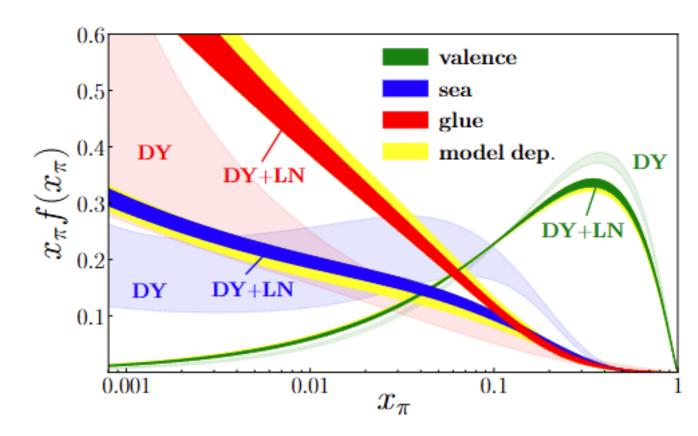
SRO AI/ML Models for Meson Structure Function Extraction

Multi-Method Ensemble for Anomaly Detection in EIC Reconstructions for SRO Frames with Background

Collaborators – Sandeep Shiraskar, Dominick Rizk, Tanja Horn, Dmitry Romanov, Baptiste Fraïsse, Avnish Singh.

Jefferson

Meson Structure Functions in QCD



Pion PDFs xfx at $Q^2 = 10$ GeV² from global QCD fit (DY + LN data), decomposing valence, sea, and gluon contributions analogous to $F_2 \wedge \pi(x, Q^2)$ in meson DIS.

Reference: Barry, Sato, WM, C.-R. JiPRL 121, 152001 (2018)

EIC design is well suited for Sullivan Process, structure function measurements.

Mesons (e.g., pion) as quark-antiquark pairs reveal non-perturbative QCD dynamics

- $F_2(x,Q^2)$:Structure function measuring quark/gluon momentum fractions in mesons via DIS
- x: Bjorken fraction of meson's momentum carried by parton (0 to 1)
- $m{Q}^2$:Momentum transfer squared; probes resolution inside meson
- DGLAP Evolution: PDF scaling with Q^2 from gluon radiation and splitting
- EIC Endpoint ($x \approx 1$): Shape functions link QCD to HQET for heavy mesons

Dataset

Reconstructed Output data, as documented in **Background Mixed Samples**

More Information: Background wiki

Event	signal	synrad	ebrems	etouschek	ecoloumb	p.b.gas
Event 1		0000				
Event 2		0000			•	
Event 3		000		•		
Event 4		000	•			•
Event 5		0000	•			

Signal frequency of 500 kHz, each event contains at least 1 signal contribution

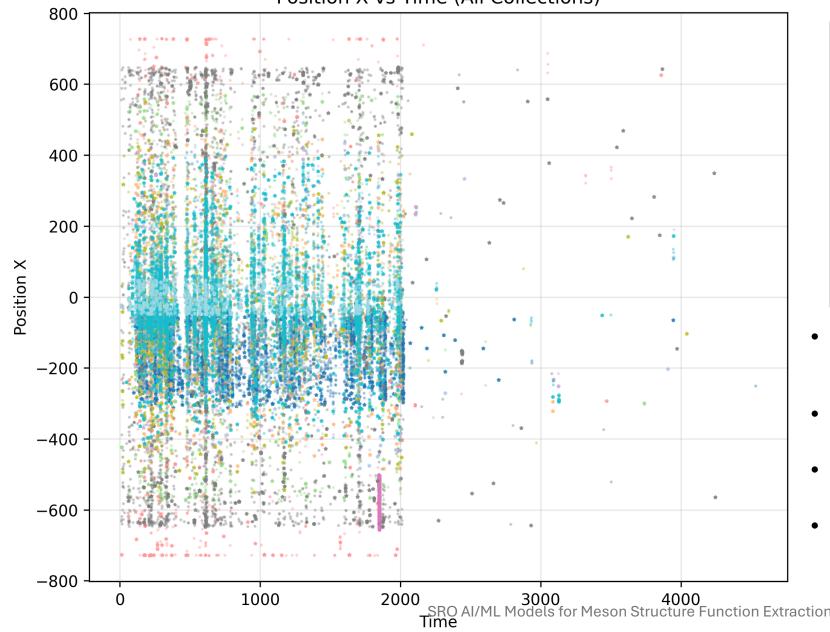
The background contributions get allocated per event based on their sampling frequency.

