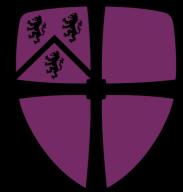
Probing dark matter substructure using gravitational microlensing

Djuna Lize Croon (IPPP Durham) BNL remote seminar, June 2025



djuna.l.croon@durham.ac.uk djunacroon.com

A key question for particle physics & cosmology What on Earth is dark matter?

Plenty of evidence!

 Likely not explained by modifications of gravity

https://youtu.be/IEKcPfJHfNU (see also djunacroon.com)

A key question for particle physics & cosmology

What on Earth is dark matter?

- Plenty of evidence!
- Likely not explained by modifications of gravity

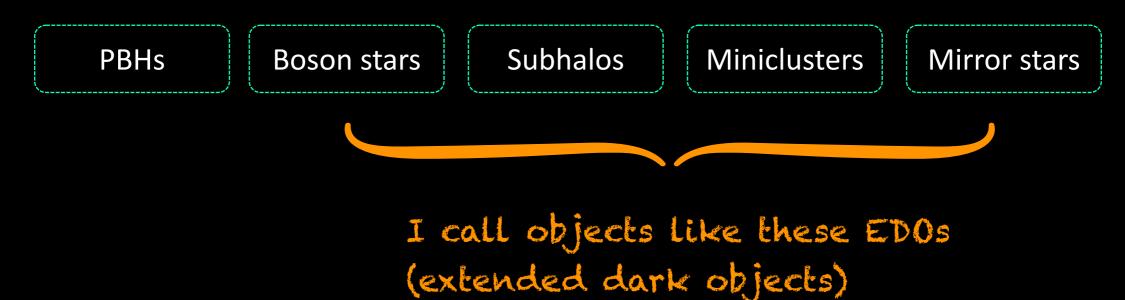
https://youtu.be/IEKcPfJHfNU (see also djunacroon.com)

No idea, or too many ideas, about its nature:

Dark matter substructure

Two things we may agree upon...

- All of our evidence for dark matter is gravitational
- Many dark matter models feature substructure



