
Slow-Spill-Fast-Monitor at the CERN SPS

Operational Experience, Status & Plans

F.Roncarolo, CERN SY-BI

S. Benitez, D.Belohrad , S.Mazzoni, S. Burger, M.Martin Nieto, A.Goldblatt

M.Fraser, F.M.Velotti, P.A. Arrutia Sota

Content

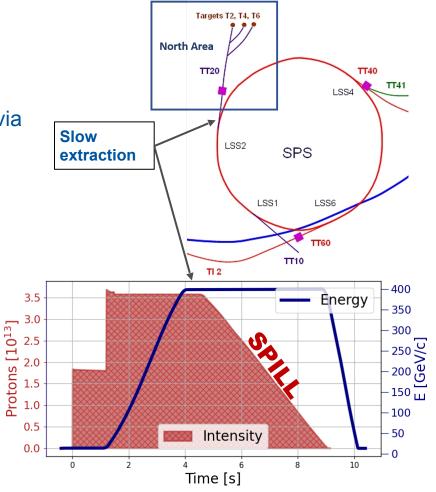
- Recap of the system concept, architecture, implementations and expected performance
- 2024-2025 Experience with beam
- Outlook of next steps

CERN SPS for Fixed Target Experiments

Protons @ 400 GeV sent towards NA experiments via **Slow Extraction** process

 RF disabled at flat top, ideally fully de-bunched beam is sent to transfer line

Spill 'quality' affected at macro and micro-structure level by:


 hysteresis, non-reproducibility of momentum distribution, regulation and ripples of power supplies, spikes at RF switch-off

V.Kein @:

ICFA Mini-Workshop on Slow Extraction, 2022

SPS_SX_status_plans_Jan2022 (kek.jp)

Spill Monitoring Requirements - General

Table 1: Key parameters of interest for the SPS spill monitors requirements.

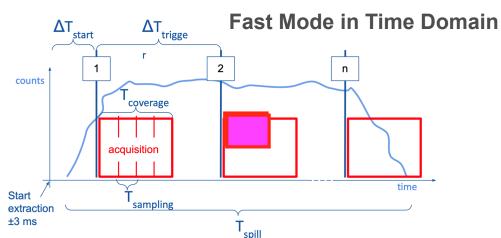
Parameter	Value or Range	Comment
Spill Duration	4.8 [s]	present operation
	1 [s]	future, e.g. PBC
Beam Intensity	1-400 [1e11p]	
Spectrum	$50\mathrm{Hz}, 100\mathrm{Hz}$	e.g. Noise, PC ripples
Harmonics	$43.86\mathrm{kHz}$	SPS 1^{st} and 2^{nd} Harmonics*
of interest	476 kHz	PS 1st Harmonic**
	200 MHz	RF capture
	800 MHz	RF long. blow-up
	$10\mathrm{GHz}$	Future, e.g. PBC

^{*} the SPS circulating beam structure includes $2\times10\,\mu s$ injections, the abort gap for the dump kickers rise

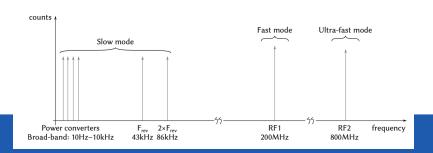
From few nA to few uA

From few Hz to

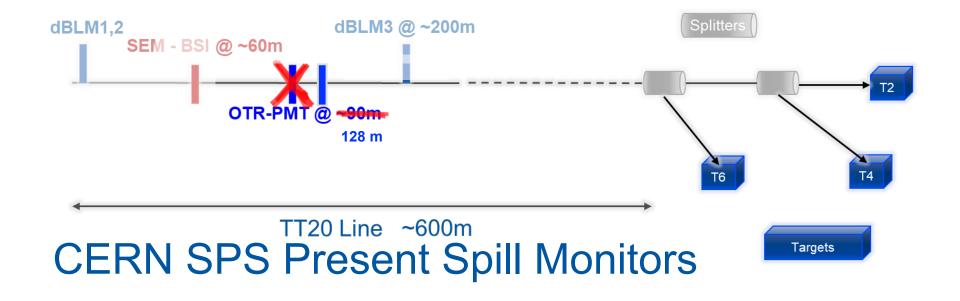
- 800 MHz (SPS NA CONS, short term)
- several GHz (PBC, long term)


