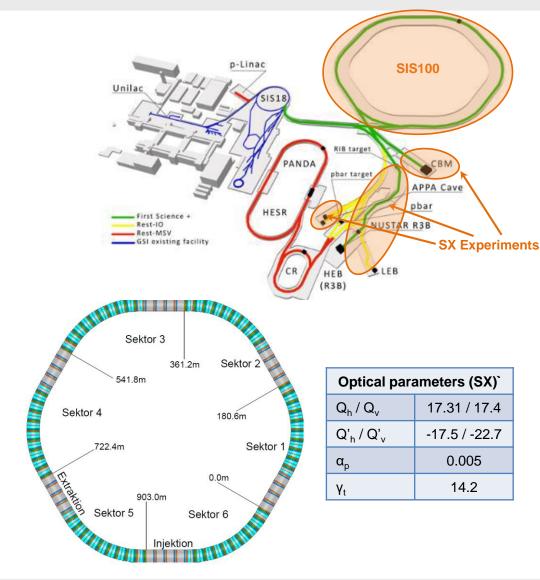


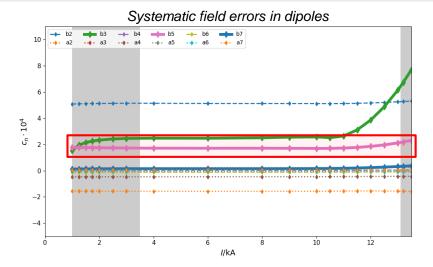
Contents

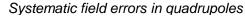


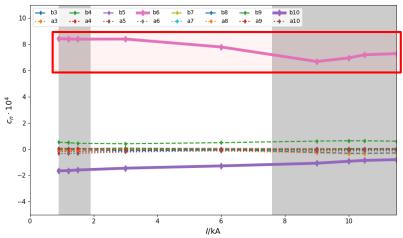
- Recap of status from last WS
 - Overview of SIS100
 - Magnetic field measurements
 - Effect of systematic errors
- Modified multipole correctors
- SX schemes with field errors
 - Modified SX design
 - Random error studies
- Next steps
- Summary

SIS100: Overview

- Workhorse of FAIR facility
 - Primary heavy ion beams
 - Factor 100 higher intensities than SIS18
- Basic parameters
 - Circumference 1083 m (= 5 x SIS18)
 - Max. magnetic rigidity 100 Tm
 - Max. ramp rate 4 T/s
 - Super-ferric main magnets
- Ion optical layout
 - Super-periodicity 6, 14 cells per period
 - DF focusing structure (charge separator lattice)
 - Optimized for operation with intermediate charge state ions
- Working modes
 - Batch injection from SIS18
 - Slow extraction to fixed targets
 - Fast extraction to fixed targets or storage rings

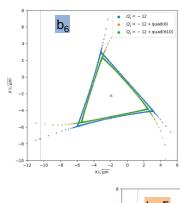


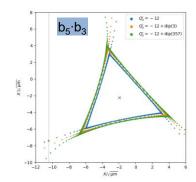

Magnetic Measurements: Field Errors

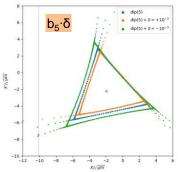


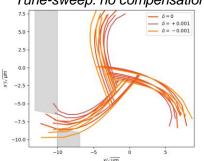
- Measurements of SF main magnets
 - Dipoles: all magnets measured (108 + 2)
 - Quadrupoles: data from 53 magnets available

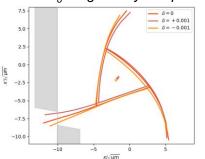
- Analyzed data as function of current
 - Variation of integral field
 - Harmonics at R_{ref} (dipole: $n \le 7$, quad: $n \le 10$)
 - Unexpectedly large systematic components
 - Dipoles: decapole (b₅)
 - Quadrupoles: dodecapole (b₆)
- Systematic components influence SX strongly



