

Scalable Al-assisted Workflow Management for EIC Detector Design Across Distributed Heterogeneous Resource with PanDA-iDDS

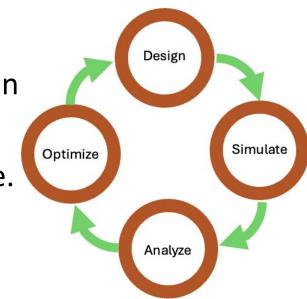
Wen Guan, Amit Bashyal, Fangying Tsai and Torre Wenaus on behalf of AID2E and PanDA teams

Challenge and motivation

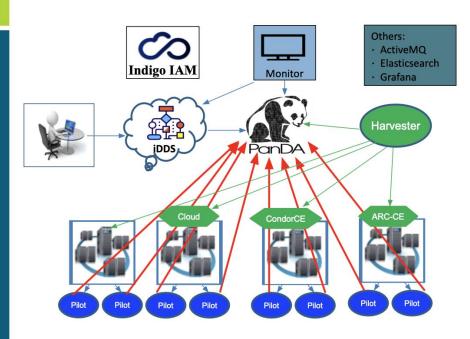
 Detector design involves many optimization parameters and complex constraints.

Simulations are computationally expensive.

- Need automation, parallelization, and scalability.
- Al-driven optimization of detector design demands scalable, automated workflows across distributed resources



Distributed Computing with PanDA



PanDA (Production and Distributed Analysis system)

- Unified workload management system for distributed computing
- General interface for users, one authentication for all sites
- Integrate different resource providers (Grid, Cloud, k8s, HPC and so on), hide the diversities from users, large scale

Distributed Users

- Users from different universities/labs can run jobs on PanDA through a http service
- X509 or OIDC for authorization
- o LHC ATLAS: 170 sites and several thousand users

• Distributed computing resources

- Diverse locations
- Different software (slurm,condor,pbs)
- Site differences will increase user complexity
- Proven in LHC ATLAS and Rubin Observatory, now extended to EIC.

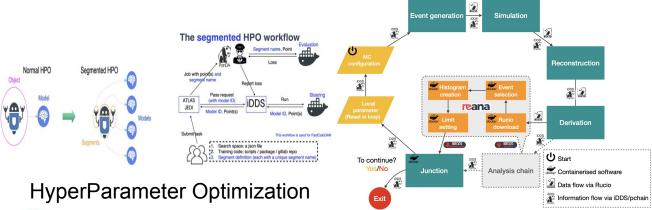
W. Guan Al4EIC 2025

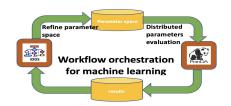
Workflow Automation with iDDS

- arXiv:2510.02930
- iDDS (intelligent Distributed Dispatch and Scheduling) orchestrates workflows for automation in PanDA
 - Directed Acyclic Graph (DAG) management.
 - Dynamic workflows supports conditions and loops
 - Iterative workflow for machine learning integration
 - Function-as-a-Task via Python decorators
 - Asynchronous results handling

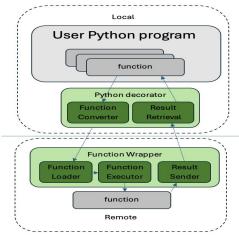
W. Guan

Integrated with PanDA for scalable computing resources





Iterative workflow



Function-as-a-Task

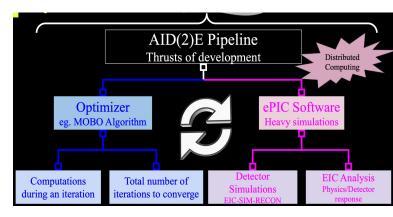
Al-assisted Detector Design for EIC (AID2E)

- AID2E (A scalable and distributed Al-assisted Detector Design for the EIC)
 - Contribute to advance the multiple objective optimization for detector design
- Al-assisted detector design for the EIC (AID(2)E) 2024
- Al-driven detector simulation, evaluation and decision optimization workflow
 - A holistic optimization
 - Optimizing two detection systems in ePIC
 - the dual-RICH (dRICH) in the central region and the B0 detector in the forward region
- Multiple objectives
 - Momentum resolution, θ resolution, KF efficiency, Projected θ resolution @PID
- o Develop an infrastructure that optimize detector design in a scalable and distributed manner
 - Link ML (Ax platform) with HPC (slurm)
 - Link ML (Ax platform) with distributed execution (PanDA/iDDS with Grid, Cloud, HPC and so on)