^{**} the slow extracted beam can still contain a time structure from the PS (the SPS injector)

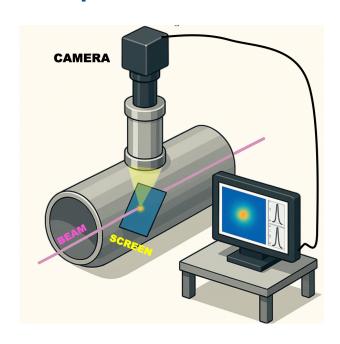
Spill Monitoring Requirements – DAQ


For NA CONS monitors == current developments

	Acquisition Mode		
	Slow	Fast	Ultra-fast
Application	Autospill,	RF debunching	Empty-bucket
	power-		channelling
	converter		
	ripple		
$f_{bw}=rac{1}{2\Delta t}$ (MHz)	≥ 0.1 ≥ 10		10
f_{centre} (MHz)	$f_{bw}/2$	≈ 200	≈ 800
n triggers	1 ≥ 10		
$T_{coverage}$ (ms)	Whole spill ≥ 10 (per trigger)		r trigger)
$T_{offload}$ (ms)	200 (example, see text)		
Phase information	Yes No		


Table 3.1: List of requirements for North-Area spill monitors data processing.

Slow and Fast Modes in Time Freq. Domain



- Secondary Emission Monitor (SEM)
- 2. 2 x Diamond Beam Loss Monitors (dBLM)
- 3. Optical Transition Radiation Photomultiplier Monitor (OTR-PMT)

Optical Transition Radiation Screens

Optical Transition Radiation (OTR):

When a charged particle crosses the boundary between two media with different dielectric constants (e.g., vacuum to titanium), it emits OTR photons due to the sudden change in electromagnetic field configuration.

Key Formula:

• OTR Photon Yield per Unit Frequency and Solid Angle (Normal Incidence):

$$\frac{d^2N}{d\omega d\Omega} = \frac{\alpha}{\pi^2} \cdot \frac{\beta^2 \sin^2 \theta}{(1 - \beta^2 \cos^2 \theta)^2}$$

Where:

• α = fine structure constant (~1/137)

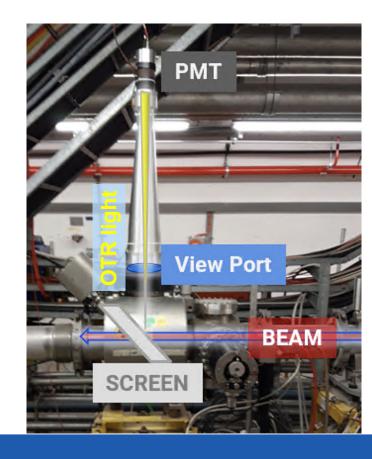
• $\beta = v/c$ (relativistic factor, ~1 for high-energy beams)

 \circ θ = observation angle

 $\circ \omega$ = angular frequency of emitted light

• For ultra-relativistic beams, emission is sharply peaked at small angles ($\theta \approx 1 / \gamma$).

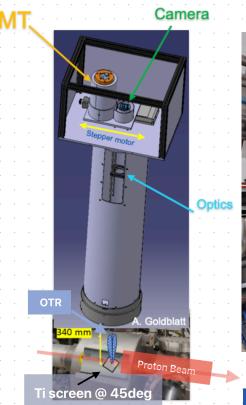
OTR -> Photo Multiplier Tube (PMT)


Concept: imaging integrate photons from OTR

2021-2022:

Existing imaging system refurbished with new Ti screen (12um thick), PMT and amplifier

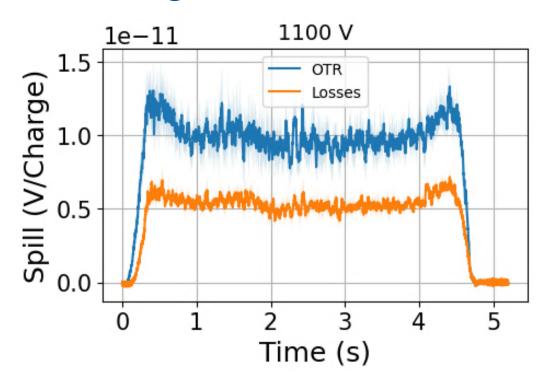
2022-2023


- Test measurements via non-operational DAQ (PicoScope)
- Recorder signals from DC to 300 MHz
- High signal even with OTR screen OUT → System sensitive to beam losses
- Small (~== no) signal increase with screen IN → captured OTR radiation < than expected

OTR-PMT – New Location, New Layout

- 2023-24 Shutdown: moved to new location
- More robust optical design
- Added translation stage hosting PMT and Imaging camera, to check OTR photons are focused on sensor.

