Intense Muon Source
with MERIT_FFAG

Yoshiharu Mori
Kyoto University, RRI

*This work was funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).
Problems in nuclear energy production

- Treatment of radio-activities produced by nuclear reactor.
 - Radio-active fission products
 - Plutonium
 - Minor actinide (MA; Am, etc.)

- Deep underground storage: Long-lived species ($\tau > 1,000$y) \rightarrow “Negative legacy”
 - Long-lived fission products (Tc99, I127, Pd107, etc.)
 - Minor actinides (MA)
Underground nuclear waste disposal: outline

Multiple barriers

- **artificial barrier**
 - vitrified
 - over-packed

- **natural barrier**
 - clay buffer
 - bedrock

- preventing elution into water
- 20cm thick carbon steel
- 70cm thick clay

deep geological storage

(C) Agency for Natural Resources and Energy
Nuclear wastes

- Nuclear wastes from 1 ton 3% enriched 1 ton Uranium fuel (Wikipedia)

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu</td>
<td>10 kg</td>
</tr>
<tr>
<td>Pt</td>
<td>2 kg</td>
</tr>
<tr>
<td>Short-lived FP ($\tau < 100$y): Sr90, Cs137, etc.</td>
<td>26 kg</td>
</tr>
<tr>
<td>Long-lived FP ($\tau > 1000$y): Tc99, Pd107, etc.</td>
<td>1.2 kg</td>
</tr>
<tr>
<td>Minor Actinides: Np, Am, etc.</td>
<td>0.6 kg</td>
</tr>
</tbody>
</table>
Deactivation and re-use of LLFPs (Zr, Se, Pd, Cs) by nuclear transmutation with accelerator

ImPACT project

-Impulsing Paradigm Change through Disruptive Technologies Program of Council for
Nuclear transmutation by neutron, muon, etc.

- Neutron: \((n, \gamma)\) @RIKEN RIBF, Osaka, Kyusyu, JAEA etc.
 - Precise cross section measurement
 - Inverse reaction: \(n + ^{135} \text{Cs} \rightarrow ^{136} \text{Cs} + \gamma\)
 - HI(U) \(\rightarrow\) fragmentation \(\rightarrow\) \(^{135}\text{Cs} + n\) (target like D\(_2\), Li)

- Muon: \((\mu^-, p)n\) @RIKEN, RCNP, JPARC, Kyoto U.
 - Muon transmutation exp. @RIKEN, RCNP, JPARC
 - Muon source @Kyoto, JPARC
nuclear transmutation

with negative muon

- 1st: Formation $\mu_{\text{atom}} \rightarrow 2$nd: Nuclear transmutation
 - μ-atom radius: $a_\mu = \left(\frac{1}{207}\right) \times Z^{-1} \times 10^4$ fm.
 - Nuclear radius: $R = 1.2 \times A^{1/3}$ fm.
- Transmutation probability \rightarrow 95% for $Z>30$ nuclei
 - $R < a_\mu$ for $Z>30$ nuclei

Fig. 15.8 The probability densities of finding a muon in the state indicated, as a distance r from the nuclear center (full lines), are compared with the nuclear charge distribution in the case of lead. In the S_{10} state, the probability of finding a muon within the nucleus is close to 50% (Devons and Duerloo 1969).
Formation of non-radioactive (stable) nuclei

- Muon pumping

\[\mu^- + {}^{99}\text{Tc}(\text{LLFP}:2.15 \times 10^5 \text{y}) \rightarrow {}^{99}\text{Mo}(\text{stable}) + \nu_{\mu} \]
\[\rightarrow {}^{98}\text{Mo}(\text{stable}) + n + \nu_{\mu} \]
\[\rightarrow {}^{97}\text{Mo}(\text{stable}) + 2n + \nu_{\mu} \]
\[\rightarrow {}^{96}\text{Mo}(\text{stable}) + 3n + \nu_{\mu} \]
Muon

