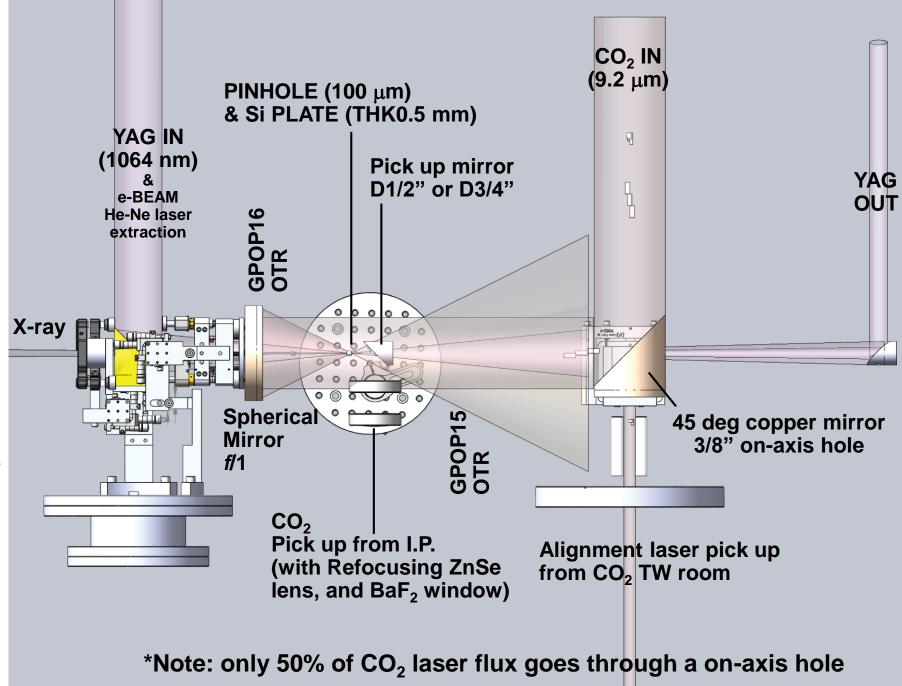
Experimental set up Bi-harmonic Compton I. P.

Input of CO₂ laser and YAG laser are opposite direction & CO₂ laser's final focusing optic has D ½ inch hole on-axis