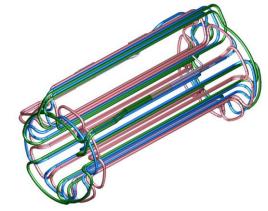


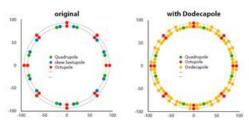

SX: Effect of Systematic Errors

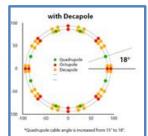

- SX affected by ADTS bending separatrix
 - Effects independent of momentum
 - ADTS in first order of strengths: b₆
 - ADTS in second order of strengths:
 - b₃·b₃ (considered in baseline design)
 - b₅·b₃ (coupling with sextupoles)
 - Effects depending on momentum
 - Momentum-dependent ADTS by feed-down from dispersion in first order of strength:: b₅.·δ
- Effects on SX in SIS100
 - Larger angular spread at ES through b₅·δ
 - Strong bending by b₆, larger for small tune distance
- Compensation options in SIS100 (baseline)
 - No b₅ or b₆ corrector magnets
 - Two families of octupoles effecting ADTS by b₄
 - Baseline: compensate b₃·b₃ from chroma sextupoles
 - Can be used to mitigate effects of b₆ and b₅·b₃
 - No compensation of $b_5 \cdot \delta$ in baseline lattice

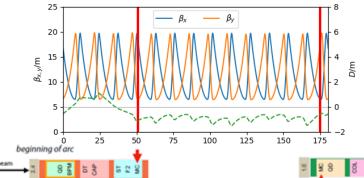


Tune-sweep: no compensation


KO: b₆ mitigated by octupoles



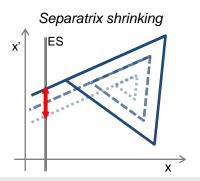

Multipole correctors


- Baseline corrector
 - Nested $cos(\theta)$ coils comprising b2, a3, b4
 - Two families, six each (large and small β_x/β_y)
 - Options for b5 and b6 coils studied
- Constraints on modified corrector
 - Only three types per magnet
 - b_5 corrector would need location with large $\beta_x \cdot D$
 - b_6 corrector would need location with large β_x
- Final decision:
 - Corrector with b5 at beginning of arc (b2, b4, b5)
 - Baseline corrector at end of arc (b2, a3, b4)
 - Mitigate b₆ using baseline octupoles

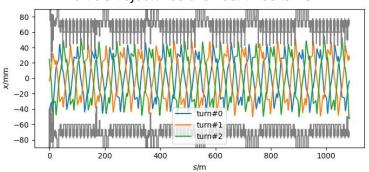
Courtesy K. Sugita

SX schemes with field errors

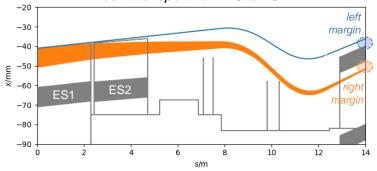
Requirements

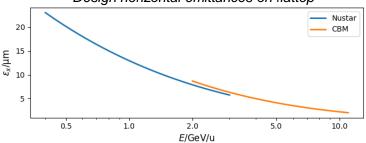

- Separatrix sizes up to 25-30 um
- Extraction efficiency > 95% (activation)
- Losses on first wire ~ 1% (ES protection)
- Robustness against random magnet imperfections
- KO extraction plus one fallback scheme
- Avoid b₅ compensation if possible (simplicity)

Constraints


- No major changes to lattice (under construction)
- Acceptance of ring limited by cryo catchers
- Small acceptance of extraction channel

Challenge

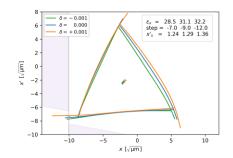

Large emittance for separatrix shrinking schemes

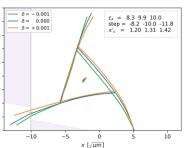

Particle trajectories over last three turns

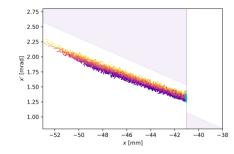
Beam transport from ES to LS

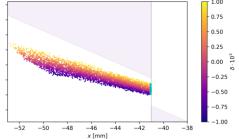
Design horizontal emittances on flattop

SX Schemes: KO

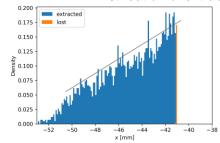

Specific challenges

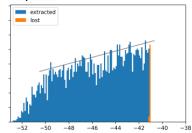

- Small and large separatrix
 - Different ion species and energies
 - Power saving for KO exciter


Characteristics

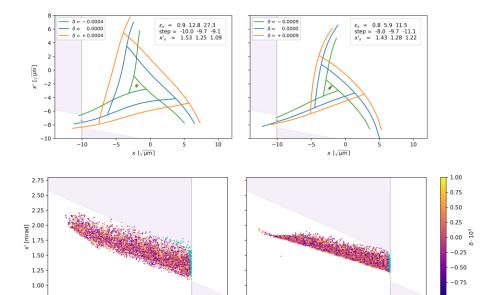

- Small chromaticity for good separatrix overlap
- Bending by b₆ mitigated with octupoles
- Usage of b₅ correctors not necessary
 - Increased spread through b₅·δ acceptable
- Total losses well within budget
- First wire losses a bit higher than expected (~1%) due to non-uniform distribution