- Transmutation rate: estimated with rate equations

\[
\frac{d}{dt} \begin{bmatrix}
\frac{A-i}{Z} X \\
\frac{A-i}{Z-1} X
\end{bmatrix} = \begin{bmatrix}
-Q - \beta_{Z}^{A-i} & \beta_{Z-1}^{A-i} \\
-f_i^n Q & -\beta_{Z-1}^{A-i}
\end{bmatrix} \begin{bmatrix}
\frac{A-i}{Z} X \\
\frac{A-i}{Z-1} X
\end{bmatrix}
\]

\[i = 0, N\]

- Model hypothesis

 - Parent and daughter isotopes are concerned and other elements are removed from the system: Chemical separation, etc.

 - 100% negative muon capture by nucleus is realized.

 - Negative muon flux : \(Q\)

 - Beta decay rate : \(\beta\)

 - Emitted neutron numbers (f) are constant for parent isotopes.
Example

- Cs: cesium
 - ^{137}Cs
 - Typical short-lived FP (half-life: 30.07y)
 - Strong γ emitter
 - Most problematic \rightarrow high water solubility

\[^{137}_{55}\text{Cs} \xrightarrow{\beta^- \text{ 512.0 keV \ 30.07 \ ans}} ^{137m}_{56}\text{Ba} \xrightarrow{\gamma \text{ 661.7 keV \ 2.552 \ min}} ^{137}_{56}\text{Ba} \]

- ^{135}Cs
 - Long-lived FP (half-life: 2.3×10^6 y)
\[^{55}\text{Cs} + \mu^- \rightarrow ^{54}\text{Xe} \]

<table>
<thead>
<tr>
<th>A(Cs)</th>
<th>137</th>
<th>136</th>
<th>135</th>
<th>134</th>
<th>133</th>
<th>132</th>
<th>131</th>
<th>130</th>
<th>129</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA(Pd)</td>
<td>0.4243</td>
<td>0</td>
<td>0.1287</td>
<td>0.0089</td>
<td>0.4382</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DR(1/y)</td>
<td>0.0332</td>
<td>27.74</td>
<td>4.4E-07</td>
<td>0.484</td>
<td>0</td>
<td>56.33</td>
<td>37.67</td>
<td>17994</td>
<td>273.2</td>
<td>2.06E+05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A(Xe)</th>
<th>137</th>
<th>136</th>
<th>135</th>
<th>134</th>
<th>133</th>
<th>132</th>
<th>131</th>
<th>130</th>
<th>129</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR(1/y)</td>
<td>1.38E+05</td>
<td>0</td>
<td>958.4</td>
<td>0</td>
<td>69.62</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emitted neutron numbers</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>0.04</td>
<td>0.72</td>
<td>0.06</td>
<td>0.12</td>
<td>0.06</td>
<td>0</td>
</tr>
</tbody>
</table>
Preconditions

- Negative muon flux $Q \approx 2 \times 10^{16} \mu / \text{sec}$
 (1 mol/year eq.)

- 100% negative muon capture by nucleus is realized.

- Cesium amount: 1 mol \rightarrow including all cesium isotopes.
 cf. \simmol Cs produced by 1 ton 3%-enriched U nuclear fuel burn out.
Half of Cesium($^{137}\text{Cs},^{135}\text{Cs}$) are transmuted to stable Xe isotopes within a year.
Pd-Rh

Production of resources with muon nuclear transmutation from LLFP

cf. Pd, Rh, Xe etc.
Summary(1)

- Muon nuclear transmutation has the potential to reduce or extinct radioactive wastes greatly.

 - 1 mol radio-active isotopes, whatever their lifetimes are short (<100y) or long (>1,000y), are completely transmuted to stable isotopes within <1 year by negative muons with \(2 \times 10^{-\mu} \text{s}^{-1}\) irradiation.