Imaging check at PMT location

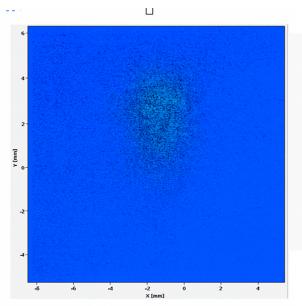


Operational experience: OTR exists ;-) and we

send it at the right place

Figure 3: Image of the OTR light captured by the analogue camera, installed as a component of the OTR-PMT monitor. From this image, the beam horizontal and vertical size results to be approximately $\sigma_x = 1 \text{ mm}$, $\sigma_y = 2 \text{ mm}$.

PMT signal w. and w.o. screen



Operational experience:

Losses impact our detector
Losses well reproduce spill structure (up to xxx MHz)

Imaging check at PMT location after few months

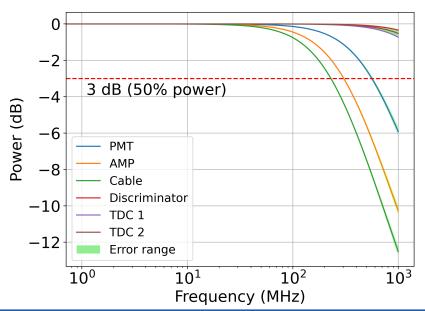
Operational experience:

DAQ synoptics and implementation as of today

The PMT signal is amplified in the tunnel and split to the two path

'Low - high frequency path' designed for up to 250MHz:

- operational up to 4 MHz sampling, all spill digitised
- For up 250 MHz : Work in progress


'Ultra High frequency': to probe 800 MHz, down-mixed to 125 MHz. Work in progress

High quality cables to the surface Heliflex HCA78-50, low attenuation (2 dB/100 m at FMC ADC (4CH, 500MS/s) 300MHz), air-filled coaxial cable with inputs require 50Ω DC \rightarrow exceptional inter-modulation performance. buffering amplifiers have to condition the signals FE amplifier On CERN VFC and mixer in the tunnel VFC Band-pass filter Mixer Low-pass filte MEN A25 CPU Tunnel Service Area (surface)

Frequency Response

Lab measurements based on fast pulsed laser (<1ns) shined on PMT —> long cable —> FE amplifier

Lab measurements (no PMT, no cables, only DAQ electronics, all stages)

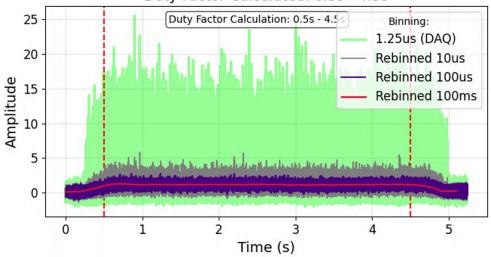
Overall Monitor Status - Recap

- Equipped since 2024 with VME DAQ integrated to CERN control system
- FESA control SW ('słów' and 'fast' acquisitions)

- JOB DONE
- Fast mode for up to 250MHz: working in 'expert/manual' setup. To make it operational: Gate-ware needs to be optimised to sustain large data size and high data transfer —-> ultimate reach to be confirmed —> will likely yield to: new DAQ (e.g. PCle, SoC) needed
- Ultra Fast mode 800MHz final FW/SW implementation missing
- Since June 2025: OTR screen always IN (it is ~transparent to operation in term of losses and transverse blow-up —> SW interlock (Active for most CERN screen systems to inhibit their use with high intensity —> high losses) was removed
- WORK IN PROGRESS