Sepratrix size	28 π·μm	8 π·μm
Hor. chromaticity	-3	-1
Sextupole amplitude	0.70 m ⁻²	0.45 m ⁻²
Octupole strength	-1.0 m ⁻³	1.9 m ⁻³
Total losses	2.2%	1.8%
Losses first wire	1.7%	1.5%

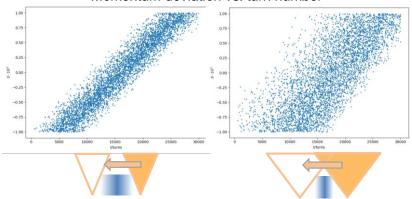




Distribution of extracted particles at ES



SX Schemes: COSE

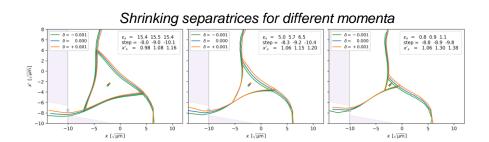


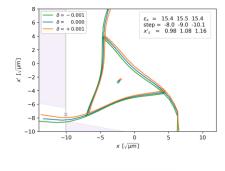
- Specific challenges
 - Large emittance difficult to handle
 - 'Linear' Hardt condition for Q'_x ≈ 0
 - Small angular acceptance
- Characteristics
 - Usage of b₅ correctors not necessary
 - b₅·δ bending actually improves alignment
 - Large chroma preferred due to smaller ΔBρ
 - More δ selective \rightarrow constant phase space at ES
 - Strong octupoles for larger chromaticity
 - ADTS cross-term a_{xv} must be removed
- Preferred fallback scheme

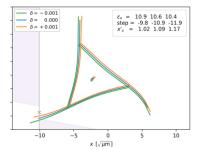
Sepratrix size	28 π·μm	10 π·μm
Hor. chromaticity	-10	-3.5
Sextupole amplitude	0.40 m ⁻²	0.32 m ⁻²
Octupole strength	-/+9.2 m ⁻³	1.5 m ⁻³
Total losses	3.5%	2.1%
Losses first wire	1.5%	1.5%

Momentum deviation vs. turn number

x [mm]

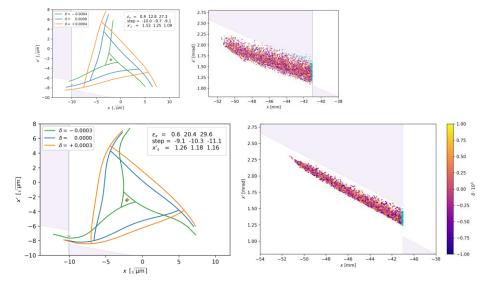

x [mm]


SX Schemes: Tune-Sweep

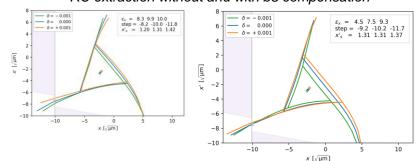



- Specific challenges
 - Large emittance difficult to handle
 - Large angular spread favors b₅ compensation
- Characteristics
 - Chromaticity uncorrected
 - Very large octupole strengths required
 - ADTS cross-term a_{xv} must be removed
 - Large angular spread due to shrinking separatrix
 - Acceptable losses only for sepa size <= 15 π·um
 - Possibly useful as commissioning scheme

Sepratrix size	15 π·μm	10 π·μm
Hor. chromaticity	-17.5 (nat.)	-17.5 (nat.)
Res. sext. ampl.	0.33 m ⁻²	0.38 m ⁻²
Octupole strength	-/+12.7 m ⁻³	-/+9.2 m ⁻³
Total losses	3.9%	3.2%
Losses first wire	1.5%	1.2%



Options for employing b₅ correctors

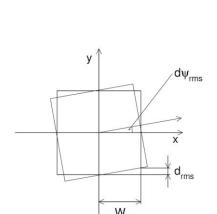


- Goal: better separatrix alignment
- COSE: 'anti-compensation'
 - Amplify effect of b₅ from dipoles
 - Increased b₅·δ bending improves overlap
 - Small losses (2.3%) even for large emittance
 - Robustness yet to be checked
- KO: limits for small separatrix
 - Compensation of b₅ not independent
 - Better overlap at price of stronger size dependence
 - Hard to get around acceptance limit at LS
- Benefits to be investigated in further studies

