

(Interestingly, SATURNE is Zgoubi genitor)

François Méot

Brookhaven National Laboratory Collider-Accelerator Department Upton, LI, NY, USA

Contents

1	FOREWORD
2	ZGOUBI INTEGRATOR
3	THE ELECTRIFICATION OF ZGOUBI
4	SPIN TRACKING
5	SYNCHROTRON RADIATION - ENERGY LOSS
6	SYNCHROTRON RADIATION - SPECTRAL-ANGULAR DENSITY
7	SPIN DIFFUSION
8	IN-FLIGHT DECAY
9	THE FITTING PROCEDURE
10	CONCLUSION

1 FOREWORD

1/ I'll be commenting the version of Zgoubi that I maintained myself, over the years.

I won't discuss developments done by (the many) other groups/people.

2/ It is available on a development site, together with its "Users' Guide" and its graphic/analysis interface "zpop", and many operational examples

http://sourceforge.net/projects/zgoubi/

3/ A lot of articles and other technical reports, of which many give many details on the examples I am going to show, can be found on the DOE OSTI site

http://www.osti.gov/bridge/

ZGOUBI INTEGRATOR 2

- ... was written in 1972, at SATURNE, Saclay, for a big nuclear physics spectrometer, SPES2, by J. C. Faivre and D. Garreta
- The equation of motion in magnets writes

 $d(m\vec{v}) = q \vec{v} \times \vec{b} dt$

Introduce reduced notations, $\vec{u} = \frac{\vec{v}}{v}, \vec{B} = \frac{\vec{b}}{Bo}$, that yields :

$$\vec{u'} = \vec{u} \times \vec{B}$$

• Solved using truncated Taylor expansions of \vec{R} and $\vec{u} = \vec{v}/v$:

 $\vec{R}(M_1) \approx \vec{R}(M_0) + \vec{u}(M_0) \,\Delta s + \vec{u}'(M_0) \,\frac{\Delta s^2}{2!} + \dots + \vec{u}''''(M_0) \,\frac{\Delta s^6}{6!}$

 $\vec{u}(M_1) \approx \vec{u}(M_0) + \vec{u}(M_0) \Delta s + \vec{u}''(M_0) \frac{\Delta s^2}{2!} + \dots + \vec{u}'''(M_0) \frac{\Delta s^5}{5!}$

mber 6-7, 2017 - A User's Guide

• Over 45+ years... oodles of magnetic elements have been installed

WHAT YOU DREAM TO SIMULATE : Semi-analytical models :

Cyclotron Decapole Dipole(s), spectrometer Dodecapole FFAG magnets Multipole Octupole Quadrupole Sextupole Solenoid Helical dipole Field maps :

1-D, cylindrical symmetry
2-D, mid-plane symmetry
2-D, no symmetry
2-D, polar mesh
3-D
include time (*a 4D map ?!?*)

KEYWORD :

CYCLOTRON, DIPOLE, DIPOLES DECAPOLE, MULTIPOL BEND, DIPOLE[S][-M], MULTIPOL, QUADISEX DODECAPO, MULTIPOL DIPOLE[S], FFAG, FFAG-SPI MULTIPOL, QUADISEX, SEXQUAD OCTUPOLE, MULTIPOL, QUADISEX, SEXQUAD QUADRUPO, MULTIPOL, SEXQUAD SEXTUPOL, MULTIPOL, QUADISEX, SEXQUAD SOLENOID HELIX

BREVOL CARTEMES, POISSON, TOSCA MAP2D POLARMES TOSCA Any of the above. (*yes, e.g., using TOSCA*)

• ... as well as many accelerator design and beam dynamics procedure

WHAT YOU DREAM TO DO :