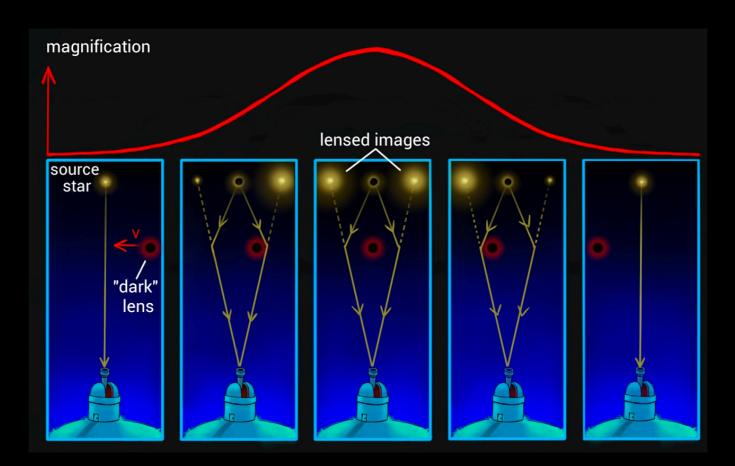
Dark matter substructure

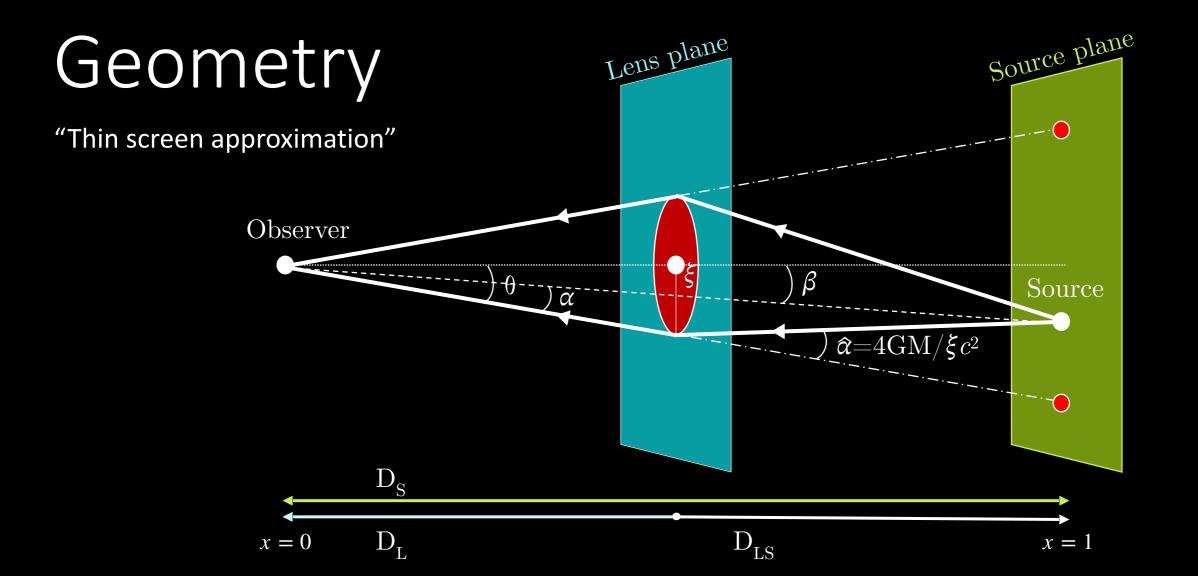
Two things we may agree upon...

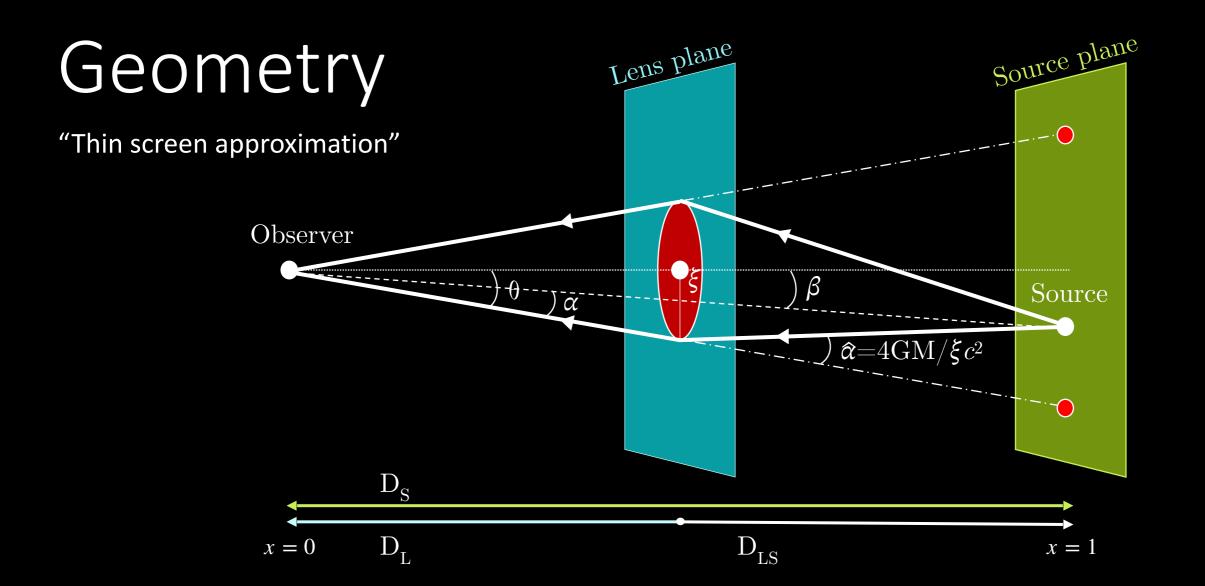
- All of our evidence for dark matter is gravitational
- Many dark matter models feature substructure

