

CBETA Multipass Lattice Design

CBETA Layout in LOE

Christopher Mayes – September 9, 2017

Cell designed with fieldmaps

Cornell Laboratory fo Accelerator-based Scie and Education (CLASSE) Cell modeled with Bmad_standard_MATIONAL LABORATORY

Fields seen: fieldmaps

Fields seen: bmad_standard

Cornell Laboratory for

and Education (CLASSE)

Designed FFAG Arc, transition, straight Accelerator-based Sciences

 $f(x) = 1 - x + (1/2 - x)x(1 - x)[1.788 + 3.954x(1 - x) + 6.58x^{2}(1 - x)^{2}]$

Splitters (SX, RX)

- Receive beams on-axis from the linac
- Match each energy beam onto its stable orbit in the FFAG arg
- Match optics for each energy beam into the FFAG arc
- Momentum compaction (r56) adjustment
- Path lengths: (S1 + FA pass 1) = (S2 + FA pass 2) = (S3 + FA pass 3)
- Allow path length adjustment by sliding joints, ±10 deg rf phase adjustment
- Dipole fields < 0.6 T
- Quad fields < 4 T/m
- Realistic transverse element sizes

 $T_1 \cdot f_{\rm rf} = 343 - 0.5$

Splitter entrance and exit detail

S1 optics (42 MeV)

S2 optics (78 MeV)

S3 optics (114 MeV)

S4 optics (150 MeV)

SX optics for each pass

4-pass Optics Design

Christopher Mayes – September 9, 2017

Start-to-End tracking envelopes

Start-to-End tracking

- CBETA Lattice is finalized
- FFAG designed with fieldmaps, well-modeled in Bmad for fast tracking.
- Splitters designed for:
 - possible 1,2,3,4-pass ERL configuration
 - Match orbit and linear optics into FFAG arc for each beam
 - ±10° RF phase shift adjustment via linear sliding joints.
- 4-pass start-to-end ERL tracking:
 - Negligible emittance growth
 - Well-controlled RMS and full (100%) beam envelope (both transverse and longitudinal)
 - Excellent energy at the dump $\pm 1\%$

200 um offset errors in all quads

Table 2.13.1: Orbit correction analysis procedure. Typically this procedure is iterated for N = 100 times.

Step	Procedure
1	Initialize design lattice
2	Calculate orbit and dispersion response matrices
3	Perturb the lattice with random set of errors
4	Apply the SVD orbit correction algorithm
5	Save this perturbed lattice
6	Track particles through, and save statistics
7	Reset the lattice
8	Repeat steps 3-7 N times