Store coordinates (in view of "gnuplot" turn-by-turn for instance)	FAISTORE
Fit	FIT
A scan of optimal parameters	FIT + REBE
Forking	GOTO
Store particle data across magnets (to "gnuplot" B field, why not)	IL=1 !
Compute a transport matrix, or Twiss parameters	MATRIX
Switch-on in-flight decay	MCDESINT
Generate a Monte Carlo particle bunch	MCOBJET
Generate sample particles	OBJET
Simulate a ring and other do-loop	REBELOTE
Vary magnet currents, RF system parameters etc.	SCALING
Switch-on spin tracking	SPNTRK
Switch-on synchrotron radiation	SRLOSS
Call your system for rescue !	SYSTEM

And more ... in "Zgoubi Users' Guide" (and its Index)

FFAG 2017 School, Cornell, September 6-7, 2017 - A User's Guide to Zgoubi Galaxy **IT + REBELOTE**

KEYWORD:

• Field and derivatives as needed in the Taylor series

$$\frac{\partial^{i+j+k}\vec{B}_n(X,Y,Z)}{\partial X^i \partial Y^i \partial Z^k} \qquad i+j+k=0 \text{ to } 4 \tag{1}$$

are obtained by differentiation of the scalar potential

$$V_n(X,Y,Z) = (n!)^2 \left(\sum_{q=0}^{\infty} (-1)^q \frac{G^{(2q)}(X)(Y^2 + Z^2)^q}{4^q q!(n+q)!} \right) \left(\sum_{m=0}^n \frac{\sin\left(m\frac{\pi}{2}\right)Y^{n-m}Z^m}{m!(n-m)!} \right)$$
(2)

• G(s) is a longitudinal form factor which simulates the "field fall-off"

EXAMPLE (2005+) – Virtual EMMA FFAG / ON-LINE MODEL

Zgoubi input data file - excerpt :

150 0.2 99 'END'

'MARKER' RingInj BegRing 'MULTIPOL' QD 0	start of ring. Injection point start of first cell
7.5698 5.3 02.49324 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.1 1.1 1.1 1.4 1.455 2.2670 6395 1.1558 0.0 <t< td=""><td></td></t<>	
2 0. 3.404834122312866 0. 'MARKER' BPM2 off 'DRIFT' sd 5.00	BPM location
'MULTIPOL' QF 0	
5.8782 3.7 0. 2.47708 0 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.0	
°CAVITE' 7	programmable RF cavity
, 0.736669 1.3552e9 70e3 0. 'MARKER' BPM1 off 'CHANGREF' 0. 08.571428571429	Orbit length, RF frequency Voltage, relative phase BPM location cell orientation - wrt. next one end of first cell
next 41 cells	
'REBELOTE'	multiturn tracking

EMMA cell, using field map '02611DF.table' / compare with 'DIPOLES'

Field on orbits, 10, 12, 14, 15, 16, 18 and 20 MeV.

Cell tunes as a function of energy. Cell tunes as a function of energy.

Time of flight as a function of energy.

Field on orbits, 10, 12, 14, 15, 16, 18 and 20 MeV.

Cell tunes as a function of energy.

Time of flight as a function of energy.

NOTE : 'TOSCA' WILL SUPERIMPOSE FIELD MAPS FOR YOU :

Zgoubi input data file - excerpt :

```
EMMA CELL, USING FIELD MAPS
'OBJET'
+5.171103865921708e+01
2
11
-4.83 1.38E+02 0. 0. 0. 0.7 '0'
'PARTICUL'
0.51099892 1.60217653e-19 0.0 0.0 0.0
'PICKUPS'
1
#E
'FAISTORE'
b_zgoubi.fai #E
1
'TOSCA'
00
-10. .1 .1 .1
QPOLES HEADER_8
961 161 1 15.2 1. 1.
b_both-20130204a-f-off.table
b_both-20130204a-d-off.table
0000
2
.1
2000
'CHANGREF'
0. 0. -8.57142857152
'FAISCEAU'
'MARKER' #E
'MATRIX'
1 11
'FAISCEAU'
'END'
```