PBHs Boson stars Subhalos Miniclusters Mirror stars

Microlensing can be used to probe such models

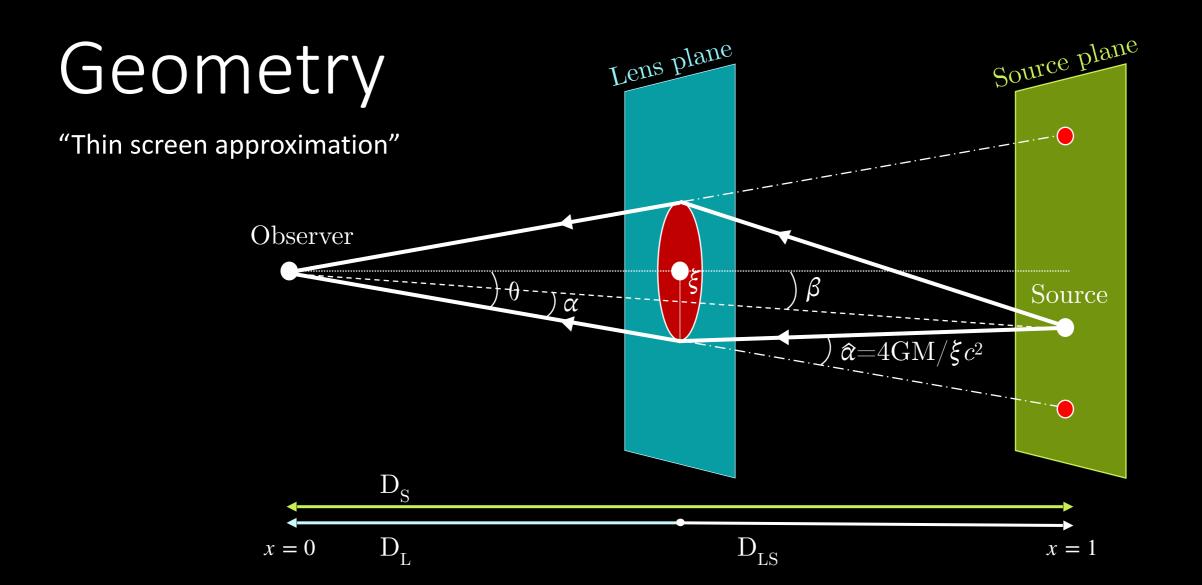






Lensing equation:
$$\beta = \theta - \frac{4GM(\theta)}{\theta D_L c^2} \frac{D_{LS}}{D_S}$$

Magnification:
$$\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta} = \sum_{i} \mu_{i}$$



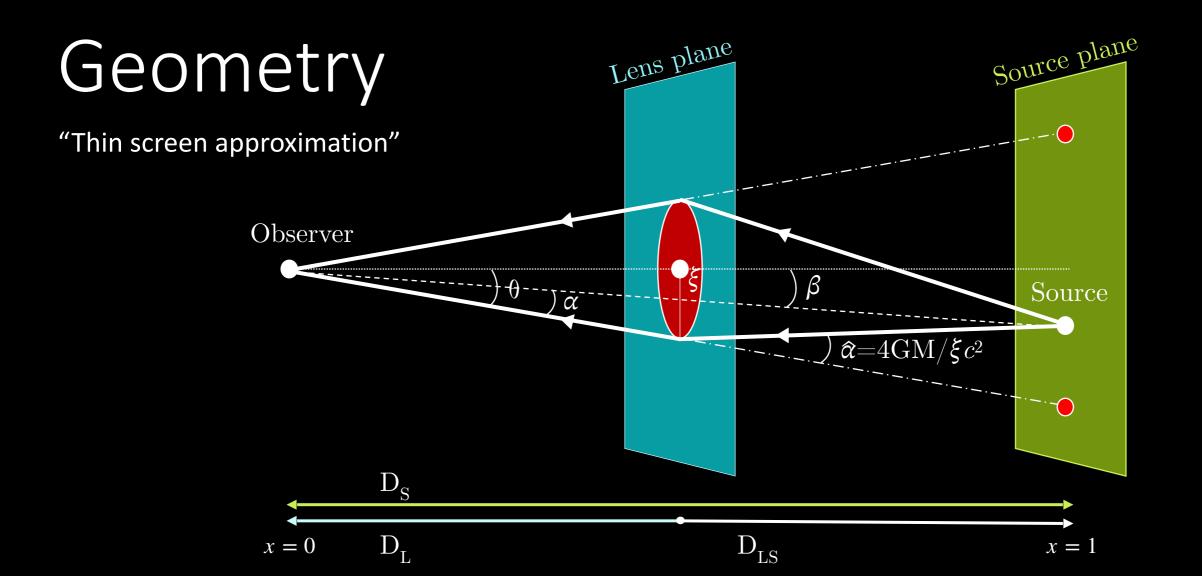
Lensing equation:
$$\beta = \theta - \frac{4GM(\theta)}{\theta D_L c^2} \frac{D_{LS}}{D_S}$$