Setup for

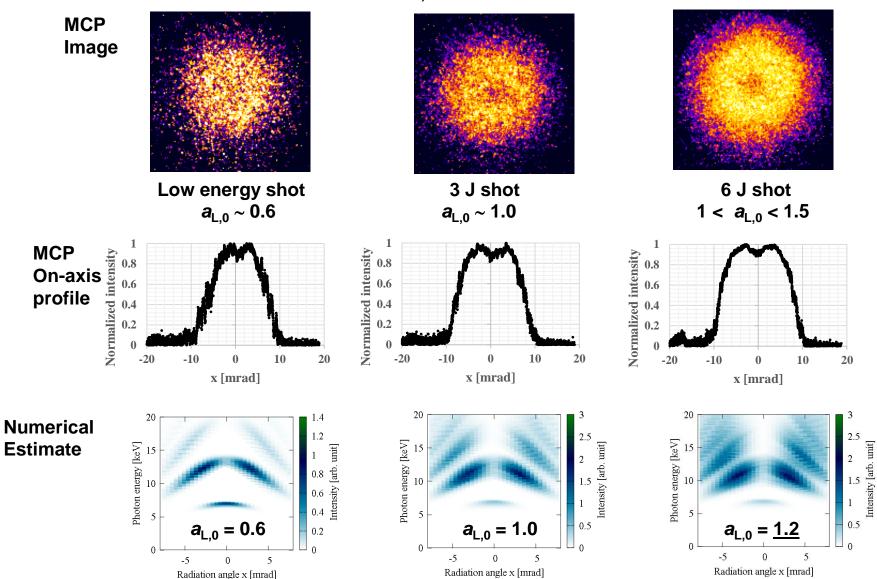
Alignment &

Timing


of CO₂ laser and e-beam

- **♦** GPOP15 & 16 → OTR
- ♦ CO₂ laser pick up from IP
- ♦ Timing with Si plate

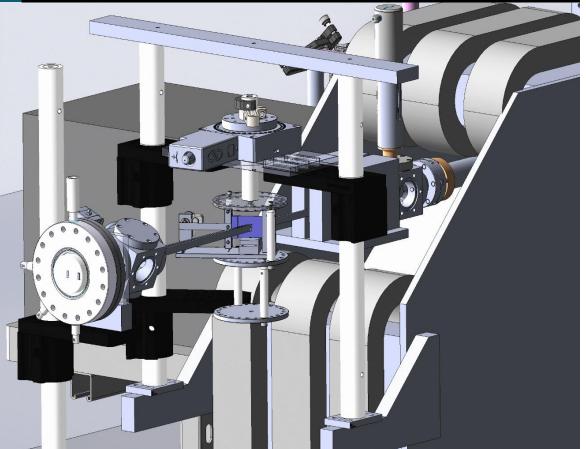
Has been complete smoothly


Status so far

2nd harmonic ICS X-ray by using Circularly polarized multi-TW laser → Verified

Owing to the polarization rotator (2× 22.5 deg rotation + waveplate mirror)

Effect on off axis radiation vs $a_{L,0}$ (Al 250µm high energy X-ray filtering)


NEXT \rightarrow Explore OAM case at $a_{L,0} \sim 2$, & Measure DDS: TBD \rightarrow Almost ready to observe Bi harmonic effect (Require stable 70 MeV e-beam) TBD

Pending Tasks:

Single shot Double Differential Spectrum (DDS) measurement of Sub-100 keV X-ray

→ Thick Laue Bent Crystal Efficiency > Bandwidth

Mo/Si Multi layer crystal: 5 - 10 keV Thick natural crystal: - 200 keV

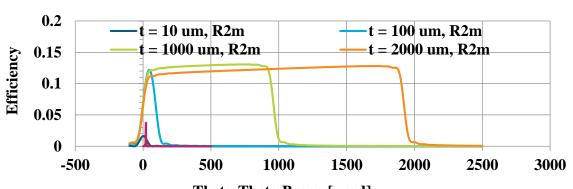
X-ray

Direct

Diffracted

Radius of curvature: ~R 2 m

* Si Thickness: 1 mm


* Bragg angle at 85keV: $\theta_B \sim 22$ mrad

* Crystal to MCP screen: 0.3 m

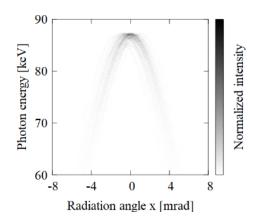
★ Expected dispersion at screen: 10 - 20 mm:

★ Band width: △ hv ~ 10 keV

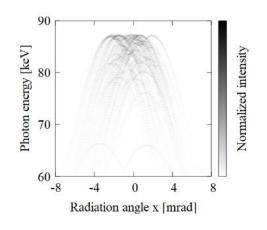
★ Reflectivity (Efficiency): ~10%

Theta-Theta Bragg [urad] Rocking curve for Bent crystal,...

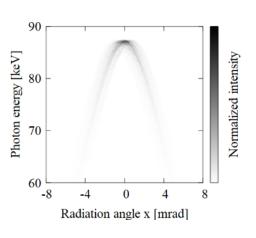
Status: Diffraction not observed yet for YAG-ICS.


→ 2nd - 3rd Harmonic radiation at 20-30 keV range needs to be examined (CO₂ ICS with sufficient X-ray flux).

Ultimate future plan:


→ ICS via 120 MeV e-beam & 10 J CO₂ laser for sub 100 keV X-ray

Current Direction: Re-examine e-beam characteristics


E-beam's Emittance effect on ICS spectrum (In addition: Higher energy & Stable e-beam)

 ε = 2 mm mrad, $\sigma_{x, y}$ = 30 μ m, Typical ATF parameter

 ε = 2 mm mrad, $\sigma_{x, y}$ = 10 μ m, Tight focusing with PMQ

 ε = 0.5 mm mrad, $\sigma_{x, y}$ = 10 μ m Example extreme case

Numerically calculated DDS of hard X-ray YAG ICS with various e-beam emittance and focusing size. Laser intensity $a_0 = 0.1$. e-beam energy 70 [MeV] (Linear Regime).