! IZ=1 & mod.mod2=15.2 \implies two 2D maps / up to 5 ! F-quad is off, D-quad is on ! F-quad is on, D-quad is off

EXAMPLE (\sim 2005) - 'FFAG' and 'TOSCA' keywords

- A simulation of a 10-cell 150 MeV FFAG ring based on a scaling FFAG dipole triplet cell.
 - Using 'TOSCA' keyword and an OPERA field map of the dipole triplet :

• Using 'FFAG' keyword ('DIPOLES' would do as well) : superposition of dipole fields [NIM A 547, Lemuet, Méot]

 $B_z(r,\theta) = \sum_{i=1,N} B_{z0,i} \mathcal{F}_i(r,\theta) \mathcal{R}_i(r)$

FFAG triplet. 150MeV machine 'OBJET' 1839.090113 150MeV 5 0.001 0.001 0.001 0.001 0.001 0.0001 486.802 0. 0.0 0. 0. 0.562925 50MeV 'FFAG' #START 0		
3 30. 340. 1 6 465 0 44 308348 7 35 0 0	DIDOLE#4 · ACNT dum B0 // dummico	
0.400 U14.308348 7.25 U. U.	DIPOLE #1: ACN1, dum, B0, K, dummies	
	EFB 1 : lambda, lop=data option f	Zgoubi input data file, OPERA map :
1.715 0. 1.20 -1.20 1.20 1.20	EED 2	150MeV FFAG
4.000	EFB 2	'OBJET'
4 .1455 2.20700595 1.1556 0. 0. 0. -1 715 0 1 E6 -1 E6 1 E6 1 E6		1839.090113 150MeV
	FEB 3 · inhibited by ion-0	5
		.001 .001 .001 .001 .001
		444.15 0. 0.0 0. 0. 0.273042677097 'o' 12MeV Brho=502.1500877
15. 0. 17.16 7.58 0. 0.	DIPOLE #2 : ACNT. dum. B0. K.dummies	'TOSCA' #START
4. 000	EFB 1	0 20
4 .1455 2.26706395 1.1558 0. 0. 0.		
5.12 0. 1.E6 -1.E6 1.E6 1.E6		
4. 000	EFB 2	301 121 41 20 k75x1432mx024645500d0200 table
4 .1455 2.26706395 1.1558 0. 0. 0.		K75V113my02114550002700.table OPERA field map
-5.12 0. 1.E6 -1.E6 1.E6 1.E6		
01	EFB 3	2 0125
0 0. 0. 0. 0. 0. 0. 0.		2
0. 0. 0. 0. 0. 0.		
23.535 014.308348 7.25 0. 0.	DIPOLE #3 : ACNT, dum, B0, K,dummies	'MATRIX'
4. 000	EFB 1	1 11
4 .1455 2.26706395 1.1558 0. 0. 0.		'END'
1.715 0. 1.E6 -1.E6 1.E6 1.E6		
	EFB 2	
4 .1455 2.26706395 1.1558 0. 0. 0.		
-1./15 0. 1.E6 -1.E6 1.E6 1.E6		
	EFB 3	
0. 0. 0. 0. 0. 0. 2 A	IRD(-2, 25 or 1) resol(-: step/*)	
<u>د</u> ۲. 5	integration etan size (cm)	
20.0.0.0		
'MATRIX'		
1 11		1
'END'		

AN ISOCHRONOUS MUON FFAG (G. REES, , RAL, \sim 2004)

• bd and BD multipoles :

Gradient profiles K (m^{-2}) vs. x (m)

• BF sector magnet :

The magnets' gradients are constitutive of the design data, they are approximated using 4th degree polynomials.

$$B_{bd}(x) = -6.66771 + 23.5565r \ x + 11.9699 \ x^2 + 926.188 \ x^3 + 4952.98 \ x^4$$

$$B_{BD}(x) = -9.723 - 51.5803 \ x - 697.091 \ x^2 - 33956.1 \ x^3 - 241808 \ x^4$$

The gradients are integrated to get the multipole coefficients of the field.