Magnification:
$$\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta} = \sum_{i} \mu_{i}$$

$$\beta = 0 \rightarrow \theta \equiv \theta_E = \sqrt{\frac{4GM}{c^2} \frac{D_{\rm LS}}{D_{\rm L}D_{\rm S}}}$$

Einstein radius $r_E = \theta_E D_{\rm L}$

Near perfect Einstein Ring with the HST



Lensing equation:
$$u = \tau - \frac{m(\tau)}{\tau}$$

Magnification:
$$\mu = \left| 1 - \frac{m(\tau)}{\tau^2} \right|^{-1} \left| 1 + \frac{m(\tau)}{\tau^2} - \frac{1}{\tau} \frac{dm(\tau)}{d\tau} \right|^{-1}$$

Normalise everything to $heta_E$

•
$$u \equiv \beta/\theta_E$$

•
$$\tau \equiv \theta/\theta_E$$

•
$$m(\tau) \equiv M(\theta_E \tau)/M$$

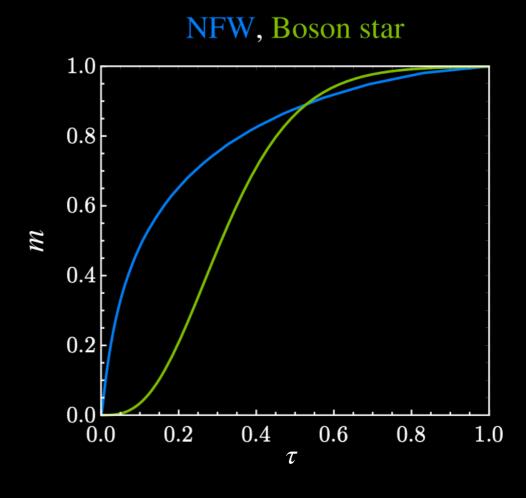
Geometry

"Thin screen approximation"

$$m(\tau) = \frac{\int_0^{\tau} d\sigma \sigma \int_0^{\infty} d\lambda \rho (r_E \sqrt{\sigma^2 + \lambda^2})}{\int_0^{\infty} d\gamma \gamma^2 \rho(r_E \gamma)}$$