Processes with less than 500 kHz sampling frequency are not guaranteed a contribution in every event.

Symbol	Process	Description	Sampling Frequency (kHz)	Status Code Shift
•	signal DIS NC 18x275 Q ² >1 (Deep inelastic scattering neutral current)		500	0
0	synrad	Synchrotron Radiation	14000	2000
•	ebrems	Electron bremsstrahlung radiation	316.94	3000
•	etouschek	Electron Touschek scattering (intrabeam scattering)	1.3	4000
	ecoulomb	Electron Coulomb scattering processes	0.72	5000
	p.b.gas	Proton beam gas interactions	22.5	6000

Background Enriched Data in EIC

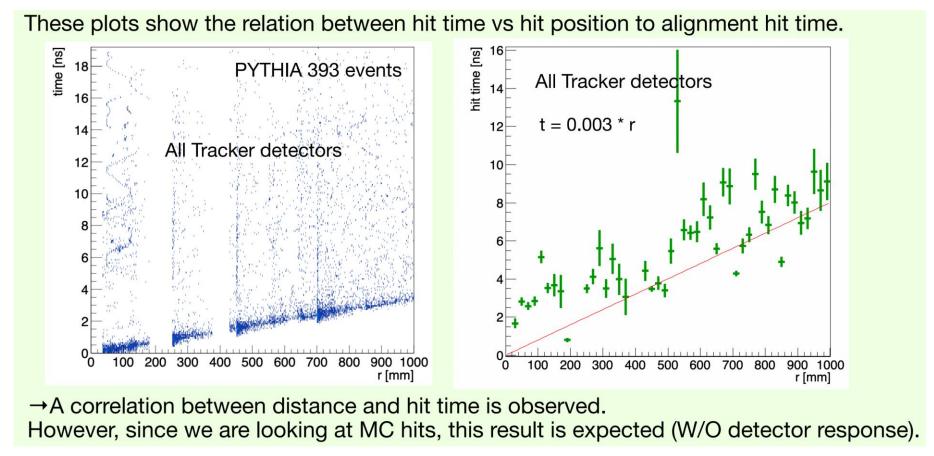
Position X vs Time (All Collections)



- B0TrackerHits
- BackwardMPGDEndcapHits
- ForwardMPGDEndcapHits
- MPGDBarrelHits
- OuterMPGDBarrelHits
- SiBarrelHits
- TaggerTrackerHits
- TaggerTrackerSharedHits
- TOFBarrelHits
- TOFEndcapHits
- TrackerEndcapHits
- VertexBarrelHits
- Triggerless Design: Captures all events continuously within timestap intervals of 2000ns.
- Hit Data: EDM4hep format with position, eDep, path length, time
- Key Features: Compute dE/dx ratios, pseudorapidity $\eta = -\ln(\tan(\theta/2))$
- Output: Dense collections for ML filtering

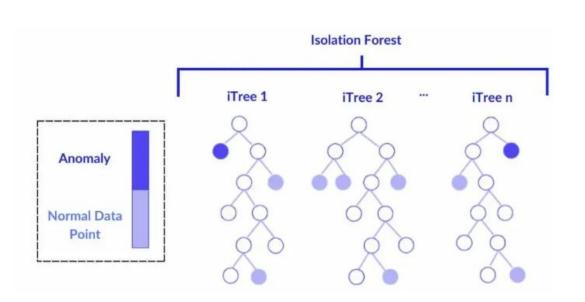
Without Using Machine Learning

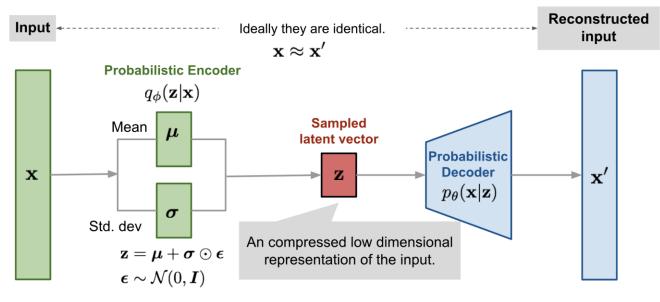
One of the preTDR goals is software able to work with data frames