REF Scientific Reports v14, 18467, 2024

 ← Explore computational Feedback control {ML/AI} of emittance
 vs measured DDS for optimization, for the Compact RF Accelerators applications.

 Initial variable: Gun solenoid magnet etc → T B D

Future plan summary, T B D

- **❖** Proceed with the main Bi-Harmonic ICS experiment
- ***** Measurement of higher order harmonics in Circular polarized laser with $a_{L,0} = 2$
- **❖** R & D on the single shot hard X-ray spectrometer
- + Re-Examine e-beam characteristics: Emittance effect on the hard X-ray DDS for Computational feedback control { M.L. / A.I. }

Questions?

Electron Beam Requirements

Parameter	Units	Typical Values	Comments	Requested Values
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values	70
Bunch Charge	nC	0.1-2.0	0.1-2.0 Bunch length & emittance vary with charge	
Bunch Length	ps	1-10	Bunch charge & emittance vary with length	3 - 5
Peak current	Α	100	Variable with bunch charge and length	
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to provide bunch lengths down to the ~10 fs level	
Focused transverse size at IP (σ)	μ m	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	20 - 30
Normalized Emittance	μm	1 (at 0.3 nC)	Variable with bunch charge	1 - 2
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed	1.5
Trains mode Brookhaven National Laboratory		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	

CO₂ Laser Requirements

			—	•	
Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO ₂ Regen. Wavelength Amplifier		μ m	9.2	Wavelength determined by mixed isotope gain media	9.2
	Peak Power	GW	~3		
	Pulse Mode		Single		
	Pulse Length	ps	2		
	Pulse Energy	mJ	6		
	Repetition Rate	Hz	1.5	3 Hz also available if needed	
CO ₂ CPA Beam	CPA Beam Wavelength		9.2	Wavelength determined by mixed isotope gain media	
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW 2-3 Up to 5 TW operation will be available in a limited number of shots upon the user's request.		2 - 3	
	Pulse Mode		Single		
	Pulse Length	ps	2	3-year development effort to achieve <500 fs at >10 TW and deliver to users is in progress.	2
	Pulse Energy	J	~5	10J will be available in a limited number of shots upon the user's request.	< 10
	Strehl Ratio		~0.5	Recommended conservative estimate subject to verification.	
Brookhaven National Laboratory	Repetition Rate	Hz	0.01	Burst operation at up to 0.05 Hz for a limited period is possible upon user's request. This regime should be avoided to extend the lifetime of the HV spark gaps in the amplifier's PFN	ANY
,	Polarization		Linear	Adjustable linear polarization along with circular	Linear &

Other Experimental Laser Requirements

Ti:Sapphire Laser System	Units	Stage I Values	Stage II Values	Comments	Requested Values
Central Wavelength	nm	800	800	Stage I parameters are presently available and setup to deliver Stage II should be available summer 2025	
FWHM Bandwidth	nm	20	13		
Compressed FWHM Pulse Width	fs	<50	<75	Transport of compressed pulses will initially include a very limited number of experimental interaction points. Please consult with the ATF Team if you need this capability.	
Chirped FWHM Pulse Width	ps	≥50	≥50		
Chirped Energy	mJ	10	200		
Compressed Energy	mJ	7	~20	20 mJ is presently operational with work underway this year to achieve our 100 mJ goal.	
Energy to Experiments	mJ	>4.9	>80		
Power to Experiments Nd:YAG Laser	GW	>100	>1000		
System	Units	Typical Values		Comments	Requested Values
Wavelength	nm	1064	Single p	oulse	1064
Energy	mJ	100			100 – 200
Pulse Width	ps	14			14
Wavelength	nm	532	Freque	ncy doubled	
Brookhaven National Saboratory	mJ	0.5			
Pulse Width	ps	10			

Special Equipment Requirements and Hazards

No new adjustment.

Experimental Time Request

CY2025 Time Request

Capability	Setup Hours	Running Hours
Electron Beam Only		
Laser* Only (in Laser Areas)		
Laser* + Electron Beam		TBD (OR 2 WEEKS ?)

Total Time Request for the Experiment remaining duration

Capability	Setup Hours	Running Hours
Electron Beam Only		
Laser* Only (in Laser Areas)		
Laser* + Electron Beam		