 - cf. All LLFPs from 1GWe nuclear reactor (30 years operation)

 \[\rightarrow \text{de-activated in 100 years with } 1 \times 10^{18} \mu/s\]

 - cf. All MAs from 1GWe nuclear reactor (30 years operation)

 \[\rightarrow \text{de-activated in 25 years with } 1 \times 10^{17} \mu/s\]

- When lightest stable parent isotope mass < lightest daughter isotope \(\rightarrow\) Both parent and daughter stable isotopes are left. (cf. Pd)

- When lightest stable parent isotope mass > lightest daughter isotope \(\rightarrow\) Only daughter stable isotopes are left. (cf. Cs)

- Muon nuclear transmutation allows to re-produce valuable resources (Pd, Xe, etc.) from radioactive wastes.
Intense negative muon source

$I > \sim 10^{16} \mu /\text{sec}$

MERIT: Multiplex Energy Recovery
Internal Target
Muon source
for nuclear transmutation

- Issues
 - Low energy (<~300MeV/c) negative muon (μ⁻) production ⇐ Efficient muon capture.
 hadron: \(p + n \rightarrow p + p + \pi^−, \pi^- \Rightarrow \mu^- + \bar{\nu}_\mu \)
 photon: \(\gamma + n \rightarrow p + \pi^−, \pi^- \Rightarrow \mu^- + \bar{\nu}_\mu \)
 - Intensity > \(1 \times 10^{16}\)μ⁻/s
 - Muon (energy) cost < 5-10GeV/μ⁻
 \(\varepsilon < \frac{\Gamma}{\rho} \approx 5 - 10 GeV. \quad (\Gamma \sim 200 MeV/fission, \rho \sim RI-mol\%)\)
Ordinary scheme for μ^- production
-Limitations-

- **Hadron interaction: p+A**
 - $E_p \sim 0.6\text{GeV (th. energy)} \sim 0.3\text{GeV}$
 - π production cross section $\sigma \approx 1 \times 10^{-25} \text{cm}^2$
 - Target length: $L(C) \gg 2\text{m}$ for $\pi /p-1$
 - Limitations
 - Stopping power: $dE/dx \sim 20\text{MeV/cm} @ E_p = 0.4\text{GeV} \rightarrow L_{\text{target}} < 20\text{cm} : 1/10$
 - Extinction: $\pi + A (3:3\text{resonance}) \rightarrow \pi 0 \rightarrow 2\gamma : 1/10$
 - Efficiency $\pi /p \approx 1/100$

- **Photoproduction: $\gamma + A**
 - $E_\gamma \sim 300\text{MeV (th. energy)} \sim 150\text{MeV}$
 - π production cross section $\sigma \approx 2 \times 10^{-27} \text{cm}^2$
 - Target length: $L(W) \gg 100\text{m}$ for $\pi /p-1$
 - Limitations
 - $L_R \sim 3.5\text{mm} \rightarrow L_{\text{target}} < 3.5\text{mm}$
 - Efficiency $\pi /p < 1/10000$

- **Fixed target** → Muon energy cost $>> 10\text{GeV}/\mu$ - for both: Too high for
 • Applications
 • Technical limitations
ERIT for muon production
-MERIT-

- **ERIT:** Energy Recovery Internal Target
 - Storage ring + Internal target + Energy recovery per turn
 - Ordinary ERIT: Particle energy lost by Coulomb(EM) interaction
 - Rutherford scattering, ionization

- **MERIT for $\mu(\pi)$ production**
 - Energy recovery: not only for EM but hadronic (nuclear) interaction \rightarrow Acceleration + Storage
 - Threshold energy($p+p(n)$): \sim230MeV for one π production.
Ord. ERIT vs. New ERIT for muon production (MERIT)

Ord. ERIT
- Full energy injection
- Internal target
- RF energy recovery

MERIT
- Low energy injection
- Wedge-shape target
- RF acceleration & energy recovery
MERIT