Reference: Takuya Kumaoka and Taku Gunji

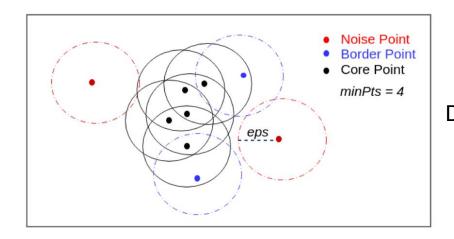
AI/ML for Anomaly Detection





Isolation Forest: Scores outliers by random feature splits

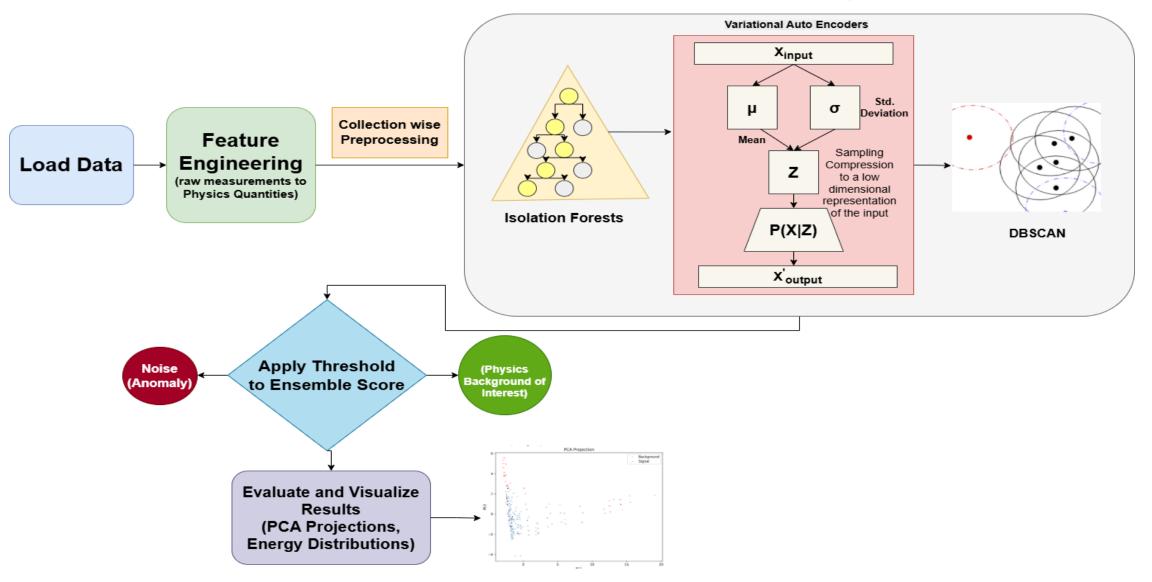
VAEs: Reconstruct hits, flag high MSE deviations



DBSCAN: Clusters dense signals vs. isolated noise

ML Pipeline for Anomalous Noise Detection

Schematic Illustration of the HEPSignalClassiferEnsemble



Feature Engineering

Table 1: Physics-Motivated Feature Engineering Summary

Feature Group	Quantity	Description / Formula	
Kinematic Quantities	Total momentum magnitude	$ p =\sqrt{p_x^2+p_y^2+p_z^2}$	
	Transverse momentum	$p_T = \sqrt{p_x^2 + p_y^2}$, perpendicular to beam axis	
	Momentum polar angle	$\theta_{\text{momentum}} = \arccos(p_z/ p)$, clipped to $[-1, 1]$ with zero-division handling	
	Momentum azimuthal angle	$\phi_{ m momentum} = { m atan2}(p_y,p_x)$	
	Momentum z-ratio	Longitudinal fraction $p_z/ p $	
Spatial Quantities	Radial distance	$r = \sqrt{x^2 + y^2 + z^2}$, total distance from interac-	
	Cylindrical radius	tion point $\rho = \sqrt{x^2 + y^2}$, distance from beam axis	
	Cylindrical radius Position polor angle	•	
	Position polar angle	$\theta_{\text{position}} = \arccos(z/r)$, with clipping and zero- division handling	
	Position azimuthal angle	$\phi_{\text{position}} = \text{atan2}(y, x)$	
	Position z-ratio	Longitudinal fraction z/r	
Particle ID Features	Specific energy loss	dE/dx = eDep/pathLength, normalized energy deposit per unit path length	
	Pseudorapidity	$\eta = -\ln(\tan(\theta/2))$, standard detector acceptance variable	
	Velocity	v=pathLength/time	
	Beta factor	$\beta = v/c$, where $c = 299.792$ mm/ns	
	Mass-squared estimator	$m^2 = p ^2 (1/\beta^2 - 1)$, from relativistic kinematics	
Vertexing Features Transverse impact parameter Longitudinal impact parameter		$d_0 = \rho$, closest approach to beam axis $z_0 = z$ (implicit from vertex coordinates)	