 $B_{bd}(x) = \mathbf{b}_{bd0} - 6.66771 \ x + 11.7783 \ x^2 + 3.98996 \ x^3 + 231.547 \ x^4 + 990.6 \ x^5 \qquad (3)$

 $B_{BD}(x) = \mathbf{b}_{\mathbf{BD0}} - 9.723 \ x - 25.7902 \ x^2 - 232.364 \ x^3 - 8489.03 \ x^4 - 48361.5 \ x^5 \quad (4)$

After finding the dipole coefficients $b_{\rm bd0},\,b_{\rm BD0}$ with the matching procedure (next slide), the field and its derivatives are derived from the classical multipole modelling of the form.

$$\vec{B} = \mathbf{grad}V_n \text{ with } V_n(s, x, z) = (n!)^2 \left(\sum_{q=0}^{\infty} \frac{(-)^q G^{(2q)}(s)(x^2 + z^2)^q}{4^q q!(n+q)!} \right) \left(\sum_{m=0}^n \frac{\sin\left(m\frac{\pi}{2}\right) x^{n-m} z^m}{m!(n-m)!} \right)$$

with $G^{(2q)}(center)$ representing the (derivatives of) the fringe field form factor.

The same gradient matching procedure is applied to obtain

 $B_{BF}(r) = \mathbf{b_{BF0}} + 16.5655 r + 12.612 r^2 + 86.4359 r^3 + 2987.43 r^4 + 13647.1 r^5$

Transform from BF cylindrical frame into Zgoubi Cartesian frame, using

 $\partial B_z/\partial X = (1/r)\partial B_z/\partial \theta, \quad \partial B_z/\partial Y = \partial B_z/\partial r, \quad \partial^2 B_z/\partial X^2 = (1/r^2)\partial^2 B_z/\partial \theta^2 + (1/r)\partial B_z/\partial r, \quad etc.$

Z-derivatives and extrapolation off mid-plane yield the 3-D \vec{B} model $\vec{B}(X,Y,Z)$, $\partial^{i+j+k}\vec{B}/\partial X^i \partial Y^j \partial Z^k$

Optical sequence of the isochronous cell in Zgoubi input data file :

'MULTIPOL' bd 00 45 100.00 -3.45374050E+01 -66.6771 117.783 39.8996 2315.47 9905.97 0. 0.0 0.0 0.0 0. 0. 9. 4. 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1. 4 .1455 2.2670 -.6395 1.1558 0. 0. 0. 0. 0. 9. 4. 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1. 2.2670 -.6395 1.1558 0. 0. 0. 4 .1455 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .5 step bd 1 0. 0. 0. 'DRIFT' 50. 'DIPOLES' BF00 1 1.463414634 24.274311920375e2 nbmag AT/deg, RM/cm 0.731707317 0. -2.25637704 5 -1782.12892 -32935.7018 -5479274.31 -4.59698831E+09 -5.09757397E+11 0. 0. EFB 1 4 .1455 2.2670 -.6395 1.1558 0. 0. 0. 0.731707317 1.E6 -1.E6 1.E6 1.E6 0. 0. 0. EFB 2 4 .1455 2.2670 -.6395 1.1558 0. 0. 0. -0.731707317 0. 1.E6 -1.E6 1.E6 1.E6 0. 0. EFB 3 Ο. 0. Ο. 0. 0.0.0. 0 Ο. 0. 0. 0. 0. 0. Ο. 2 64. 0 .5 step BF step 2.42294098E+03 0. 2.43432058E+03 0. 24.228e2 24.3458e2 2 'DRIFT' 50. 'MULTIPOL' ΒD 00 63. 100.00 4.21503506E+01 -97.23 -257.902 -2323.64 -84890.3 -483615 0. 0. 0. 0. 0. 0. 9. 4. 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1. 4 .1455 2.2670 -.6395 1.1558 0. 0. 0. 0. 0. 9. 4. 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1. 2.2670 -.6395 1.1558 0. 0. 0. 4 .1455 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .5 step BD 1 0. 0. 0.

