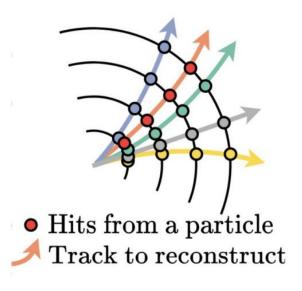
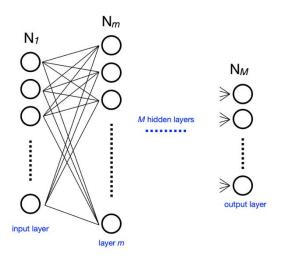

Intelligent Experiments through Real-Time AI:

Fast Data Processing and Autonomous Detector Control for High-Energy Nuclear Experiments (Fast-ML)

Ming Liu Los Alamos National Lab Al4EIC Workshop@MIT 10/27/2025

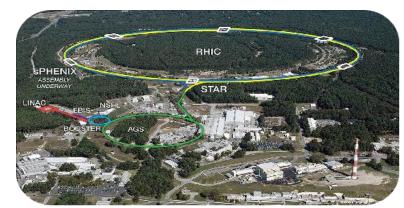
The Team – NP, HEP, CS and EE


- ☐ A joint effort of NP, HEP, CS and EE
 - LANL, MIT, FNAL, NJIT, GIT, ORNL et al
- ☐ Physics simulation and AI-ML algorithms
- ☐ Firmware implementation
 - hls4ml, FlowGNN etc.
- ☐ Demonstrator deployment
 - FPGA, GPU, CPU etc.


Why Fast-ML?

- ☐ High data throughput from modern detectors in highenergy experiments
 - ➤O(1~10)TB/s @detectors, CMS, ATLAS, ALICE, sPHENIX, EIC ...
 - ➤ Very large data volume (~100PB/year), it also takes a long time to process the data offline for physics analysis

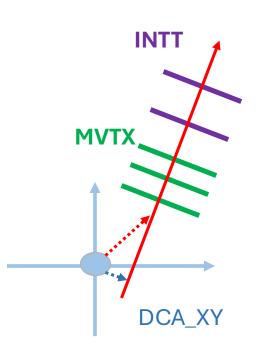
□Our goal - use AI/ML based algorithms to tag important (rare) events in real-time with high efficiency in p+p and e+p/A collisions, for fast data filtering/reduction


sPHENIX as the first test ground, ultimately for EIC in 2030s



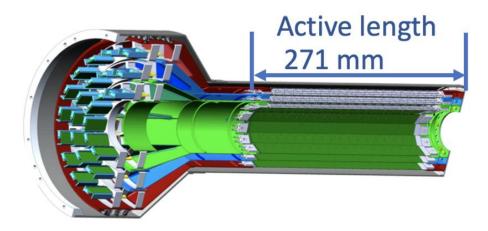
Real-time Al

sPHENIX Experiment at Relativistic Heavy Ion Collider

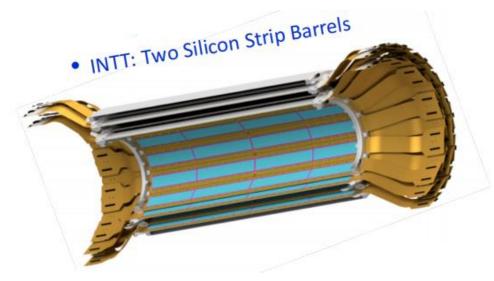

- ☐ Located at RHIC (BNL)
- ☐ Running period 2023-2025+
- ☐ Main detectors: tracking detectors (MVTX, INTT, TPC), calorimeters (EMCal, HCal)
- ☐ Hybrid trigger scheme
 - > Tracking detectors support streaming readout
 - DAQ limited to ~300Gb/sec
 - Calorimeters readout is trigger-based: 15kHz event rate