Calculate physics quantities (total momentum, energy loss rate, angles, etc.) instead of using raw numbers

Why? Generalize across detectors, standard in HEP ML

Training the Models: Transitioning to Anomalous Noise Detection

IF: Excels at global outliers in highdim hit data, fast, distribution-free for noisy momenta/eDep

Ensemble of isolation trees (n_estimators=100, contamination=0.10, random_state=42)

OUTPUT:

Binary labels {-1 anomaly, +1 normal}; scores (lower = more isolated)

VAE: Learns complex normal patterns in kinematics/PID features—flags recondrifts via poor fits.

Encoder/Decoder: Input \rightarrow 64 ReLU \rightarrow 64 ReLU \rightarrow 16D latent (μ , σ); $z = \mu + \epsilon \cdot \sigma$; symmetric decode

Loss: MSE recon + KL divergence; Adam (lr=0.001), 50 epochs, fullbatch

OUTPUT:

Anomaly: Recon error >90th percentile (~10% flagged)

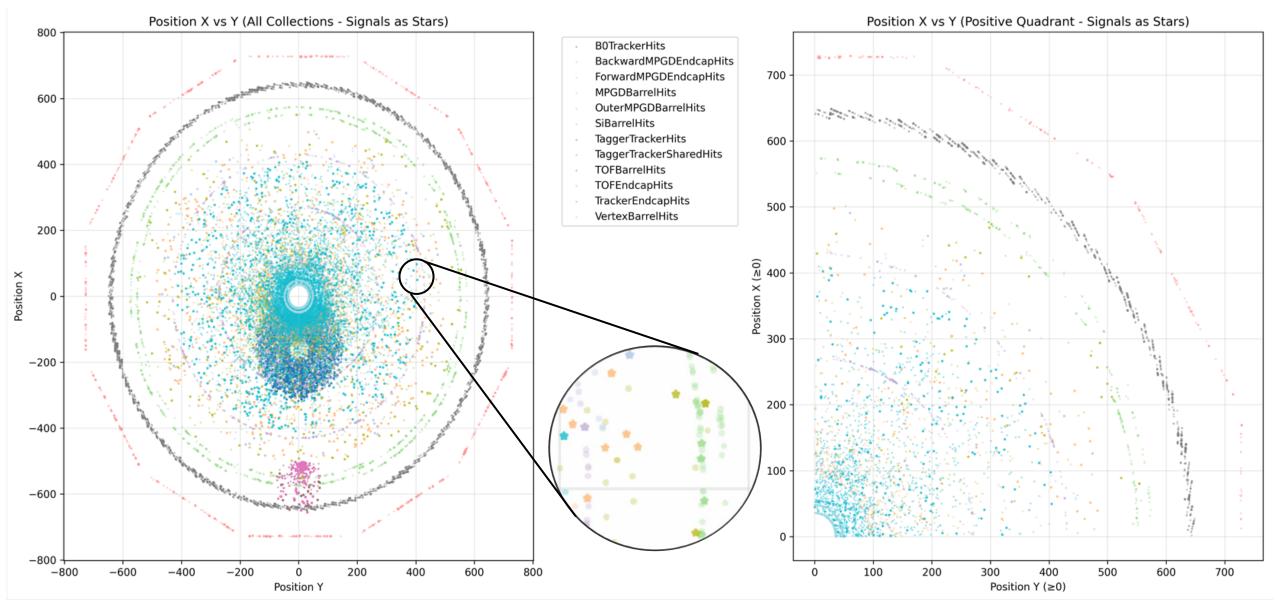
DBSCAN: Identifies sparse spatial anomalies without fixed cluster count—ideal for geometry-tied hits.