- Requirement
 - Fixed(constant) magnetic field
 - Wide apertures: transverse & longitudinal
 - Zero-chromaticity
 - Strong(AG) focusing
- Scaling FFAG
 - Fixed(constant) RF frequency
 - On-γ_t acceleration: $\beta < 1$ for proton
Muon energy cost with MERIT(1)

- Energy required for \(\pi \) production in ERIT

\[
E_\mu = \frac{A}{N_A \rho} \int_{\Delta \Omega} d\sigma(E_b) \frac{d\omega}{d\omega} \left(\frac{dE}{dx} \right)_{\text{eff}} \cdot (1 - \alpha)
\]

\[
\left(\frac{dE}{dx} \right)_{\text{eff}} = \beta_i \left(\frac{dE}{dx} \right)_i + \beta_r \left(\frac{d\tilde{E}_r}{dx} \right)_r
\]

\(E_\mu \): Muon cost

\(N_A \): Avogadro number

\(\rho \): Density of target material

\(\sigma(E) \): Density of target material

\(\Delta \Omega \): Acceptance for secondary particles

\(\beta_i, \beta_r \): Proportions of ionization and energy recovery-loss, respectively

\(\tilde{E}_r \): Energy loss including recovery

\(\alpha \): Conversion from thermal energy to electric power

\(-\Delta E = -(\Delta E_i + \Delta E_r)\)

Re-acceleration + \(\Delta E\)
Muon energy cost

- energy cost for μ- production in MERIT
 - Geant4 simulation(σ, E_i, E_r)
 - $\Delta \Omega$: described later

(Summary)
$E_\mu < 3.5\text{GeV}(\alpha=0\%)$
$E_\mu < 2.1\text{GeV}(\alpha=40\%)$
@$E_p = 0.8-2\text{GeV}$

MERIT can satisfy the criteria!
MERIT with proton -basic optics-

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring configuration</td>
<td>H_FFAG</td>
</tr>
<tr>
<td>Energy range</td>
<td>500MeV-800MeV</td>
</tr>
<tr>
<td>Magnetic rigidity</td>
<td>3.633 -4.877Tm</td>
</tr>
<tr>
<td>Lattice</td>
<td>FDF</td>
</tr>
<tr>
<td>Average radius</td>
<td>5.044-5.5m</td>
</tr>
<tr>
<td>Magnetic field(F)</td>
<td>1.96-2.41T</td>
</tr>
<tr>
<td>Magnetic field(D)</td>
<td>1.71-2.11T</td>
</tr>
<tr>
<td>Number of cell</td>
<td>8</td>
</tr>
<tr>
<td>Packing factor</td>
<td>0.7</td>
</tr>
<tr>
<td>Magnet opening angles</td>
<td></td>
</tr>
<tr>
<td>Focusing</td>
<td>0.2032</td>
</tr>
<tr>
<td>Defocusing</td>
<td>0.1432</td>
</tr>
<tr>
<td>gap</td>
<td>0.01732</td>
</tr>
<tr>
<td>Geometrical field index</td>
<td>2.4</td>
</tr>
<tr>
<td>F/D ratio</td>
<td>1.1</td>
</tr>
<tr>
<td>k</td>
<td>2.4</td>
</tr>
<tr>
<td>Qh</td>
<td>0.2188</td>
</tr>
<tr>
<td>Qv</td>
<td>0.1797</td>
</tr>
<tr>
<td>(\rho f)</td>
<td>2.0233m(2.411T)</td>
</tr>
<tr>
<td>(\rho d)</td>
<td>2.3157m(2.106T)</td>
</tr>
</tbody>
</table>
Stability diagram Q_h-Q_v
Acceptance

frev=6.85MHz

longitudinal: acceleration
E=800MeV, k=2.433, γs=1.853, V=0.01

transverse acceptance

Ax>100,000mm.mrad

Az>70,000mm.mrad
Simulation

6D phase space: full tracking

Transverse

Beam emittance after 500 turns:
- hor. \(\sim 2,100 \text{mm.mrad} \), vert. \(\sim 1,200 \text{mm.mrad} \)