- Still 'suffering' (or profiting?) of losses directly generating signal, also with screen out
- Lab measured BW + down-mixing config —> system expected to fulfil requirements up to 800 MHz

Next slides: examples to assess where we are in probing the performance and operational status

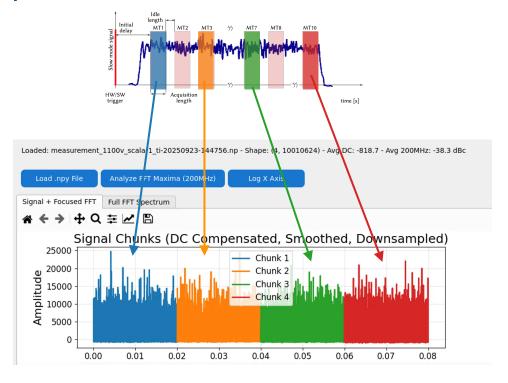

Slow mode example

- This is basically available on line up to 4MHz*, integrated in CERN control system, continuously logged
- Being ported to SW based processing to feed forward HW based 50-100 Hz compensation

*Above 4 MHz:

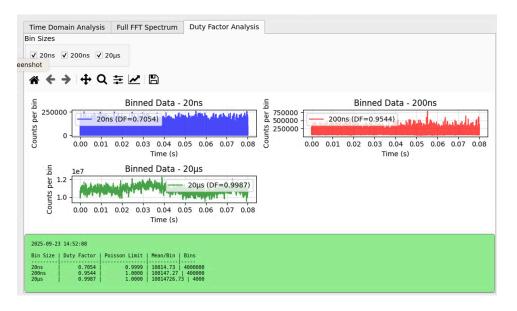
- -more work on gate-ware needed
- -on demand measurements (like example presented later) via expert tools

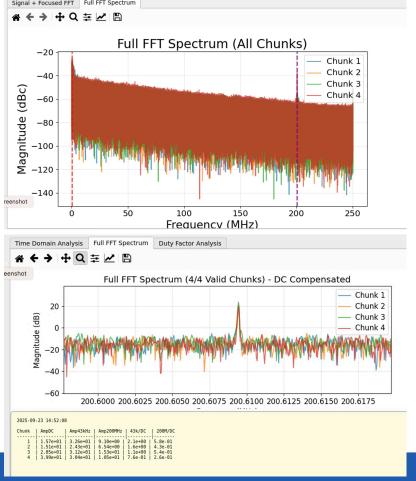
Slow mode signal and re-binned views (@ 801.2 kHz) Duty Factor Calculated: 0.5s - 4.5s


Duty Factor Statistics (Time Range: 0.5s - 4.5s)

Bin Size	Carala Nacia	Mean/bin	Duty Factor
1.25us	1600000	0.01	0.62
10us	400000	0.02	0.84
100us	40000	0.24	0.95
100ms	40	240.03	1.00

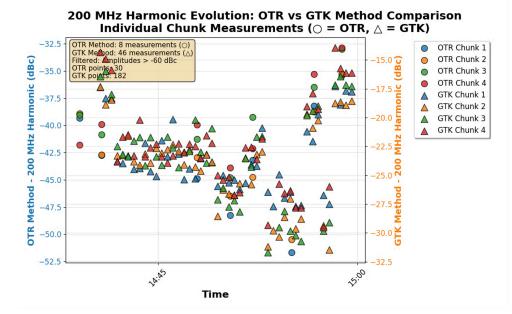
Fast mode measurement examples


- Spill data acquired in 'chunks' (as per eng. specs) and processed on the fly by FW to infer frequency spectrum
- 500 MS/s, 20ns sampling
- Allows reconstructing spectrum up to 250MHz harmonic



200 MHz measurements

Example of one spill processing

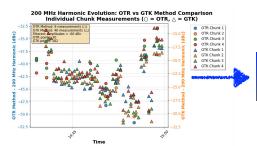


200 MHz measurements

4 chunks of the full spill analysed for both OTR and GTK systems

- Few weeks ago Pablo Arrutia with BI expert
- Scanned SPS 200MHz RF cavity frequency to artificially inject 200MHz harmonic in extracted beam intensity
- Registered data with
 - SY-BI OTR-PMT system
 - NA62 experiment GTK* system