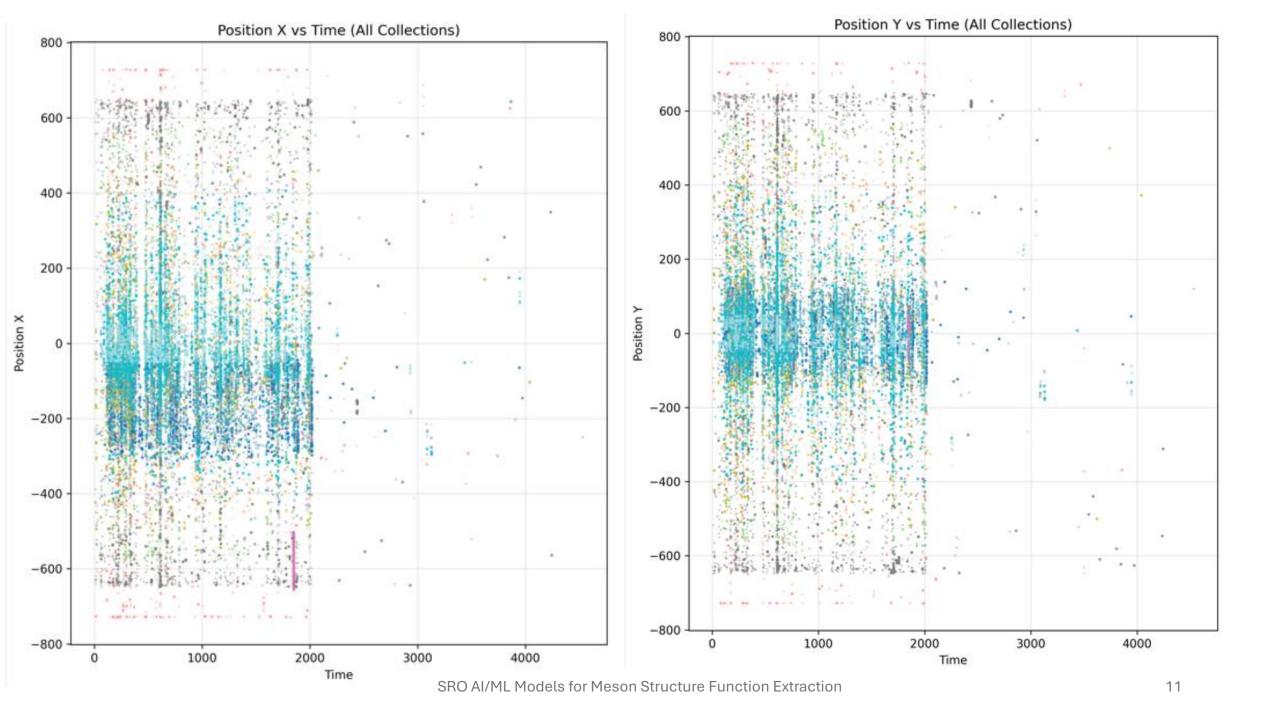
Density-based clustering (eps=0.5; min_samples adaptive to N)

OUTPUT:

Labels {0 physics background, 1 noisy signals}; metrics
(clusters, core points, noise
count)