• Tracking 10^4 muons, over 700 turns (a few muon life-time), in G. Ree's isochronous FFAG

Correlation of beam losses and tunes :

FFAG 2017 School, Cornell, September 6-7, 2017 - A User's Guide to Zgoubi Galaxy

EXAMPLE (~2000) – **SLOW EXTRACTION FROM A MEDICAL CARBON SYNCHROTRON**

• Main difficulties : (i) motion near separatrix, (ii) slow process, \sim 0.1 second(s) \Rightarrow >> 10⁵ turns tracking.

EXAMPLE 16-TURN INJECTION IN A MEDICAL CARBON SYNCHROTRON

Zgoubi input data file, using 'SCALING'

****** Extraction, C6+ Monte Carlo object, C6+ 120MeV/u 'MCOBJET' 1000. 3 40 221111 0. 0. 0. 0. 0. 0.997 0. 8.562 7.143E-6 1 0. 2.848 7.143E-6 1 0.1.4.E-61 123456 234567 345678 'SCALING' 12 **MULTIPOL XR** 3 011 1 2000 999999 **BETATRON** 4 0.0.11 1 2000 2001 999999 'FAISTORE' Imnt# 106 179 206 b_xtract4Dp.fai ESE_ICOL 1 'BETATRON' Start of ring 2.5e-6 'DRIFT' DRIF SS MR 01 03 75.0000 'COLLIMA' ESi_COL 1 1 5.8 3.7 1.7 0. 1.7-5.8=-4.1, 1.7+5.8=7.5 'DRIFT' DRIF ES_INJECTION 60.0000 ! the rest of the ring (one separate file, "carbonRing.inc") 'INCLUDE' 1 carbonRing.inc 'DRIFT' DRIF SS_MR_01_02 109.4000 'FAISCEAU' End of ring 'REBELOTE'

99999 0.1 99 'END'

• 'SCALING' commands the orbit bump

Horizontal injection bump.

FFAG 2017 School, Cornell, September 6-7, 2017 Т. A User's Guide to Zgoubi Galaxy

Carbon injection, 16 turns injected, observed at injection septum.

3 THE ELECTRIFICATION OF ZGOUBI

... intervened in the early 1990s, motivated, as usual, by on-going R/D tasks.

• When both \vec{e} and \vec{b} are non-zero, the complete equation is solved,

$$(B\rho)'\vec{u} + B\rho \ \vec{u}' = \vec{e} \ / \ v \ + \ \vec{u} \times \vec{b}$$

One can then push the rigidity, with the same method of (truncated) Taylor series

$$(B\rho)(M_1) \approx (B\rho)(M_0) + (B\rho)'(M_0)\Delta s + \dots + (B\rho)'''(M_0)\frac{\Delta s^4}{4!}$$

and the time of flight,

$$T(M_1) \approx T(M_0) + \frac{dT}{ds}(M_0)\,\Delta s + \frac{d^2T}{ds^2}(M_0)\,\frac{\Delta s^2}{2} + \frac{d^3T}{ds^3}(M_0)\,\frac{\Delta s^3}{3!} + \frac{d^4T}{ds^4}(M_0)\,\frac{\Delta s^4}{4!}$$

(6)

(7)

• A list of the electrostatic elements :

WHAT YOU DREAM TO SIMULATE :	KEYWOR
Semi-analytical models :	
2-tube (bipotential) lens	EL2TUB
3-tube (unipotential) lens	UNIPOT
Decapole	ELMULT
Dipole	ELMULT
Dodecapole	ELMULT
Multipole	ELMULT
N-electrode mirror/lens, straight slits	ELMIR
N-electrode mirror/lens, circular slits	ELMIRC
Octupole	ELMULT
Quadrupole	ELMULT
R.F. (kick) cavity	CAVITE
Sextupole	ELMULT
Skewed multipoles	ELMULT
Field maps :	
1D, cylindrical symmetry	ELREVOL
2-D, no symmetry	MAP2D_E