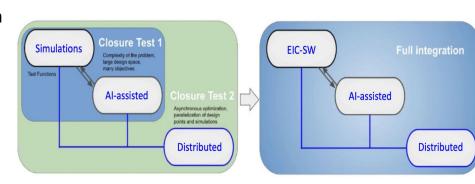
EIG 2025

AID2E Pipeline

- Multiple Objectives Optimization (MOO)
- Multiple design parameters & objectives, complex constraints
- Treat mapping (design parameters -> objectives) as 'black box'
- Iterative optimization process
- Each evaluation: Steps varying computing requirements
- Optimization engine to minimize expensive evaluation
 - Suggest next design parameters based on history
 - Eg. bayesian optimization, genetic algorithm
- Couple MOO with ePIC software for detector simulation
- Integrate PanDA/iDDS for distributed computing



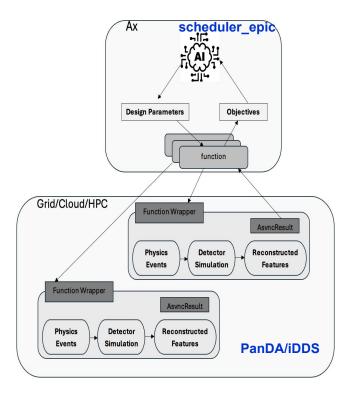
Karthik Suresh FCC 2024



AID2E integration with PanDA/iDDS

- AID2E integration with PanDA/iDDS
 - Employ PanDA/iDDS to manage AID2E parameter optimization tasks on distributed resources
 - iDDS Function-as-a-Task maps Ax objective functions to tasks and asynchronously manages the results
 - PanDA manages the tasks on distributed computing resources such as WLCG,
 OSG, HPC and etc
- Implementation
 - Scheduler_epic (https://aid2e.github.io/scheduler_epic/) with <u>Ax (Adaptive Experiment Platform)</u>, manages the parameters generation and results evaluation
- Makes use of BNL PanDA instance
 - Supports multiple experiments and projects, R&D, prototyping
 - WLCG, OSG, HPC, Cloud, Kubernetes

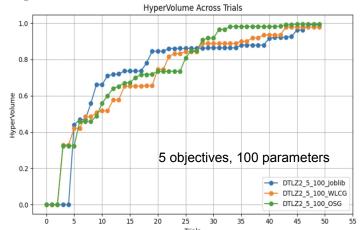
W. Guan

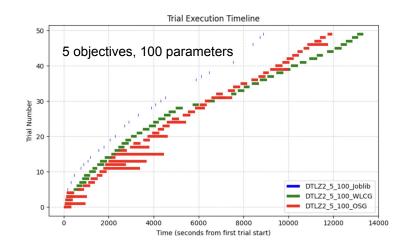


AI4EIC 2025

Case study 1: DTLZ2 (A closure test)

- DTLZ2 (Deb–Thiele–Laumanns–Zitzler Problem 2): benchmark optimization problem
- Setup
 - Objectives: 3, 4, 5
 - Parameters: 20, 50, 100
- Computing resources
 - Local: Joblib (single-core)
 - PanDA distributed resources enables concurrency: WLCG BNL site and OSG
- Results analysis:
 - Similar optimization results
 - For DTLZ2, the bottleneck is to generate the trials (hyperparameters)
 - The evaluation function is fast
 - PanDA enables to run multiple concurrent trials. However, most of the time it cannot reach enough concurrent trials (some details in backup)
- Demonstrated successful integration of PanDA/iDDS for AID2E

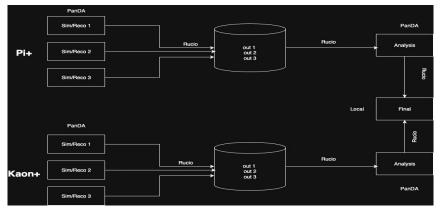




Case study 2: dRICH-MOBO

- Multiple Objectives Bayesian Optimization for optimizing the dRICH detector design
 - Multiple steps
 - Detector Simulation (PanDA Runner) Chained together with PanDA workflow
 - Objective Analysis (PanDA Runner)
 - Finalize to combine the results (Local Runner)
- - Function-as-a-Task, to automatically get analysis results
- Demonstrated successful integration of PanDA/iDDS for a complex, real detector model
- Achieved improved throughput, automation and workflow scalability across distributed resources

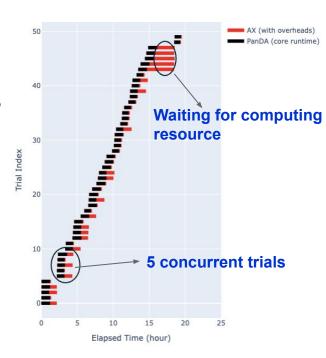
```
Trial (1 of 30)
    Sim/Reco Stage
          Pions (2 momentum bins)
            — Bin1 → 5 jobs of 1000 events
           L— Bin2 → 5 jobs of 1000 events
          Kaons (2 momentum bins)
            \longrightarrow Bin1 \rightarrow 5 jobs of 1000 events
           L Bin2 → 5 jobs of 1000 events
     Analysis Stage
       Aggregate results (per bin, pion/kaon)
    Final Stage
       └─ Compute objectives & feed Ax
                         W. Guan
                                              AI4EIC 2025
```