Results





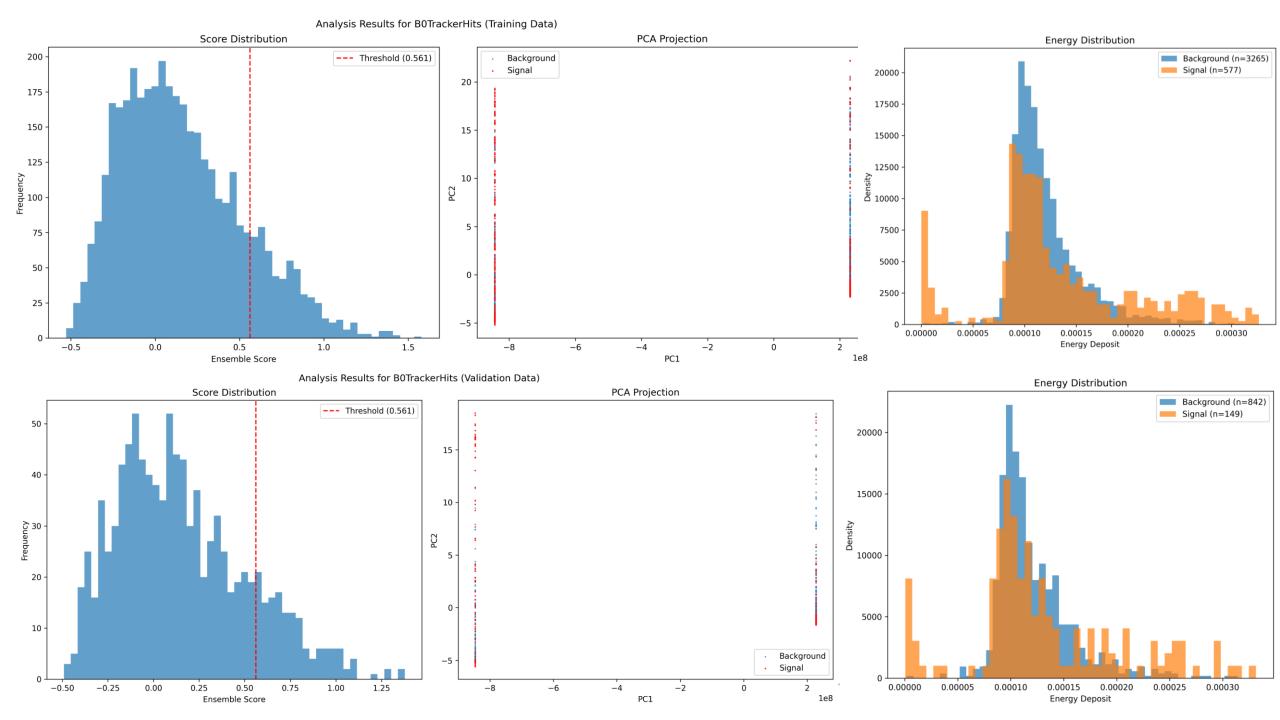
Interpretation of Results

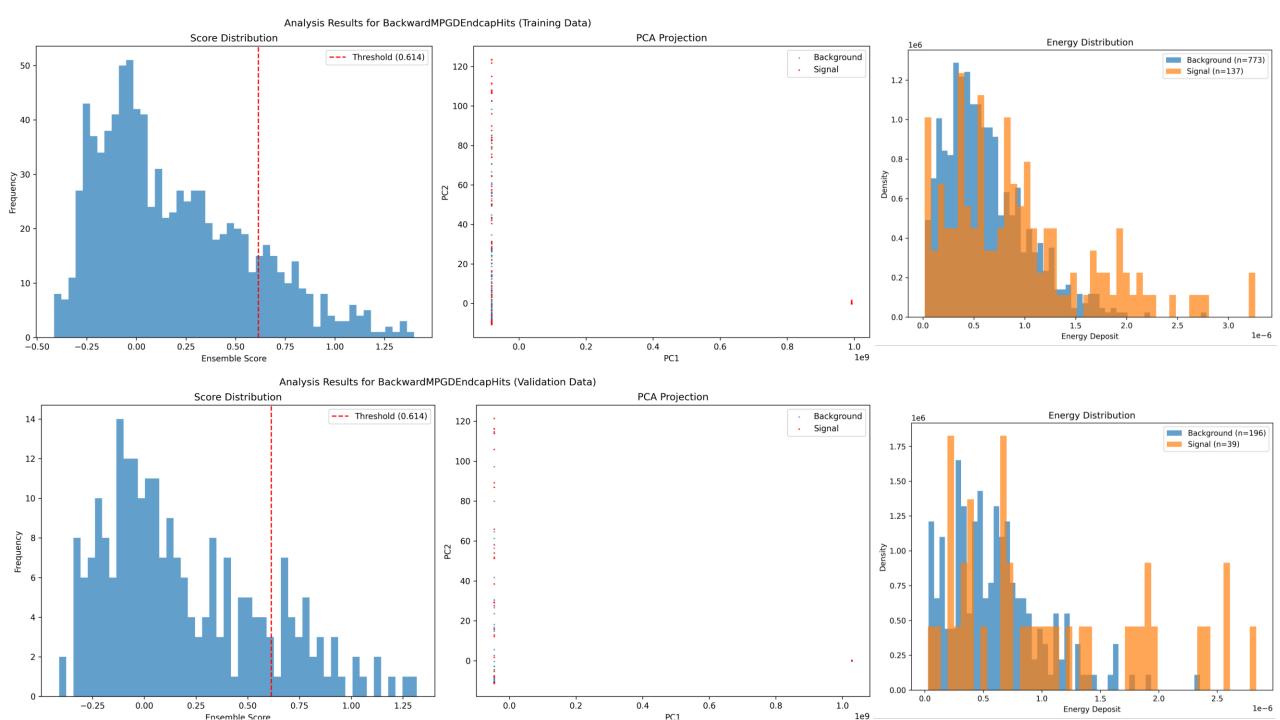
Validation Metrics

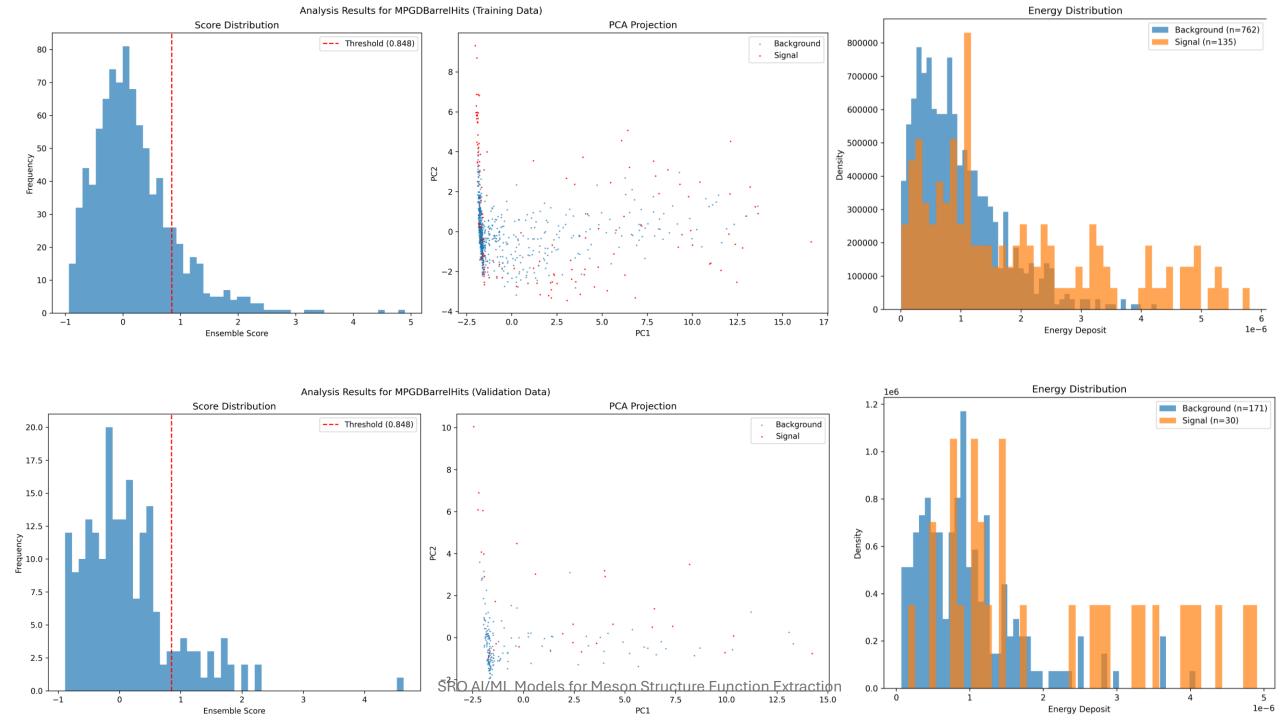
- VAE Reconstruction Error: MSE between input hits and model reconstruction
- Low MSE = normal (reconstructed well); High MSE = anomaly (poor fit)
- *Training Assumption: Fit on majority "normal" data to learn baseline.
- *Threshold Setting: 90-95th percentile of training errors for flagging
- Validation Process: Apply to test set; compare anomaly scores across methods