A Test Case: Tag Rare Heavy Quark Events in Real-Time

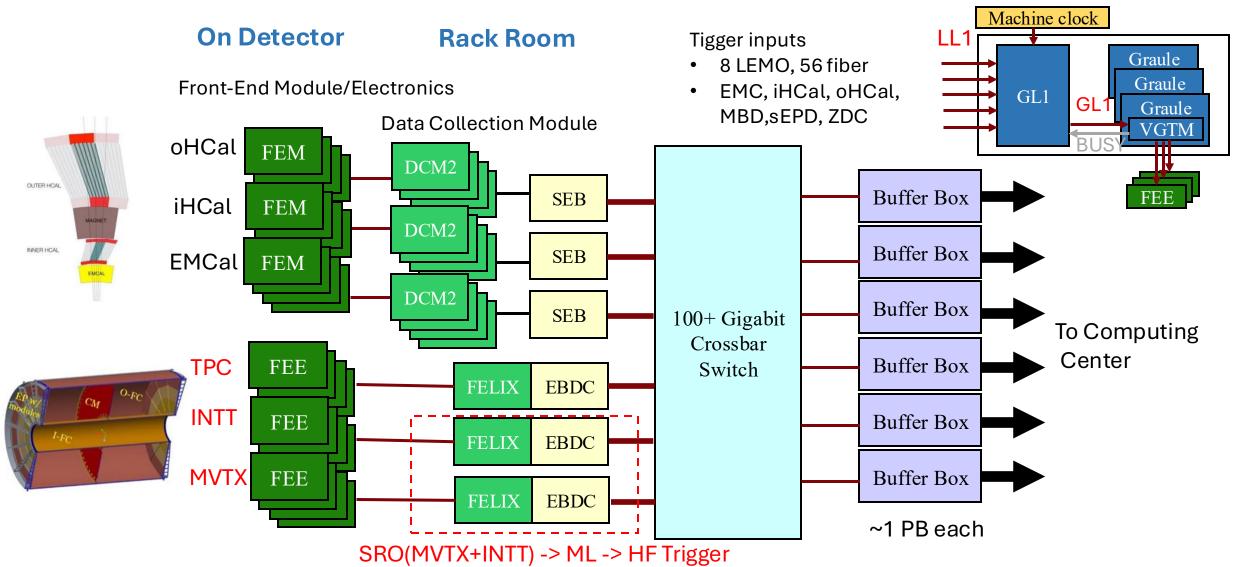
- \square High p+p collision rate ~2MHz, a lot of data!
 - ➤ Charm quark production: ~ 30 kHz
 - $500 \,\mu\text{b}/42\text{mb} \sim 1\%$
 - ➤ Beauty quarks: ~ 150 Hz
 - $2 \mu b/42mb \sim 0.005\%$
 - > sPHENIX DAQ trigger rate: <15 kHz
 - Tracking detectors are Streamed Readout (SRO) capable
 - Limited DAQ bandwidth prohibits taking all TPC raw data in full streaming mode
 - TPC working in trigger + extended readout mode(~20us), ~O(10%) of MB collisions
 - MVTX and INTT, full SRO in p+p run
- ☐ A real-time ML trigger system aiming to tag HF events with minimal impacts on overall data throughput, with high purity and efficiency
 - ➤ MB trigger highly pre-scaled, <0.5% total events (~10kHz/2MHz)


MVTX and INTT: full streaming readout

■ MVTX – Monolithic-active-pixel-sensor based vertex detector

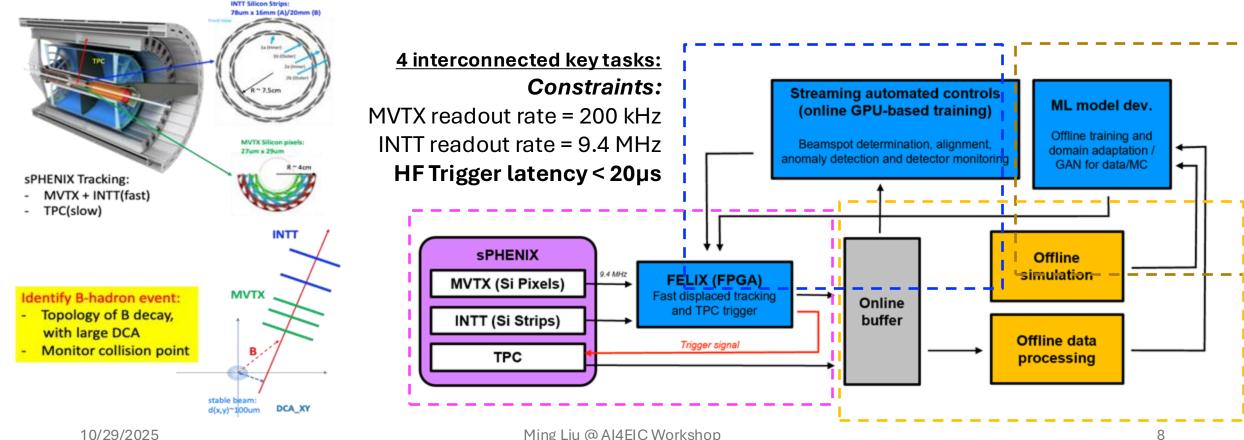

> Pitch: 27 μm × 29 μm

> Time resolution: 5 µs


➤ 3 layers, 48 staves: ~230M pixels channels

- ☐ INTT micro-strip tracking detector
 - > Pitch: 27 μm × 16 (or 20) mm
 - ➤ Time resolution: ~50 ns (< BCO 106ns)
 - ≥ 2 layers, 56 ladders

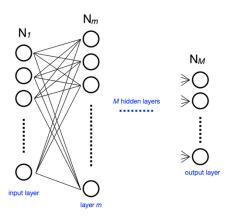
sPHENIX Readout and Trigger Distribution