COSE without and with b5 'anti-compensation'

KO extraction without and with b5 compensation

SX with Magnet Imperfections: Random Error Studies



- Goal: Verify robustness of SX schemes against magnet imperfections
 - Magnet alignment errors
 - Magnetic field errors (variations in integral field, harmonics)
- Simulation procedure per scenario
 - 10 random error seeds chosen from Gaussian distribution truncated at 2σ
 - Nelder-Mead optimizer to match separatrix
 - Target parameters: separatrix size, spiral step, crossing angle
 - Variables: tune distance, virtual sextupole, orbit bump, octupole strengths
 - Tracking of 1000 particles over 25000 turns with MAD-X to evaluate performance
- Preliminary results on SX without b₅ compensation
 - KO extraction and COSE robust against errors
- Limitations
 - Optimistic distributions for quadrupoles' roll and variation of integral field
 - Matching of separatrix can lead to non-optimal settings due to ignorance of distributions
 - MAD-X tracking times not suitable for use of optimizer with multi-particle simulations

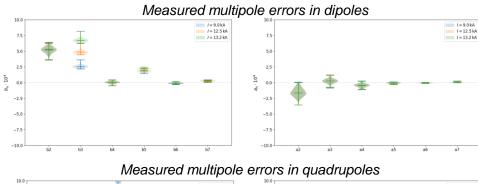
Magnet Imperfections: Alignment Errors

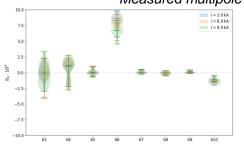
- Sources of alignment errors for SF magnets
 - Mismatch between geometric and magnetic axis
 - Tolerance for positioning magnet on girder
 - Tolerance for positioning girder in cryostat
 - Motion during cool-down
 - Alignment tolerance of cryostat
- Conservative values in simulations
 - Lateral shifts of with $\sigma = 1 \text{ mm}$
 - Roll estimated from mechanical tolerances

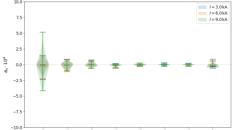
Magnet Imperfections: Model for Field Errors

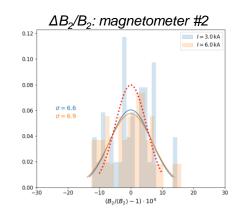
S. Sorge

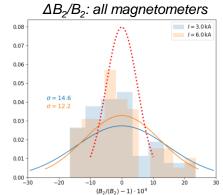
Dipoles

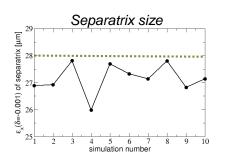

- Systematic allowed components: b₃, b₅, b₇
- Mean values of forbidden components discarded
 - b₂ artifact from measurement geometry
- Random components: standard deviation used as σ
- Integral field variation: $\sigma_{mod} = 4.10^{-3} > \sigma_{meas} = 3.10^{-4}$
 - Kept for comparison with previous studies

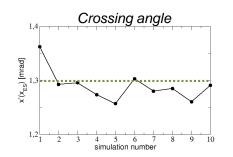

Quadrupoles

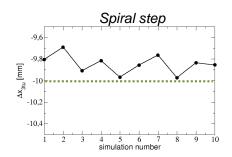

- Systematic allowed components: **b**₆, b₁₀
- Mean values of forbidden components zero
- Random components: standard deviation used as σ
- Integral field variation: $\sigma_{mod} = 5 \cdot 10^{-4} < \sigma_{meas} > 7 \cdot 10^{-4}$
 - Kept for comparison with previous studies

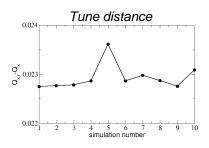

Calibration uncertainty for quadrupoles

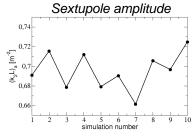

- Systematic offsets between magnetometers
- Not fully removed by official cross-calibration
- Factor 2 difference in expected beta beating

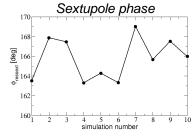


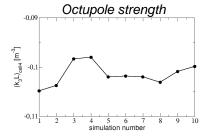

14

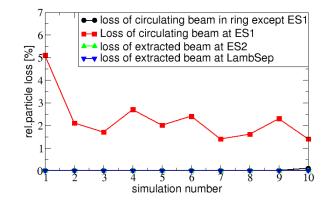

Random Error Studies: KO Extraction (U28+, 400 MeV/u)