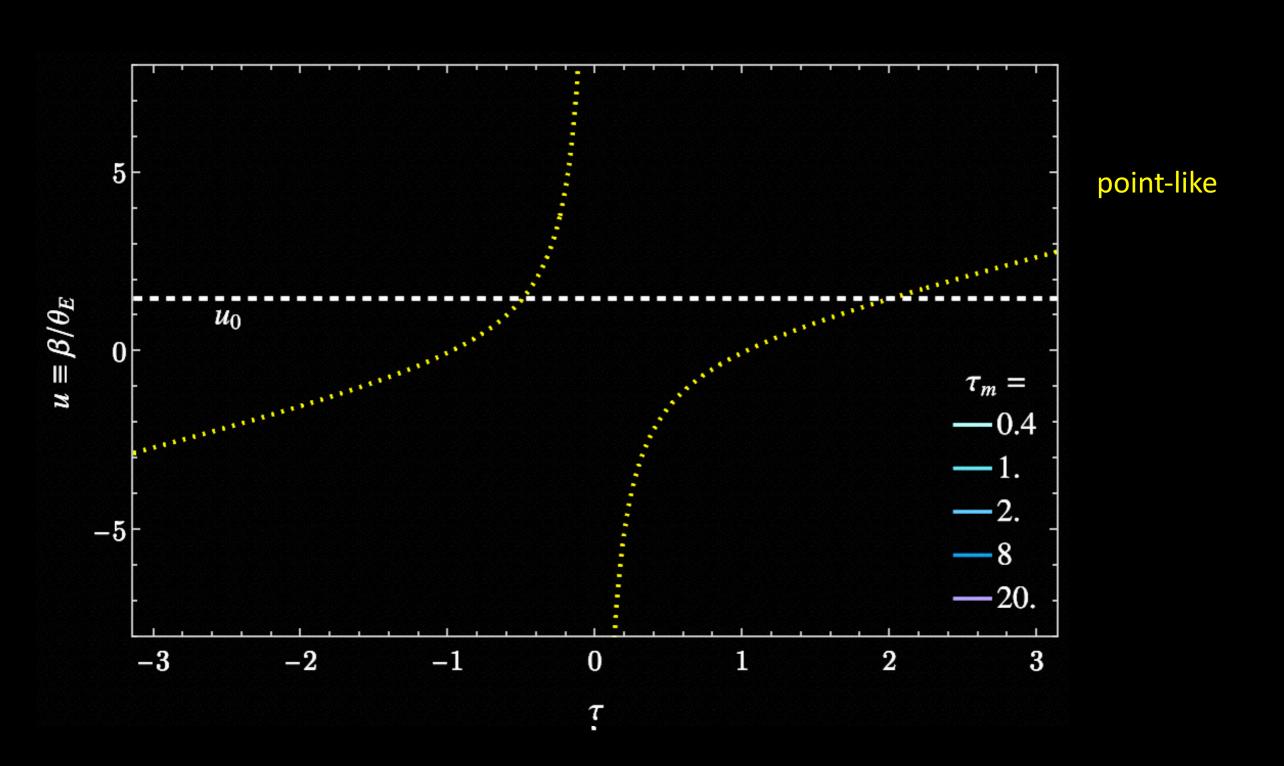
Projected lens mass distribution Point-like lenses: $m(\tau)=1$