< acceptance (hor. : \(30,000 \text{mm.mrad} \), vert. : \(20,000 \text{mm.mrad} \))

\[x'(\text{mrad}) \]

\[z'(\text{mrad}) \]
Number of turns in MERIT

- More than 200 turns $\rightarrow N_{\mu-}/N_p \approx 0.25$

~ 50 times better than fixed target
$\pi^-(\mu^-)$ capture

- **F_magnet** (B=2.5T: Bend outside) Solenoid

![Graph showing percentage vs. z(mm) for x=100mm and x=150mm](image)

- Target
- Proton
- F magnet

412.724, 68.2322
Summary (2)

- Characteristics and Performance of MERIT (Multiplex ERIT)
 - Proton accelerator and storage ring
 - Fixed magnetic field: Scaling FFAG(FDF)
 - Fixed RF frequency: On γ t acceleration
 - Wedge target (Li)
 - Muon cost: $\leq 3.5\text{GeV}/\mu$-
 - Muon yield: $1 \times 10^{16} \mu-/s$ with $I_p \sim 2.5\text{mA}$

- Beam injection, target, radiation shield → Okabe-san’s
Deuteron
MERIT_FFAG
Energy efficiency of MERIT_FFAG

- Validity of ERIT scheme compared with a solid fixed target
 - Range \((dE/dx) < \text{Nuclear interaction length}\)
 - Beam energy is lost before nuclear interaction.
 - Nuclear interaction length for \(\pi\) production (NΔ) \(\sim 1\,\text{m}\)
 - \(R [\text{range:} \int (dx/dE)dE]\)
 - \(L [\text{nuclear interaction length:} 1/((\sigma\,N_a\,\rho/A)]\)
 - Example: \(E_p=500\,\text{MeV},\, \text{Be(}p,\pi\text{)reaction}\, R\sim 50\,\text{cm},\, L\sim 1\,\text{m}\)
 - Energy threshold \((A(p,\pi): E_p\sim 250\,\text{MeV: proton}) \leftrightarrow R<L\)
 - Destruction \((\pi^- + A \rightarrow X)\)
 - Thin target is needed.

Energy recovery: \(E_{sp} \sim 300\,\text{MeV}(p\text{-beam}: E_p=800\,\text{MeV}, \, \text{Li target})\)
So far, we believe proton is better than deuteron.

Because →

- Deuteron breaks up easily to proton and neutron.
 - Difficult to recover the beam energy.
 - →Poor energy efficiency for \(\pi^-(\mu^-) \) production.

Is that so?

- Deuteron induced \(\pi^- \) production cross section: \(\sigma (d, \pi^-) > 6.6 \times \sigma (p, \pi^-) \).
ref. JAERI-Tech-99-065, 仁井田他
π - production with deuteron beam
-Energy efficiency-

- π production :NΔ (σ_{pp}/σ_{pn} =2) resonance
 - pp/nn(l=1)→π (+,0,-), pn(l=0)→π (0,-)
- π productio with deuteron (pn) (target : light nuclei)
 - σ_{π+}:σ_{π0}:σ_{π-} ~1:1:1
 - cf. proton σ_{π+}:σ_{π0}:σ_{π-} ~6:3:1
- Thus, σ_{π-}(d)/σ_{π-}(p)=(2x1/3)/(1/10)~6.6
 - (ref. JAERI-Tech-99-065, Niita et al.)
Deuteron break-up

- break-up reaction: \(d + X \rightarrow p + n + X \)
 - \(\sigma_{bu} / \sigma_{\pi} \sim 2-3 \) (Geant4)
- Energy efficiency of \(\pi^- \) production: \(\eta \) (energy required for one \(\pi^- \) production)
 - \(\eta (d)/\eta (p) = [\sigma_{\pi^-}(d)/\sigma_{\pi^-}(p)]/[\sigma_{bu} / \sigma_{\pi}]x1/2 = 1.1-1.5 : \eta (d)\approx \eta (p) \)
- Moreover,
 - Total kinetic energy (Ep+En) after break-up reaction is almost same as that of incident deuteron.
 - Small binding energy (d=p+n) \sim MeV
 - \(\rightarrow \) Energy can be recovered thermally. (Not by ERIT)
Deuteron