Our Playground

- Heavy flavor event AI-trigger demonstrator in sPHENIX

Two half-barrels for trigger decisions

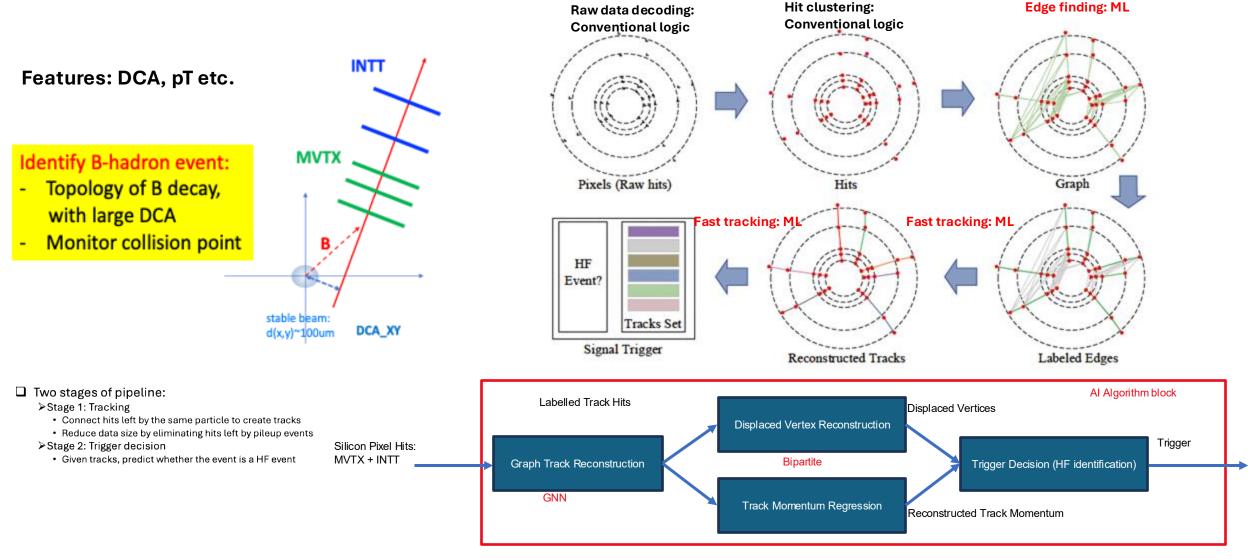
Selective streaming real-time AI and autonomous detector control:


Deliver a demonstrator for p+p and p+A running for sPHENIX - generalizable for applications in experiments at the EIC

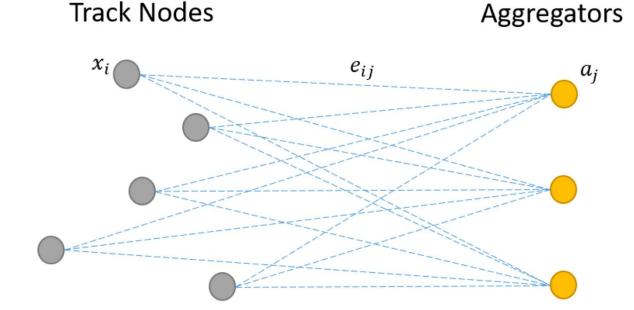
3 Major Areas of R&D

- ☐ Physics/detector simulations and AI/ML algorithm development
- ☐ Translate AI/ML algorithms into hardware language FPGA code with (1) data processing latency and (2)hardware resource constraints
- ☐ Deploy FPGA algorithms in a demonstrator system in sPHENIX
- * Good lessons learned from sPHENIX operation with real beam, p+p, Au+Au in 2023-2025

Next – EIC, early 2030s



(I): GNN based Real-Time HF Trigger on FPGA


- AI HF-Trigger algorithms not sensitive to small changes in IP

HF Tagging with Machine Learning

Graph Neural Network design

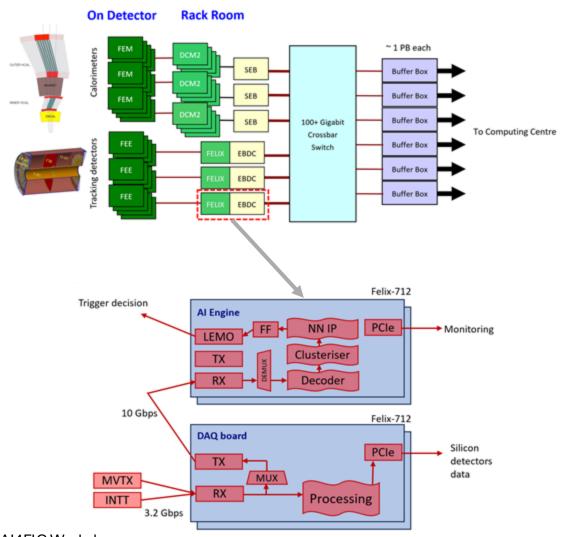
- ☐ Track node input vectors
 - ➤ 5 hits (MVTX + INTT)
 - \triangleright Length of each segment: $L = |\overrightarrow{x_{i+1}} \overrightarrow{x_i}|$
 - ➤ Angle between segments
 - > Total length of segments
- ■Aggregators
 - > Primary vertex
 - ➤ Secondary vertex
- ☐ Current ML tracklet algorithm
 - > Accuracy > 91% for building tracks
 - ➤ Area Under receiver-operating characteristic Curve (AUC) > 97%
 - > Excellent signal purity and background rejection

 $e_{ij} = s_{ij} x_i$ is track-aggregator messages s_{ii} is the weight

ECML PKDD 2022, Sub 1256

Trigger Performance Metric

$$F_1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$


- Edge candidates are created from hits using geometric criteria
 - ➤ Geometric criteria produces roughly O(n) hits, even with pileup date (usually ~2x as many edge candidates as there are hits)
- ☐ GNN classifies edge candidates based on hits information
- ☐ GNN also performs tracking de-pileup using fast INTT hits
- ☐ GNN trained to prioritize preserving edge candidates arising from trigger particles

An efficient, low-parameter counts, FPGA-ready effective tracking algorithm

Model Configuration	Precision	Recall (Efficiency)	F1-Score (~purity*Eff)
No Pileup	92%	90%	91%
No Pileup, FPGA-ready	79%	87%	83%
Pileup (20)	80%	73%	76%