?D :

• A list of the *MAGNETO-ELECTROSTATIC* elements :

WHAT YOU DREAM TO SIMULATE :	KEYWORD :
Semi-analytical models :	
Decapole	EBMULT
Dipole	EBMULT
Dodecapole	EBMULT
Multipole	EBMULT
Octupole	EBMULT
Quadrupole	EBMULT
Sextupole	EBMULT
Skew multipoles	EBMULT
Wien filter	SEPARA, WIENFILT

EXAMPLE (TRIUMF, 1990) - BNL's TWO-STAGE 800-MeV/c KAON BEAMLINE, USING TWO WIENFILTERS

Fig. 1. Layout of LESB3 beamline.

Fig. 16. Measured kaon and pion distributions at HS2 with the four-jaw collimator open and upper-right jaw closed. Compare with Fig. 10(a).

4 SPIN TRACKING

... was installed in late 1980s for a partial Siberian snake project at the 3 GeV ring SAT-URNE, Saclay.

• Equation of spin precession :

$$\frac{d\vec{S}}{dt} = \frac{q}{m}\vec{S}\times\vec{\Omega}, \quad \text{with} \quad \vec{\Omega} = (1+\gamma G)\vec{b} + G(1-\gamma)\vec{b}_{//}$$

• Normalize as earlier

 $\vec{S'} = \vec{S} \times \vec{\omega}$ same form as $\vec{u'} = \vec{u} \times \vec{B}$!

It is solved using the outcomes of the particle ray-tracing.

 \bullet and so, the truncated Taylor expansion that pushes \vec{S} :

$$\vec{S}(M_1) \approx \vec{S}(M_0) + \frac{d\vec{S}}{ds}(M_0)\,\Delta s + \frac{d^2\vec{S}}{ds^2}\,(M_0)\frac{\Delta s^2}{2} + \frac{d^3\vec{S}}{ds^3}\,(M_0)\frac{\Delta s^3}{3!} + \frac{d^4\vec{S}}{ds^4}\,(M_0)\frac{\Delta s^4}{4!}$$

EXAMPLE (2009...) - RHIC STUDIES (and, GROUND FOR eRHIC)

Polarization studies in RHIC - 10⁵ turn runs :

Horizontal excursion from injection to transition energy. 5 particles.
∼40000 turns, 20 min. CPU.

Polarization transport in AGS :

3000 particles tracking, 40000 turns. Exploring machine setting conditions.

5 SYNCHROTRON RADIATION - ENERGY LOSS

Installed in \sim 2000, for emittance increase studies along the linear collider (NLC) BDS.

• The energy loss is updated after each integration step Δs , in a classical manner, accounting for two random processes :

- probability of emission of a photon
- probability of the photon energy

EXAMPLE (2009) - SYNCHROTRON RADIATION DAMPING IN RINGS

Consider ESRF Chasman-Green super-cell. Interest : all-analytical understanding. 16 cells ring, 812.6 m, 64 bends.

Principle :

Damping of vertical motion over 20000 turns (left), single particle is tracked. Its vertical invariant (right) decreases towards zero.

6 SYNCHROTRON RADIATION - SPECTRAL-ANGULAR DENSITY

• Installed in 1994 for the study of deleterious interference effects at the LEP beam diagnostics mini-wiggler.