MERIT_FFAG

- Characteristic of d-MERIT_FFAG
 - Gas target: deuterium gas (1 atm)
 - Projectile: deuteron
 - Beam energy: 600MeV/u
 - Deuteron Intensity: 7.9×10^{11} particles/ring
Muon yield with d_MERIT_FFAG

- π^- Yield
 \[Y = L\sigma_\pi. \]
- σ^-: π^- production cross section
- Luminosity
 \[L = N_d\nu_d n_T. \]
 - N_d: number of deuteron/ring 7.9x10^{11} d/ring
 - ν_d: deuteron velocity 600MeV/u
 - n_T: target particle density 1 atm
 \[L = 5 \times 10^{41} \text{ cm}^{-2} \cdot \text{s}^{-1} \rightarrow Y = 1 \times 10^{16} \mu^- / \text{s} \]
d_MERIT_FFAG ring parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>1200MeV (600MeV/u)</td>
</tr>
<tr>
<td>Magnetic rigidity</td>
<td>8.126Tm</td>
</tr>
<tr>
<td>Lattice</td>
<td>FDF</td>
</tr>
<tr>
<td>Average radius</td>
<td>5.5m</td>
</tr>
<tr>
<td>Magnetic field (F)</td>
<td>4.016T</td>
</tr>
<tr>
<td>Magnetic field (D)</td>
<td>3.509T</td>
</tr>
<tr>
<td>Number of cell</td>
<td>8</td>
</tr>
<tr>
<td>Packing factor</td>
<td>0.7</td>
</tr>
<tr>
<td>Opening angle</td>
<td></td>
</tr>
<tr>
<td>Focusing magnet</td>
<td>0.2032rad</td>
</tr>
<tr>
<td>Defocusing magnet</td>
<td>0.1432rad</td>
</tr>
<tr>
<td>Gap</td>
<td>0.01732rad</td>
</tr>
<tr>
<td>Geometrical field index</td>
<td>2.4</td>
</tr>
<tr>
<td>F/D ratio</td>
<td>1.1</td>
</tr>
<tr>
<td>Betatron tune (H) : Q_H</td>
<td>0.2188/cell</td>
</tr>
<tr>
<td>Betatron tune (V) : Q_V</td>
<td>0.1797/cell</td>
</tr>
<tr>
<td>Curvature (F) : (\rho_f)</td>
<td>2.023m</td>
</tr>
<tr>
<td>Curvature (D) : (\rho_d)</td>
<td>2.316m</td>
</tr>
</tbody>
</table>
Muon nuclear transmutation scheme with d_MERIT_FFAG ring

- LLFP (nuclear wastes) surrounds the beam duct.
- Beam duct is filled by ~1 atm deuterium gas.
- Negative muons are slowed down by deuterium gas and beam duct, then captured by LLFP nuclei.
MERIT
-proof of principle experiment-

- Key issue of MERIT
 - Simultaneous operation with acceleration and energy recovering
 - Proof of principle experiment (2016-2019)
 - Modifying the existing ERIT to MERIT
 - Beam momentum change $\Delta p \sim 10\%$
 - Number of turns at recycling ~ 100turns
Summary

- Muon nuclear transmutation looks useful for treatment of long-lived radio-activities.
 - cf. 1GWe nuclear reactor (30 years operation)
 - de-activated in 100 years with $1 \times 10^{18} \mu /s$
 - de-activated in 25 years with $1 \times 10^{17} \mu /s$
- MERIT could satisfy the requirements for negative muon source.
- Proof-of-principle project of MERIT has started.
- Deuteron MERIT_FFAG is also interesting.