(II) Readout and HF AI-Trigger Implementation in FPGA

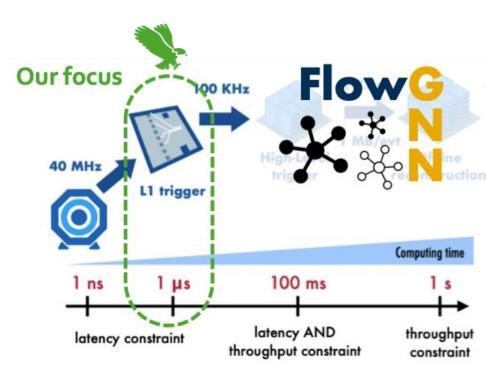
- The sPHENIX tracking detectors use FELIX-712 PCIe-based boards
 - Contain an AMD/Xilinx Kintex UltraScale FPGA (xcku115-flvf1924-2-e)
- To the readout DAQ boards, add AI Engine boards to perform the B-tagging using AI (FELIX-712)
- Exploring implement graph neural networks (GNNs) with two approaches:
 - FlowGNN (arXiv: 2204.13103)
 - hls4ml (arXiv: 1804.06913)

The Latency Constrains for ML-base Algorithm

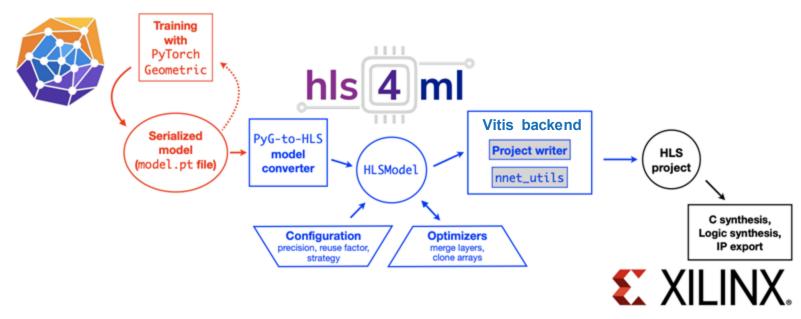
- ☐ The TPC buffer can hold up ~30 us of data before receiving a readout trigger
- ☐ Detector readout delay, fiber transmission delay, data encoding/decoding
 - ➤ MVTX readout window ~8us
 - ➤ Interaction Region (IR) ->Counting house ~0.3 us (100 m cables)
 - > FELIX data forward, decoder buffers ~0.6 us (@240 MHz)
 - > Global level 1 Trigger decision latency + counting house -> IR ~0.3 us
 - > ... ~10 us
- ☐ The goal is to achieve ~10 us latency for the trigger algorithm

Approach 1: Flow-GNN

- ☐ FlowGNN is a flexible architecture for GNN acceleration on FPGAs, https://arxiv.org/abs/2204.13103
- ☐ Two manual implementations, from PyTorch → C++ → Verilog, using High Level Synthesis (HLS)
 - Version 1: Track construction only:
 - 8.82 us per graph (Freq. 285 MHz), tested with: 92 nodes, 142 edges
 - Version 2: from Hits -> Clustering → Triggering:
 - 9.2 us per graph (Freq. 180 MHz), Tested with: 92 nodes, 142 edges


☐ In progress:

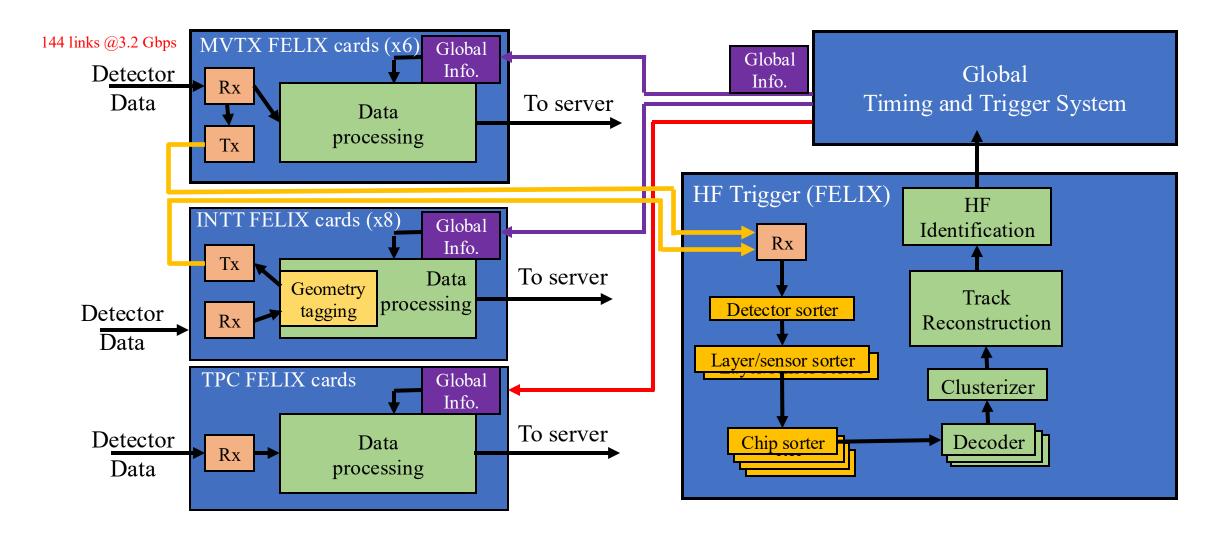
- Extending to support more types of GNNs, e.g., EdgeConv, to facilitate better algorithm support
- Perfecting the automation flow from PyTorch → Verilog, based on GNNBuilder, https://arxiv.org/abs/2303.16459