Lensing equation:
$$u = \tau - \frac{m(\tau)}{\tau}$$

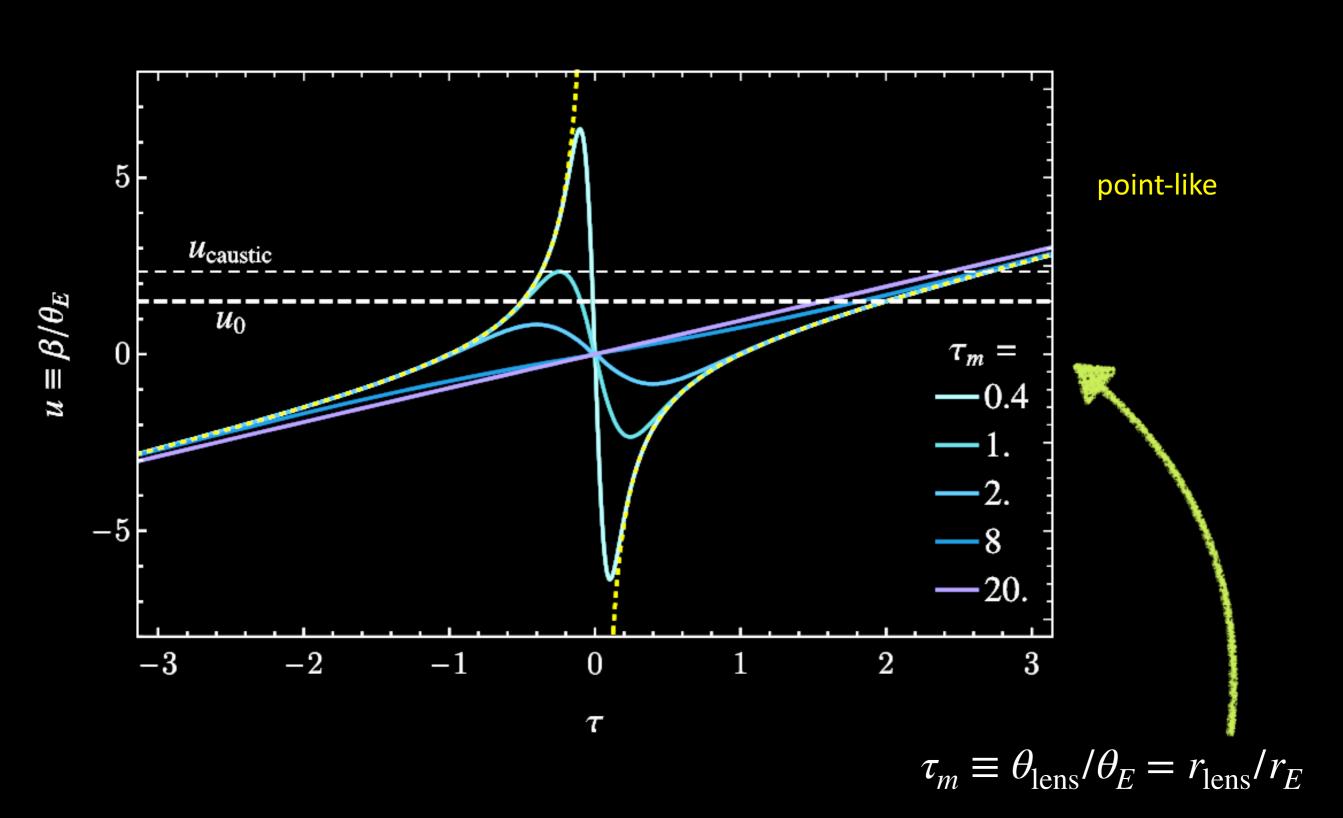


Magnification:
$$\mu = \left| 1 - \frac{m(\tau)}{\tau^2} \right|^{-1} \left| 1 + \frac{m(\tau)}{\tau^2} - \frac{1}{\tau} \frac{dm(\tau)}{d\tau} \right|^{-1}$$

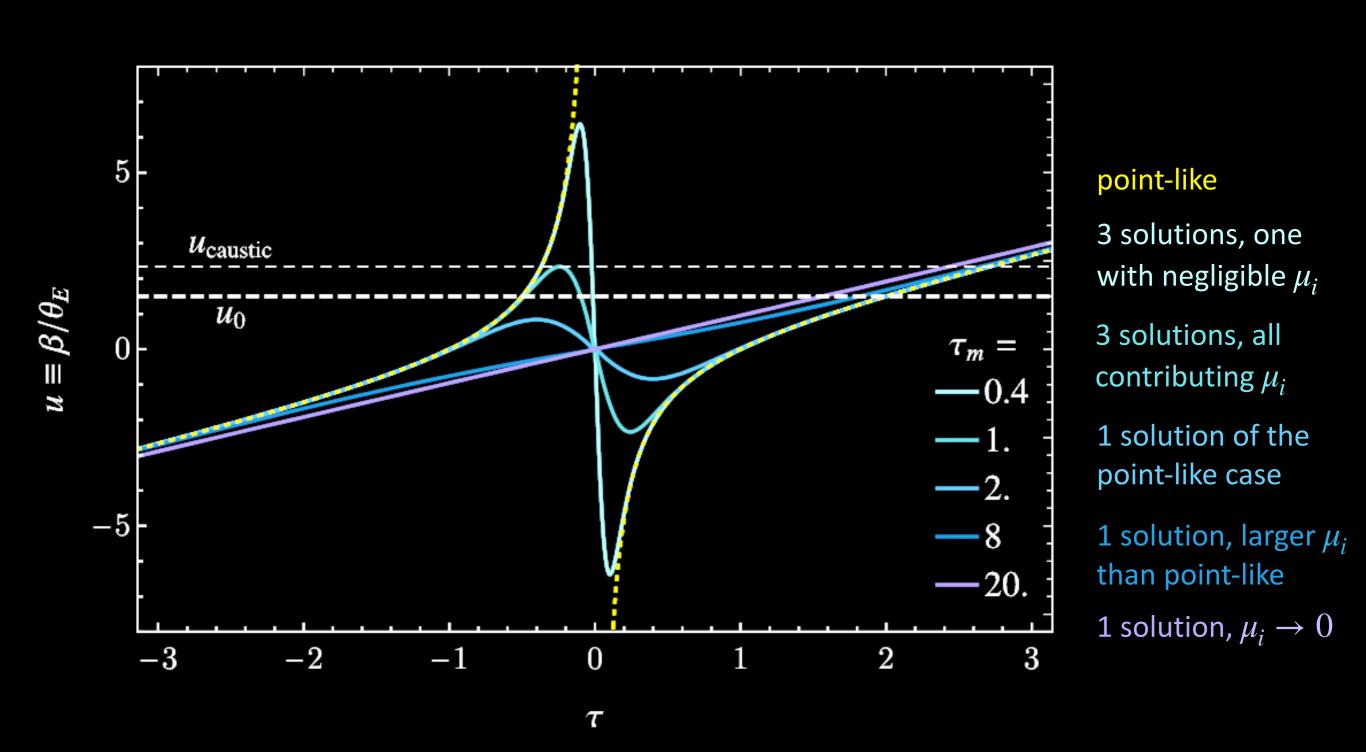
Solving the lens equation $u = \tau - \frac{m(\tau)}{\tau}$