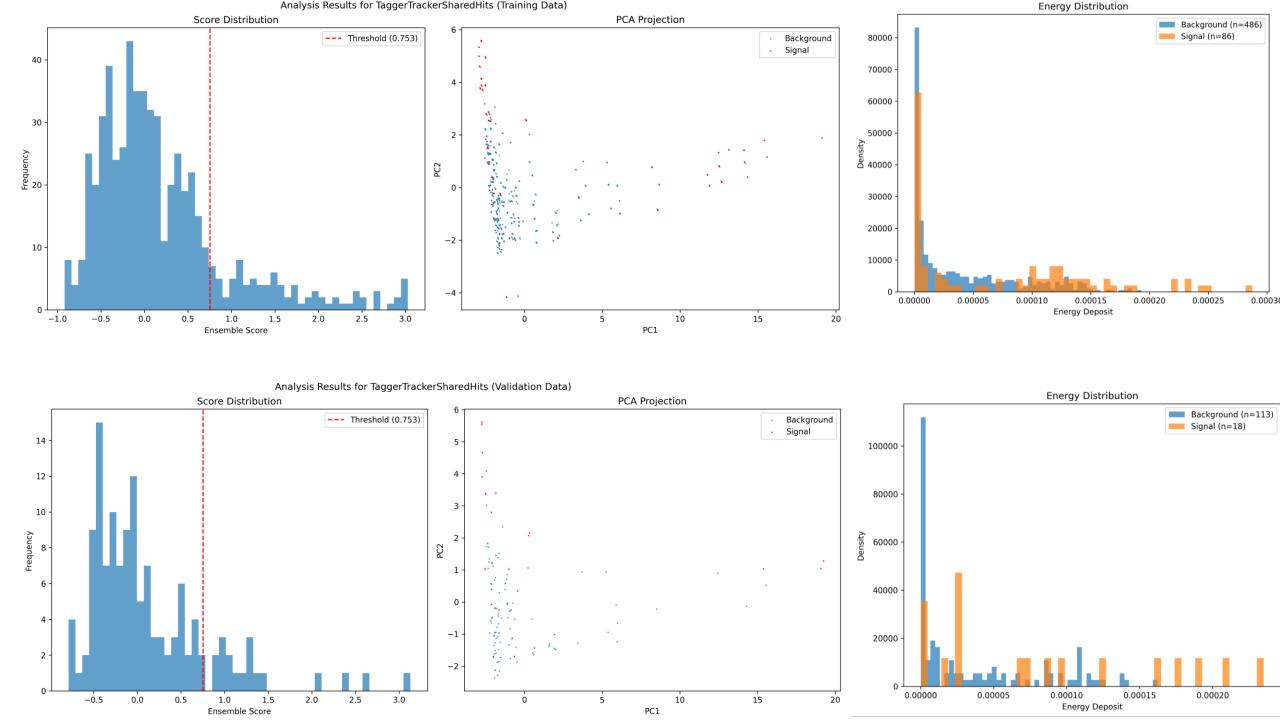
Pipeline Integration: MSE feeds into ensemble with IF/DBSCAN for final score

- **Score Distributions**: Histograms show ensemble score tails; threshold separates normal from anomaly
- **PCA Projections**: 2D plots cluster background vs. signal; outliers deviate from main distribution
- Energy Checks (dE/dx): anomalies show inconsistent energy loss
- Validation Logic: High anomaly score = low reconstruction error = flagged for ensemble
- Pipeline Check: Compare predictions across collections for consistency









Project Overview

AIM: showcase how Al-driven analysis of streaming readout, frame-based data can enhance physics event detection in noisy environments.

To achieve this, we are:

• Developing a robust ML pipeline tailored for efficient processing and analysis This approach has the potential to allow for scalable AI workflows, paving the way for faster, more accurate insights in high-background experimental settings.

Conclusions

- ML Pipeline: Unsupervised models (IF, VAE, DBSCAN) effectively filter out anomalies in SRO hits
- Validation Success: Consistent signal (noise detection) rates across collections
- Physics Impact: Clean data enables precise extraction for EIC meson studies
- Ongoing: Integrate multi-task NN training with labeled data for supervised enhancement.
- Promise: Robust anomaly detection supports streaming data EIC reconstruction, advancing QCD insights
- Strengths of ML In Physics: Interpretable scores, spatial correlations."

Thank you for your time and attention!