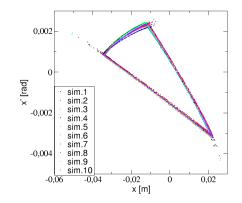



Target parameters	
Separatrix size	28 um
Spiral step	10 mm
Crossing angle 1.3 mra	

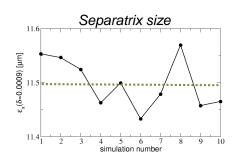


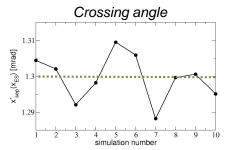


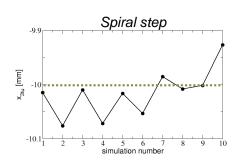


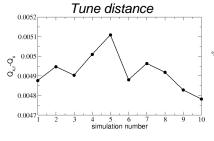


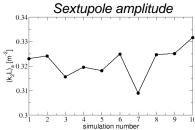
Performance (errors / ideal) Total losses 2.3% / 2.2% Losses 1st wire 1.5% / 1.5%

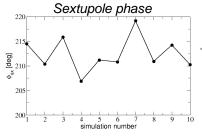


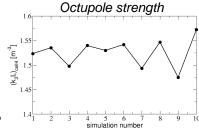


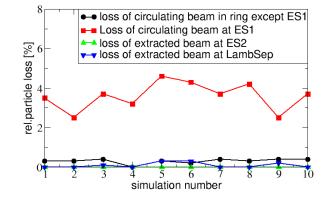

Random Error Studies: COSE (U28+, 1.5 GeV/u)

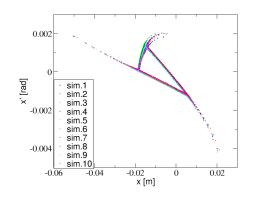



Target parameters	
Separatrix size	11.5 um
Spiral step	10 mm
Crossing angle 1.3 mra	





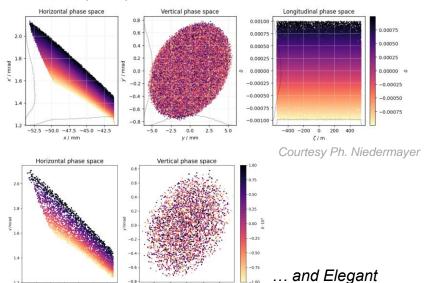




Performance (errors / ideal)		
Total losses	3.9% / 2.1%	
Losses 1st wire	1 3% / 1 5%	

artefact from matching issues

GSI Helmholtzzentrum für Schwerionenforschung GmbH



Next Steps

- Continuation of error studies
 - Schemes with b₅ compensation
 - Pessimistic quadrupole roll and field variation
 - More statistics (larger number of seeds)
- Studies for commissioning and operation
 - Commissioning strategy
 - Robust settings for design schemes
 - Step-wise approach starting with simpler schemes
 - Models for tuning of SX in operation
 - ML for coupled, non-linear multi-parameter space
 - Optimizers for fast tuning
- Moving to Xsuite for faster tracking
 - On GPU farm: 0.1Mpart * 0.6Mturns in few hours
 - First runs (U²⁸⁺, 1.5 GeV/u) by Ph. Niedermayer
 - Benchmarked with Elegant for ideal machine

Phase space plots from Xsuite...

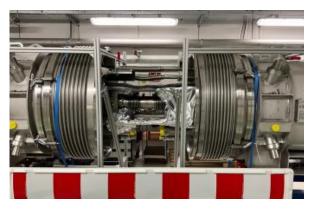
Summary

- SX from SIS100 affected by systematic b₅ and b₆ errors from main magnets
- Multipole corrector family modified to include b₅ corrector
- SX design adapted to account for b₅ and b₆
 - KO SX and COSE work without b₅ corrector
 - Tune-sweep SX requires b₅ corrector, COSE and KO may profit from it
- Random error studies with MAD-X indicate robustness
 - Optimizer used to determine settings based on single-particle tracking
 - Some error estimates may be on the optimistic side, to be redone
- Further studies will be based on Xsuite for faster tracking times
 - Allows increased statistics and optimization using multi-particle simulations

Special thanks for their invaluable contributions go to: B. Galnander, Ph. Niedermayer, S. Sorge, and K. Sugita

Thanks for your attention!

Impressions from the ongoing installation of SIS100



More info and media: https://www.gsi.de/en/researchaccelerators/fair/fair_civil_construction
Drone video of construction site: https://www.youtube.com/watch?v=tKuXUqJyirQ