Co-design:

- Algorithms
- FPGA

Approach 2: hls4ml

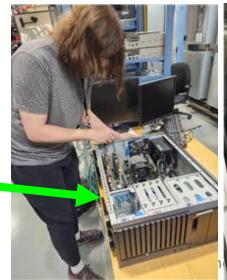
- hls4ml (arXiv: 1804.06913)
- □ **hls4ml** is a HEP community developed compiler taking Keras, Pytorch, or ONNX input and producing High Level Synthesis (HLS) code implementing the network as spatial dataflow.
 - > HLS code is usually C++ or similar with directives to guide the produced hardware.
 - hls4ml has different "backends" for the different flavors of HLS desired by tools.
- ☐ GNN support is under development: currently the process is not as automated as for other network types, manually implemented a simpler model, hits -> trigger


hls4ml Initial Implementation (MVTX-only MLP)

- □ The MLP-layerwise model has been synthesized for the FPGA
- □ The model consists of two parts
 - > The first part, called the **aggregation step**, collects all the clusters. It is called for each cluster in a bunch crossing. This needs a high throughput: initiation interval every 1 clock cycle, 117 ns latency
 - The second part, called the **prediction step**, is called once per bunch crossing, to make a prediction based on the ingested clusters: 63 clock cycles, 308 ns latency
- The two models are synthesized separately, with the FPGA utilization for the FELIX 712 given below, using Vitis HLS and Vivado 2024.1.

	Aggregation step	Prediction step
LUT	23 587 (3.56%)	16 582 (2.50%)
FF	15 129 (1.14%)	31 226 (2.35%)
DSP	19 (0.34%)	498 (9.02%)
BRAM	0 (0%)	30.5 (1.41%)

(III) HF Trigger System Diagram


Smaller Scale Demonstrator:

- with MVTX Telescope Communication

Due to very tight sPHENIX operation schedule and certain detector challenges, we didn't get the opportunity to integrate AI/ML system into the sPHENIX DAQ, instead, used MVTX telescope in the sPHENIX counting house for the system test

- ☐ FELIX-712 was designed as sPHENIX readout board, the PCIe is used to receive data from the optics
 - > Save the timing (Bunch Crossing ID) and trigger decision from the Al
 - > Configured the PCIe uplink (normally used just for configuration) to load real detector data to the board, for a controlled validation environment
- ☐ Successfully received and decoded data from single stave of the MVTX 8-stave telescope (MVTX = 6 x Telescope)
- ☐ Added ILA via Xilinx virtual cable for additional debugging and monitoring

MVTX Decoder Development (Conventional)

- ☐ First FPGA-based decoder for ALPIDE sensors—
 - The design has been simplified
 - There is only one set of buffers (instead of per event)
 - The design was validated on simulation, PCIe and Telescope data
 - This also helped to validate the PCIe and Telescope comms
 - Due to MVTX data compression we need 1 decoder module per detector (FeeID) link (144 total)

CHIP FIFO

CHIP FIFO

CHIP FIFO

Frame

decoder

ALPIDE decoder

ALPIDE decoder

ALPIDE decoder

Pixel FIFO

Pixel FIFO

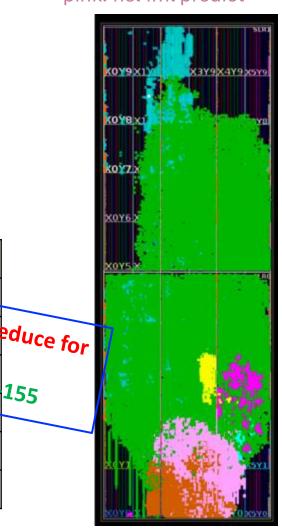
Pixel FIFO

	LUT (663K)	FF (1.3M)	BRAM (2K)
Frame decoder	151	287	0
ALPIDE decoder (x3)	343	256	0
FIFOs (x6)	31	36	1
Total per FeeID	1366	1271	6
Total per half- barrel	98K (14.7%)	91K (7%)	432 (21%)

FPGA Resource Utilization (FLX-712)

☐ Currently we have single stave implementation to validate modules ➤ 3 decoders, 1 clusteriser, 1 transformation

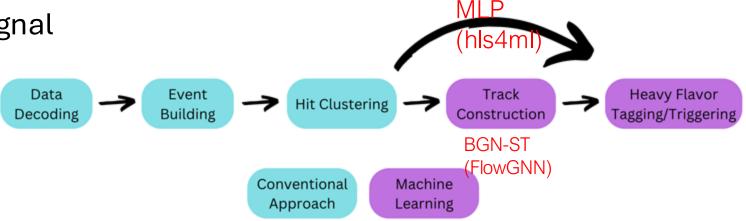
	LUT (663K)	FF (1.3M)	BRAM (2K)	DSP (5.5K)
1-stave	163K (24.5%)	359K (27.6%)	1K (50%)	525 (9.5%)
8-staves	232K (35%)	412K (31.6%)	1.2K (60%)	581 (10.5%)


☐ Target is 72 decoders, clusterisers, and transformations

> Current projection:

	LUT (663K)	FF (1.3M)	BRAM (2K)	DSP (5.5K)	
Infrastructure	87K (13.1%)	196K (14.8%)	879 (40%)	- No.	
Decoder	98K (14.7%)	91K (7%)	432 (21%)	FLX-712	duce
Clustering	267K (40%)	213K (16.4%)	-	Need to reflect to ref	15-
Transformation	25K (3.8%)	22K (1.7%)	540 (27%)	576 (10.4%)	135 —
Al module (FlowGNN)	194K (29%)	214K (16.4%)	406 (20%)	488 (8.8%)	
Al module (hls4ml)	40K (6.1%)	45K (3.5%)	31 (1.5%)	517 (9.4%)	

green: PCIe
purple: decoder


turquoise: local to global brown: hsl4ml aggregate pink: hsl4ml predict

New FLX-155 ~ 3x FLX712

FPGA Ready Algorithm Summary: It is doable!