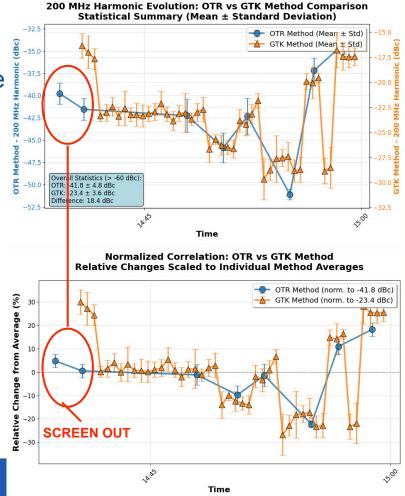
*In NA62 the GTK (GigaTracker) measures the time, momentum and direction of each incoming 75 GeV kaon at rates up to $\sim 10^9$ particles/sec with ≈ 100 ps timing precision per track.


Link for more details: GTK, NA62 — CERN <u>na62.web.cern.ch</u>

Operational experience: we need Pablo to see 200 MHz;-)

200 MHz measurements

Absolute



Average and spread of 4 chunks

Operational experience:

measurement based only on losses (no OTR) has **limited BW** (see spare slides)

Relative

Summary

- OTR-PMT spill monitor on line, ~operational up to few MHz, available to OP for 50-100Hz corrections
- PMT see losses
 - Signal usable also without screen up to ~13 MHz (see spare slides)
 - OTR needed for higher frequencies
- Recent experiment with injecting 200MHz: present detector + DAQ able to resolve residual bunching from SPS RF. Ultimate sensitivity tbc

Outlook of next steps

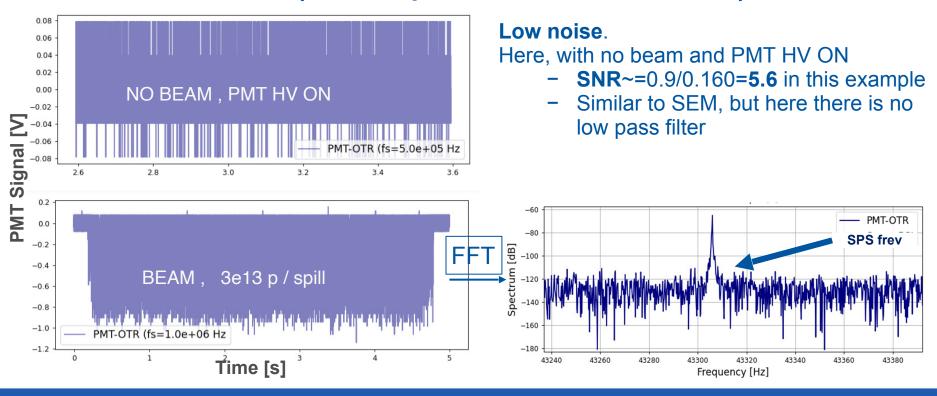
- Bring 'low rate' mode fully operational and test its use for 50-100 Hz compensation
- **Study ultimate sensitivity** systematically, compare to BSI (secondary emission detector, slower than OTR-PMT and in principle more noisy)
- Study PMT ageing (HV scans)
- Update gate-ware and SW —> assess ultimate reach with present DAQ
- Propose / implement new DAQ not VME ? SoC ?

For > 1=GHz: collect final ECN3-ShiP requirements. Assess need for different detector type or DAQ type

- Photon counting techniques instead of integrating ?
- Explore different detectors (Cherenkov based system presented last year, we did not work on it this year

Anybody else already with or is developing > 100MHz spill measurements?

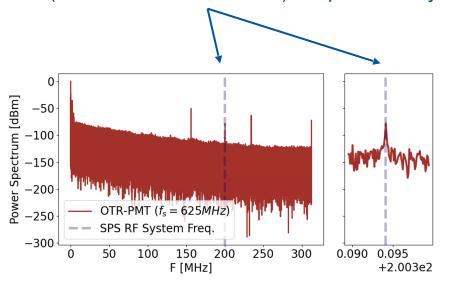
BACKUP / SUPPORT / REFERNECE SLIDES

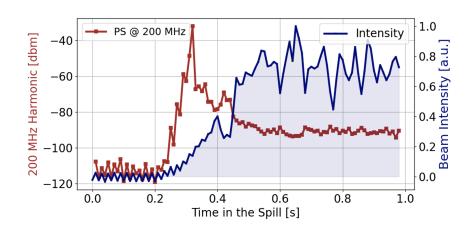

Plans towards xx GHz range (DAQ side)