• The ray-tracing provides the ingredients to compute

$$\vec{\mathcal{E}}(\vec{n},\tau) = \frac{q}{4\pi\varepsilon_0 c} \frac{\vec{n}(t) \times \left[\left(\vec{n}(t) - \vec{\beta}(t) \right) \times d\vec{\beta}/dt \right]}{r(t) \left(1 - \vec{n}(t) \cdot \vec{\beta}(t) \right)^3}, \quad \mathcal{B} = \vec{n} \times \vec{\mathcal{E}}/c$$

• The electric field of the radiation is then Fourier transformed, so yielding the spectral angular energy density :

$$\partial^3 W / \partial \phi \, \partial \psi \, \partial \omega = 2r^2 \left| FT_\omega \left(\vec{\mathcal{E}}(\tau) \right) \right|^2 / \mu_0 c$$

EXAMPLE (2000) – DESIGN OF THE LHC SR DIAGNOSTICS INSTALLA-TIONS

• LHC undulator is against a long dipole. The optical system is drawn from LEP's.

• Intensity emitted (horizontal component) by 1 TeV protons, λ = 500 nm, with a distance d = 1 m between the two sources, simulated with Zgoubi (left) and with SRW (right).

40

20

7 SPIN DIFFUSION

• Tightly inspected for eRHIC, yet ...

... essentially a spin-off of what precedes!

 $\left. \begin{array}{c} \text{SPIN DYNAMICS} \\ + \\ \text{STOCHASTIC ENERGY LOSS BY SR} \end{array} \right\} \Longrightarrow \text{SPIN DIFFUSION}$

Comes for free

We are working on that, at the moment,

in relation with the eRHIC project R/D studies at BNL.

8 IN-FLIGHT DECAY

... was installed for eta meson spectrometry at SATURNE, Saclay, late 1980s.

Monte Carlo procedure sorts at random :

- $\theta = \arccos(1 2R)$, *R* random uniform in [0, 1]
- $\phi = 2\pi R$, R random uniform
- flight distance : $s = -p_{\pi}/\eta \ln R$

Parent particle, kinematics ingredients needed :

- lifetime $au_{\pi}=\gamma_{\pi} au_{\pi}^{*}$,
- decay law $N(s) = N_0 e^{-\eta s/p_\pi}$ ($\eta = m_\pi / c \tau_\pi^*$) - momentum, $\vec{p_\pi}$

Daughter particle, kinematics ingredients then derived :

- *com* energy $E_{\mu}^{*} = (m_{\pi}^{2} + m_{\mu}^{2})/2m_{\pi}$

- momentum
$$ec{p_{\mu}^{*}} = (m_{\pi}^{2} - m_{\mu}^{2})/2m_{\pi} \; ec{u}$$
 ,

- lab. energy
$$E_{\mu} = \gamma_{\pi} (E_{\mu}^* + \beta_{\pi} p_{\mu}^* \cos \theta_{\mu}^*)$$

EXAMPLE (2005+) – **Neutrino Factory design studies**

• Objective : optimize transmission efficiency of a FODO pion collection channel, $\pi \rightarrow \mu + \nu$. This used the 'FIT' keyword, constraint is : maximize transmission through phase-space ellipses with given surface, at the downstream end of the line.

Sample rays in the AG Channel. Left : outermost pions. Right : decay muons.

Left : x-x' phase space at line end, $4 \cdot 10^4$ initial pions from MARS distribution. Right : Time-energy.

9 THE FITTING PROCEDURE

Two methods installed, in 1985, and (Scott) 2007.

An indispensable tool for

- preliminary adjustments (orbit, tunes ...)
- optimizations (higher order dynamics as DA, transmission efficiency ...)

FIT CONSTRAINTS :

Trajectory coordinates, at any location

A number of quantities deduced from trajectory coordinates, e.g. :

- first and higher order transport coefficients
- beam's α , β , emittances
- particle transmission efficiency,
- Spin coordinates
- etc.

In the case of periodic structures :

- closed orbits
- tunes, chromaticites, anharmonicities
- Spin closed orbit
- etc.