- Hit decoding and clustering conventional algorithms
- Event building, collect hits from the same collisions MVTX(slow) + INTT(fast)
- Track reconstruction using GNNs in two parts
 - Edge candidate generation connect clusters (nodes) with edges, with geometric constraints
 - Edge candidate classification using graph convolutional network (GCN) (arXiv: 1609.02907)
 - Construct final tracks
- Use a least squares method to perform p_{T} prediction from track curvature
- Tagging of the heavy flavor signal

Also an alternate implementation, taking the clusters directly without explicit track reconstruction.

EIC – be prepared for unexpected

- lessons learned from sPHENIX data taking and implications for future EIC and other experiments

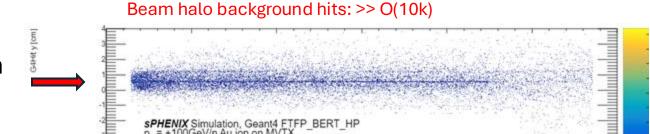
New ideas being developed to address new challenges ...

Unexpected Challenges First Observed in sPHENIX 2023 Au+Au Runs

- Full streaming readout in high beam backgrounds!

☐ Major beam-related background with Au beam

Related to beam halo induced particles hitting large number of sensor pixels in the MVTX detector sensors

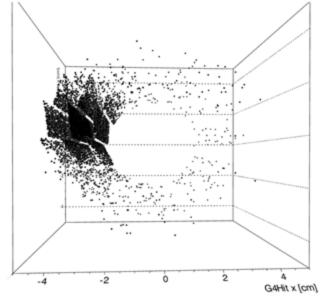

NO problem in p+p collisions

Data >> DAQ bandwidth! (>10^3)

EIC: day-1, e+A program

Could face similar high backgrounds with ion beam

Smart data management highly desired on/near the detectors for full streaming readout in high background environment

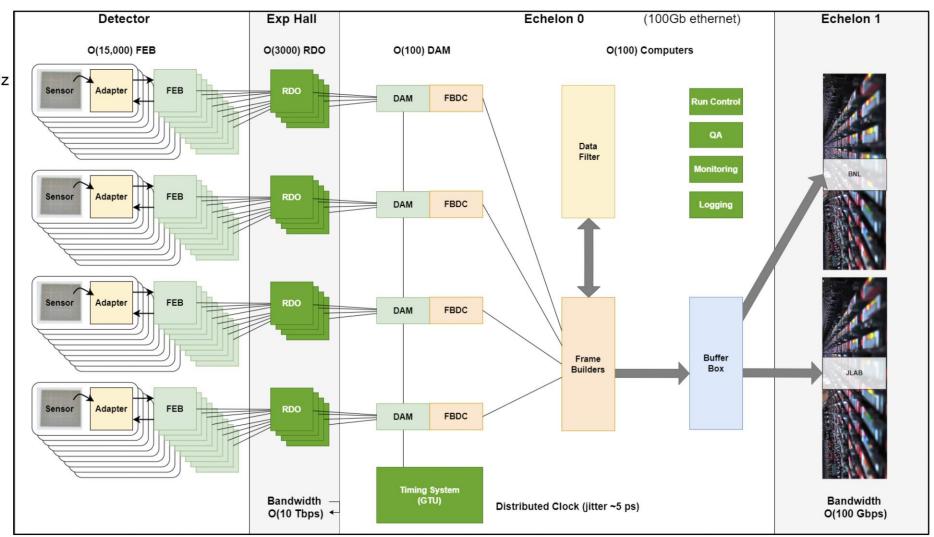


Expected hits: O(10s) out of ~1M pixels/stave

GEANT Simulation:

Single 100 GeV Au ion striking the end of the 50um thick

MVTX silicon sensor material



EIC SRO ... the data throughput challenge

- Bunch Crossing ~10.2 ns/98.5 MHz
- Interaction Rate
 2 us/500 kHz
- Low occupancy

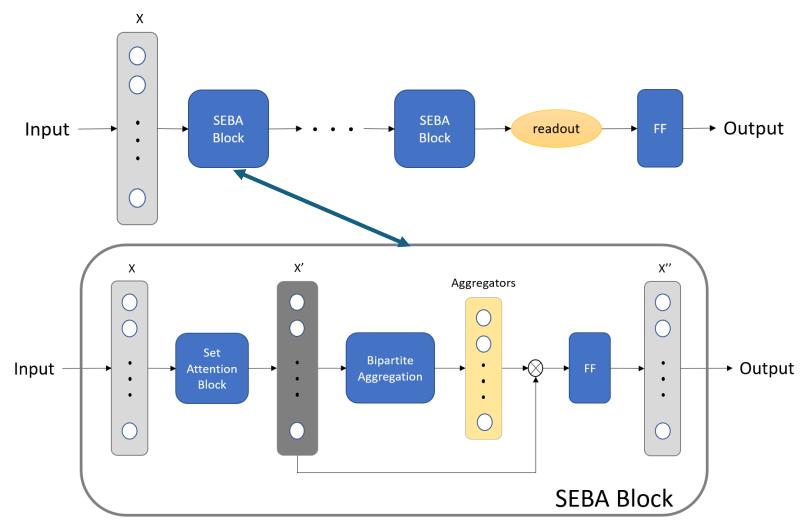
A big unknown: beam backgrounds, could easily overwhelm the DAQ system!