On-going studies (conceptual + few lab tests for the moment

Option	Pros	Cons
ATCA	High-speed communication channels, used in CERN experiments	Expensive, requires minimum configuration, not cost-effective for isolated system
SoC (RFSoC)	Flexibility in choosing ADCs, local communication between ARM CPU and FPGA	Existing modules have low memory, limited availability of larger memory options
PCle	Widely used standard, high-speed data transfer, supports DMA	Requires PCIe form-factor FPGA carrier with sufficient memory, limited module options with large memory

OTR – PMT (example with fs=1MHz)





OTR - PMT (example with fs=625 MHz)

High frequency acquisition on a 'chunk' to study presence SPS RF (nominal=200.3941 MHz) in spill intensity

Scanned trigger delay to measure 200 MHz harmonic along the spill (here only first part of the spill)

Geometric Bandwidth Limit from Loss Localization Uncertainty

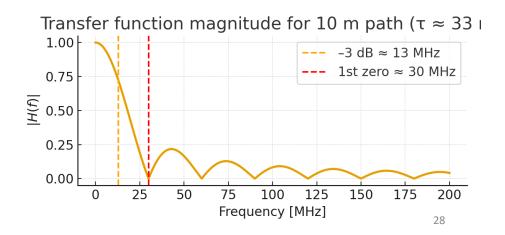
 A single loss monitor sensitive to losses along a 10 m line sees losses convolved over the proton flight time:

$$\tau = \frac{L}{V} \approx \frac{10 \text{ m}}{C} \approx 33.3 \text{ ns}$$

- The signal = beam intensity \otimes rectangular window (width = τ)
 - → frequency response is sinc-shaped low-pass

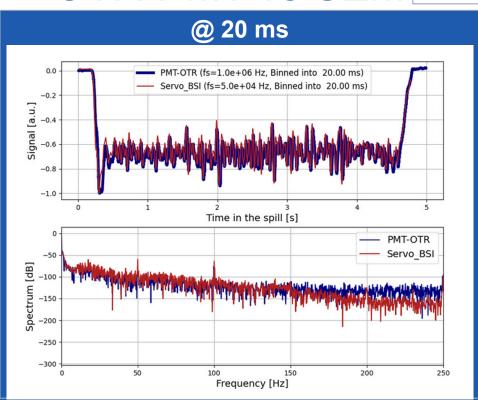
$$|H(f)| = |\frac{\sin(\pi f \tau)}{\pi f \tau}|$$

• Effect: fine temporal structure in beam intensity is blurred out.

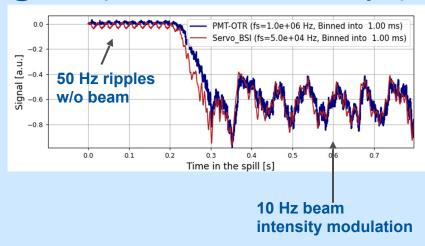

The monitor integrates losses over ~33 ns, acting as a sinc low-pass filter.

Bandwidth of a 10 m Integrated Loss Monitor

- First zero: $f_0 = 1/\tau \approx 30 \text{ MHz}$
- –3 dB point: $f_a dB \approx 0.443/T \approx 13 \text{ MHz}$
- At 200 MHz: $|sinc(\pi f\tau)| \approx 0.041 \rightarrow -28 \, dB$ (undetectable)
- \rightarrow 200 MHz beam harmonics cannot be inferred; effective bandwidth \approx 10–20 MHz for L = 10 m.


Design rule:

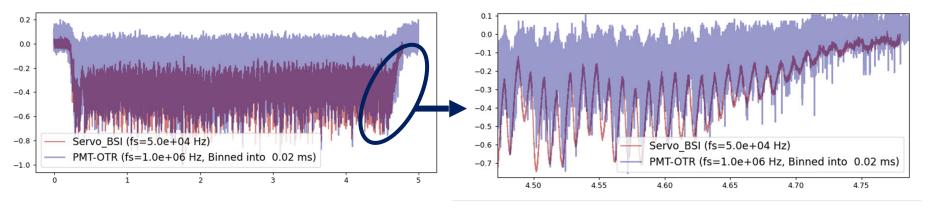
L \approx v / f_t (first zero above f_t) L \approx 0.443 v / f_t (-3 dB above f_t) For 200 MHz \rightarrow L < 1.5 m (zero), L < 0.66 m (-3 dB).