Case study 2: dRICH-MOBO optimization

- Performance against different number of events and iterations
- Scaling and Overheads
 - Concurrent simulation and evaluation
 - Trial generation overheads
 - Scheduling waiting for busy computing resources

Trial Duration vs Elapsed Time



Elapsed Time vs. Trial index of a dRICH-MOBO optimization with 5000 events

Performance Insights

- Efficient scaling across distributed resources
- Overheads from trial generation and scheduling latency (waiting for busy computing resource)
- Concurrent trial evaluation and simulation
- Automatic checkpoint and restart for long runs
- Optimization metrics are saved for later evaluation

Conclusion and Outlook

- PanDA/iDDS delivers flexible, scalable workflows for AI-driven science, enabling <u>distributed HyperParameter Optimization and</u> <u>Active Learning</u>
- AID2E integration bridges ML optimization with distributed resources, accelerating ePIC detector R&D
- Successfully built an infrastructure to optimize the ePIC sub-detector systems, though a lot of open design questions remain open and continue to drive further exploration
- Next steps:
 - Extending to large ML models and more detector components
 - Explore integration with Large Language Models (LLMs) to enhance automation, workflow orchestration, and adaptive decision-making

AI4EIC 2025

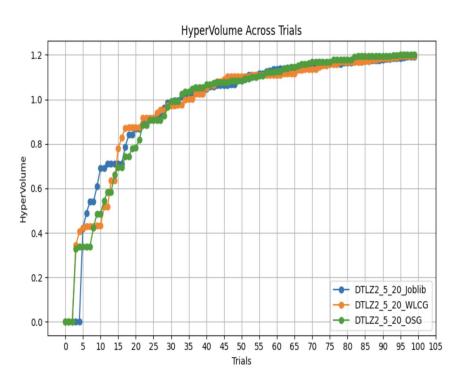
Backups

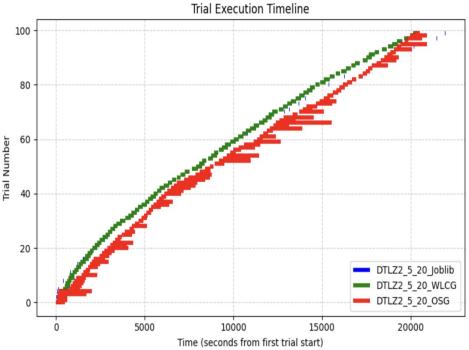
ACAT March 2024

Backup: DTLZ2

- JobLib(local): single process
- Max concurrent trails = 5 for PanDA
- 5 objectives, 20 parameters:
 - Trial generation is fast. Execution times are comparable between Joblib (local) and PanDA running on WLCG/OSG.
- 5 objectives, 50 parameters:
 - Trial generation becomes slower, and parallel efficiency decreases.
 - PanDA (WLCG/OSG) shows longer runtimes compared to local execution.
- 5 objectives, 100 parameters:
 - Trial generation is significantly slower, with further reduced parallelism.
 - PanDA on WLCG/OSG exhibits the longest execution times due to higher parameter dimensionality and scheduling overhead.