Better be prepared~

Fast-ML for EIC – work in progress...

- DIS-electron identification in real-time with beam background suppression **Selective streaming readout for AI-Engine:** ☐ tag DIS-electron to define DIS event ID EMCal + Trker + ePID Add Al-based active beam halo (u) ➤ DCA~0 background rejection: Al-on-Detector! With AI noise suppression on chip (AI-on-Sensor)! e-tagger + Evt-ID **SRO + AI/ML Fast Data Processing:** - DIS e-tagger: event ID Adaptive + other rare process, HF-tagger Learning Timing Detector System Control etc. ... Online **ePIC** Data Filter & Monitoring **Buffer Box FEB** EBD Network DAM Switch **Monitoring** O(2 Pbps) O(10 Tbpb) O(0.5 Tbps) O(0.1 Tbps)

Backup slides


AI/ML Algorithm Development

- ☐ An efficient, end-to-end, robust trigger pipeline capable of handling multi-collision pileup
 - > pileup of p+p collisions: hits from ~20 events
- Two stages of pipeline:
 - ➤ Stage 1: Tracking
 - Connect hits left by the same particle to create tracks
 - Reduce data size by eliminating hits left by pileup events
 - ➤ Stage 2: Trigger decision
 - Given tracks, predict whether the event is a HF event
- Developed algorithm NOT sensitive to the IP variations
- Improve performance by reinforcing physics laws in the models

GNNs with Set Transformers

Set Encoder with Bipartite Aggregator (SEBA)

The cycle

- Track information is initially defined
- 2. This is relayed to all primary and secondary vertex information
- 3. Weights are assigned to each link
- 4. The PV and SV information go through a FeedForward(FF) NN
- 5. This updates the track information

Coordinate Transformation (Conventional)

The clusterizer provides - layer, stave, chip, row, column (hardware)
The AI requires - layer, r, phi, z (physics)
A new transformation module has been created to transform coordinates
The BRAM usage is quite large
Optimize parametrization of the transformation

	LUT (663K)	FF (1.3M)	BRAM (2K)	DSP (5.5K)
Clustering	347 + 44 (memory)	310	7.5	8
per chip (x216)	75K (11.2%)	67K (5.1%)	1620 (81%)	1728 (31%)
per feeID (x72)	25K (3.8%)	22K (1.7%)	540 (27%)	576 (10%)
per stave (x24)	8.3K (1.2%)	7.4K (0.5%)	180 (9%)	192 (3.5%)

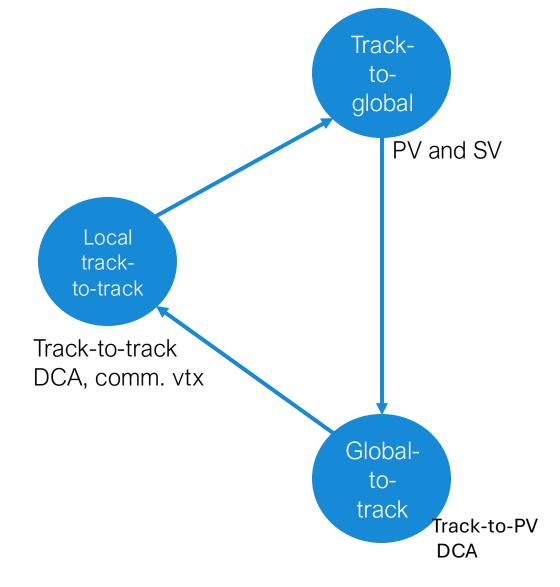
Demonstrator Implementation Status

Two half-barrels

Module	written	Validated - sim	Validated - test file	Validated - detector
PCIe comms	✓	✓	✓	✓
Optics	✓	-	-	✓
Decoder	<u> </u>	<u> </u>	<u> </u>	✓
Clusteriser	✓	(C++) Ongoing (VHDL)	✓	✓
Event build and coordinates transform	✓	✓	Ongoing	
Al module	✓ FlowGNN ✓ hls4ml	✓	Ongoing	

A big challenge L data integration! Raw Data Pre-processing: Event Building

- ☐ With the current MVTX-only setup the event building is easy
 - > Since the detector links contain Bunch Crossing ID we can just read event by event link by link
- ☐ Challenge: once we add INTT stream this will be much more complicated due to different reading stream lengths and latencies
- Important is to first have the simpler MVTX-only implementation working!