OTR-PMT vs SEM

Binning both monitors in equal time intervals

@ 1 ms (Zoom on Start of the Spill)



Impressive agreement between two systems based on different detector, DAQ and 30m apart

OTR-PMT vs SEM

SEM @ 50 kHz (20us), no binning OTR-PMT @ 1MHz binned @ 50 kHz (20us)

As expected from **SEM** setup: **low pass filter (1kHz) reduces overall BW**, even when sampling at higher rate (50 kHz in this example)

OTR-PMT gives same envelope (100Hz beam intensity fluctuations) **but also measures higher frequency** beam intensity fluctuations

DAQ – from Functional to Engineering Specs

Acquisition Mode	Sampling Rate	Storage Needed	Ccomments / Remarks
Slow	> 200kHz	32 Mbits	 Suitable for ADCs with a sampling frequency > 200kHz. Can increase sampling rate and memory for better frequency or temporal resolution.
Fast (up to 200MHz)	≥ 400 MHz	64 Gbits	• Requires ADC with minimum 400 MHz sampling rate and sequential triggering mechanism to reduce data storage needs.
Ultra-fast (800MHz)	≤ 1.6 GHz	Depends	 Can be under-sampled if the ADC and signal path support it. Alternatively, a fast ADC at > 1.6 GHz can be used, or the 800 MHz frequency can be down-mixed to a compatible band for Fast mode.

Plans towards xx GHz range (Detector side)

Cherenkov detector for proton Flux Measurement(CpFM)

F. M. Addesa et al. "In-vacuum Cherenkov light detectors for crystal-assisted beam manipulations,"

In vacuum quartz bar producing **Cherenkov light**

- System evolution of one used with low particle flux for crystal assisted extraction
- Can go to few GHz at least (as **OTR-PMT**, but with better **SNR**)
- Validated in 2018 with custom made: DAQ

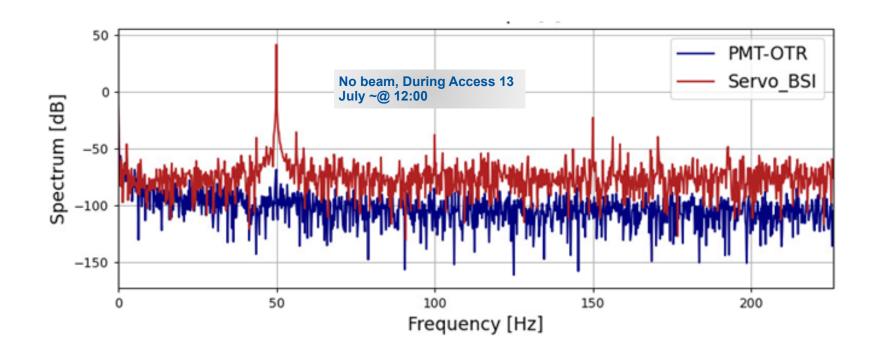
Cobra CompuScope Family Next-Generation High-Speed Digitizers for the Upgraded in Sept 2018 2-CH 8 bit digitizer max sampling rate 2GS/s Extracted Beam PMT Divider changed: transistorized divider (LHCb CALO) quartz bar $5 \times 10 \times 290 \, mm^3$ Fresh R7378A PMT (radiation aging of the old one) guartz vacuum-air optical interface Motorized bellow

Plan

- Resurrect system
- Study ultimate bandwidth
- Propose ~standard DAQs

Requirements

- Non-degassing materials (primary vacuum)
- Challenging particle rate: 4E12 up to 4E13 p/s
- Radiation hardness (~ 3kGy per year)
- Timing: possibility to resolve 200MHz time structures in the extracted beam


UV-NIR Optical filter mounted: 1E-04

F.M Addesa

PMT+DIVIDER+FILTER

tested in lab with a diode

laser source up to 100 MHz