FIT VARIABLES : any data

Zgoubi input data file, EMMA :

'END'

MARKER' RingInj BegRing MULTIPOL' QD	start of ring. Injection point start of first cell
7.56987 5.3 02.493246 0 0 0 0 0 0 0 0 0. 0. 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1. 4.1455 2.26706395 1.1558 0. 0. 0. 0. 0. 1.00 1.00 1.00 1.00 1. 1. 1. 1. 4.1455 2.26706395 1.1558 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	
D.1 2 O. 3.404834122312866 O. MARKER' BPM2 off DRIFT' sd 5 00	BPM location
MULTIPOL' QF	
) 5.87824 3.7 0. 2.477081 0 0 0 0 0 0 0 0). 0. 1.00 1.00 1.00 1.00 1. 1. 1. 1. 4 .1455 2.26706395 1.1558 0. 0. 0.). 0. 1.00 1.00 1.00 1.00 1. 1. 1. 1. 4 .1455 2.26706395 1.1558 0. 0. 0.). 0. 0. 0. 0. 0. 0. 0. 0.). 0. 0. 0. 0. 0. 0. 0. 0.).1 2 0. 0.7513707181808552 0. DRIFT' ld 3.	
CAVITE'	accelerating cavity
D.736669 1.3552e9 70e3 0. MARKER' BPM1 off CHANGREF' D. 08.571428571429 REBELOTE' 150 0 2 99	Orbit length, RF frequency Voltage, relative phase BPM location cell orientation - wrt. next one end of first cell multiturn tracking

10 CONCLUSION

THERE IS MORE : CBETA

This FFAG workshop, on Saturday

THANK YOU FOR YOUR ATTENTION

FFAG 2017 School, Cornell, September 6-7, 2017 - A User's Guide to Zgoubi Galaxy

EXAMPLE (~mid-1990s) – Dynamic aperture tracking in LHC

To be fulfilled : (i) \rightarrow preserve beam size at IP, (ii) dynamic aperture.

Point-to-point imaging, $-30 \sigma_{x'} < x'_{IP} < 30 \sigma_{x'}$. Accounting for b_{10} and tilted Xing plane at IP5.

Dynamic aperture in presence b_{10} . \approx **10,000 turns / 1600 magnets/turn.**

EXAMPLE (2000) – SR INDUCED EMITTANCE INCREASE IN THE LINEAR COLLIDER BEAM DELIVERY SYSTEM

Figure 9: Horizontal CE-S variation $(S_w/\pi(s) - S_w/\pi(0))$ along TESLA-bds as obtained from the ray-tracing of 2 10⁴ particles, in various cases of SR simulation (resp^{ly} 1, 2 and 3 in Table 1) :

- solid line : zero initial emittances, sextupoles off :
- dashed line : initial emittances $\epsilon_x = 10^{-11}$, $\epsilon_x = 10^{-14}$ m rad, sextupoles off ;
- dotted line : initial emittances $\epsilon_{x} = 10^{-11}$, $\epsilon_{z} = 10^{-14}$ m rad, sextupoles are excited.

The last case shows a strong overshoot (cut out on the Figure) in the $s \approx 850$ m region due to chromatic distortions (see page 16) ; this effect appears also in the low- β quad and FF region zoomed on the right plot (broken lines are due to particle coordinates being saved only at optical element ends). EXAMPLE (EARLY 2000s) - ELECTROSTATIC TIME-OF-FLIGHT RING SPECTROMETER The simulation uses a single, highly non-linear element : 3-electrode parallel plate condenser 'ELMIR'

$$V(X, Z) = \sum_{i=2}^{3} \frac{V_i - V_{i-1}}{\pi} \arctan \frac{\sinh(\pi (X - X_i - 1)/D)}{\cos(\pi Z/D)}$$

Typical plate voltage 50-100 Volts.

DYNAMICAL ACCEPTANCE

SEPARATION OF 2 DIFFERENT MASSES AFTER 100 TURNS