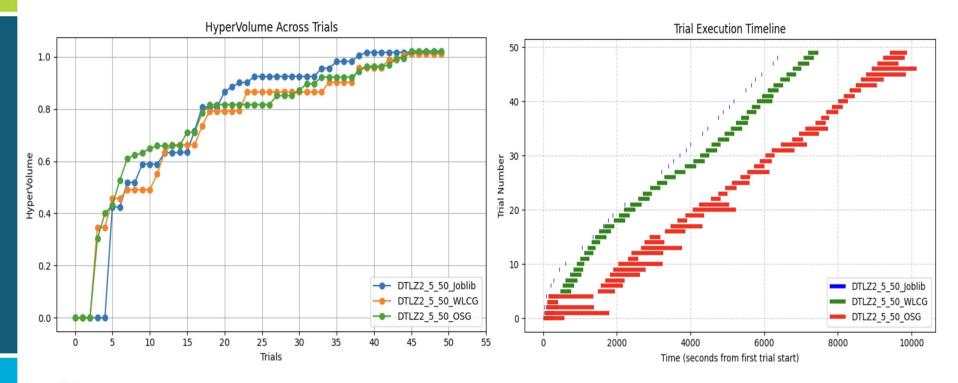
DTLZ2: 5 objectives 20 parameters





AI4EIC 2025

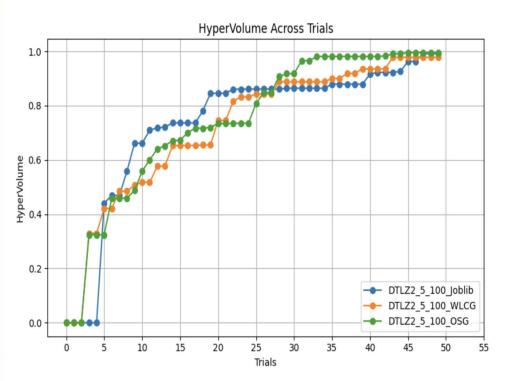
DTLZ2: 5 objectives 50 parameters

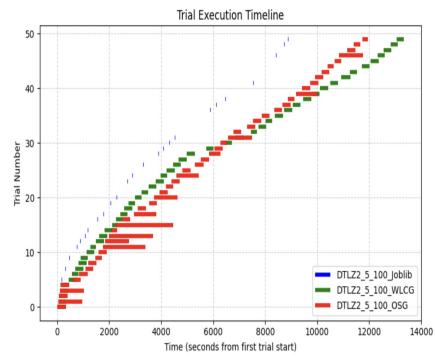


AI4EIC 2025

W. Guan

DTLZ2: 5 objectives 100 parameters





W. Guan

Function-as-a-Task

Python function as a task/job

- With python decorator to convert python functions to PanDA tasks/jobs to be executed at remote sites
- Automatically transfer the function outputs back
- Transparent to users like a local function
- More granular for scientific workloads
- Complicated logics can be defined with python language
- Easy for users with python to define workloads
- Support list of function parameters to map functions to multiple concurrent jobs

Asynchronous retrieval of function results

- Employ messaging service to publish/receive results between function executor and submitter
- Fallback to Rest services if the messaging

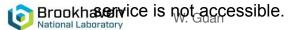
```
@work(map_results=True)
def optimize_work(opt_params):
```

With python decorator @work to convert a function to a PanDA task

```
@workflow
def optimize_workflow():
    from optimize import evaluate_bdt, get_bayesian_optimizer_and_util
    ...
    n_iterations, n_points_per_iteration = 10, 20
    for i in range(n_iterations):
        points = {}
        group_kwargs = []
        for j in range(n_points_per_iteration):
            x_probe = bayesopt.suggest(util)
            u_id = get_unique_id_for_dict(x_probe)
            print('x_probe (%s): %s' % (u_id, x_probe))
            points[u_id] = {'kwargs': x_probe}
            group_kwargs.append(x_probe)
```

results = optimize_work(opt_params=params, group_kwargs=group_kwargs)
print("points: %s" % str(points))

The Workflow calls the task like a local function



AI4EIC 2025

Function-as-a-Task Schema

Environment preparing

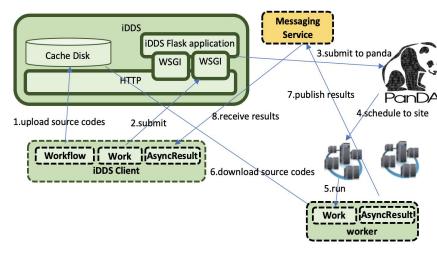
- Source codes caching
 - workflow as the basic unit to manage source codes
 - Source codes in the workflow directory will be uploaded into the iDDS or PanDA http cache
 - During running time, the source codes will be downloaded to the current running directory
- o Running environment
 - Base environment (eg: cvmfs) + source codes caching
 - Base container + source codes caching

Workload

- Submit function as tasks/jobs to workload management system PanDA
- Load and run a function as a job at distributed sites
- List of parameters can be used to call a function, which will create a task with multiple jobs and every job uses item of the list of parameters

Results retrieval

- When a function finishes, the executor will publish the result in a message
- The submitter will receive the result
- iDDS also monitors the tasks/jobs submitted. It will publish messages to AsyncResult, to avoid AsyncResult waiting for failed remote workers



Schema of how a workflow executes a function at remote distributed resources

W. Guan Al4ElC 2025 19

Function-as-a-Task Advantages

- Source codes are managed transparently, no additional steps
- Support different ways to run user functions at distributed resources
 - With/without container
 - With base container + source codes caching, users don't need to build the container for a code update, the workflow will automatically update the source codes in the cache
 - For some experiments, different base containers are already provided and deployed on cvmfs. Users don't need to build personal containers
- Make use of the current PanDA structure and related middlewares, no additional requirements for sites
- Distributed resources, possible to large scale
- Asynchronous results retrieval based on messaging service improves the

Thanks

ACAT March 2024 21