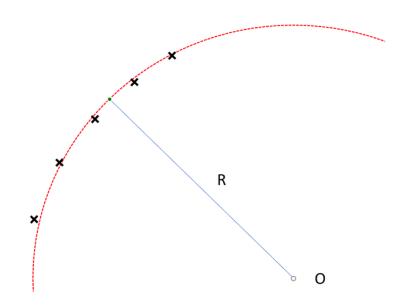

MVTX

DCA XY

32

Feedback Algorithms

- ☐ Tracking algorithms developed using simulated signal and background events in the MVTX and INTT
- Used these models to feed into the models to select interesting events
 - ➤ Models are bi-directional, local information is passed to global and global information is passed back to local to refine
- ☐ Initial trainings and models are developed on GPU
 - > NVIDIA Titan RTX, A5000, and A6000
 - > Developed with PyTorch and PyTorch Geometric

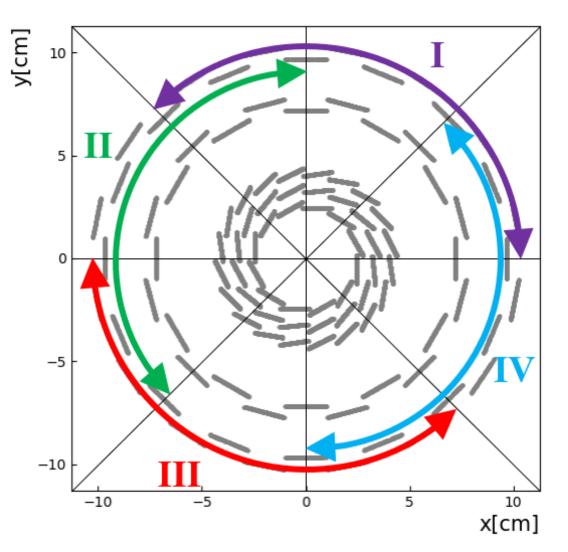


Transverse Momentum pT Estimation

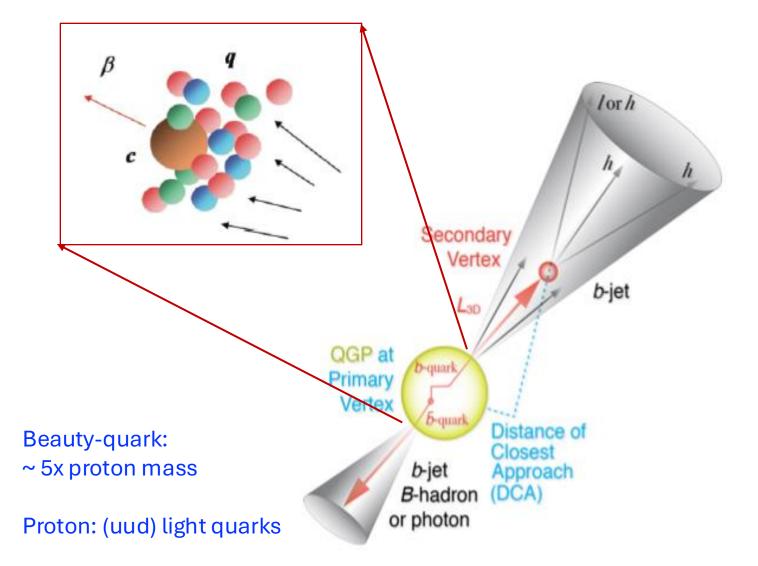
□ A feed-forward neural net is used to predict the pT □ Uses least-squares method to estimate track radius

□~15% improvement in tracking with pT estimation

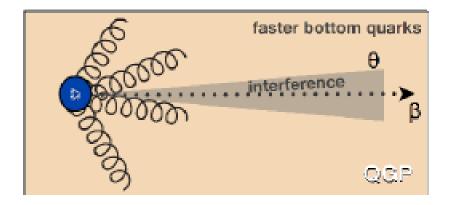
Heavy quark decayhigher pT daughter particles

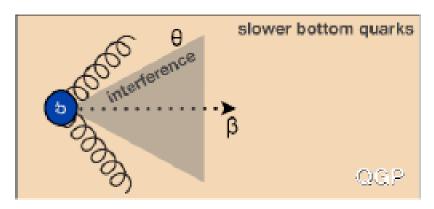

	with LS-radius			without radius		
Model	#Parameters	Accuracy	AUC	#Parameters	Accuracy	AUC
Set Transformer	300,802	84.17%	90.61%	300,418	69.80%	76.25%
GarNet	284,210	90.14%	96.56%	284,066	75.06%	82.03%
PN+SAGPool	780,934	86.25%	92.91%	780,678	69.22%	77.18%
BGN-ST	$355,\!042$	$\boldsymbol{92.18\%}$	$\boldsymbol{97.68\%}$	354,786	$\pmb{76.45\%}$	83.61%

	LS		MI	LP
Hidden dim	Accuracy	AUC	Accuracy	AUC
32	91.52%	97.33%	91.48%	97.31%
64	92.18%	97.68%	92.23%	97.73%
128	92.44 %	$\boldsymbol{97.82\%}$	92.49 %	$\boldsymbol{97.86\%}$


Performance: LS ~ MLP

Alternative – more Partitions for Parallel Processing


- lacksquare 8 sectors evenly divided along the azimuth angle ϕ
- □ 3 consecutive sectors form a **Zone**
- Adjacent zones share one overlapping sector
- Data streams within each zone are processed in parallel



Heavy Quark Physics: a Pilar of RHIC Science

B-quark radiative energy loss in QGP - Less dE/dx due to heavy mass

36