Solving the lens equation $u = \tau - \frac{m(\tau)}{\tau}$



Solving the lens equation $u = \tau - \frac{m(\tau)}{\tau}$

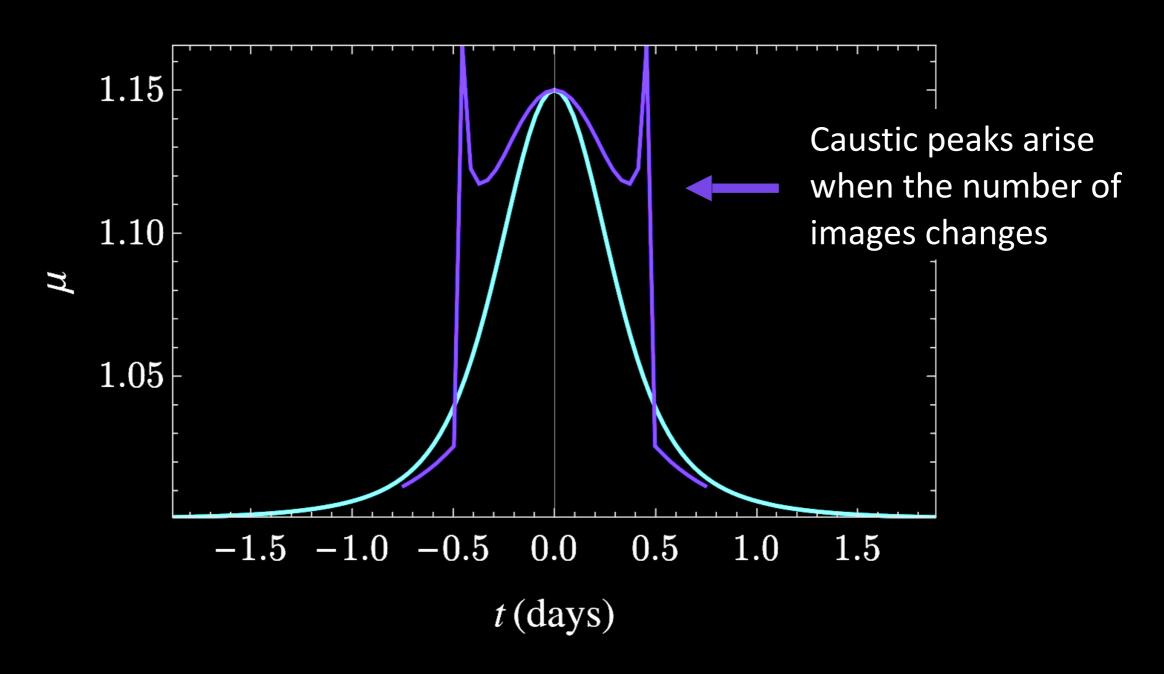


 \rightarrow at $u_{\rm caustic}$, number of solutions jumps from 1 to 3

Caustics

Example light curve

Boson star with $\tau_m = 1$ PBH (or $\tau_m = 0$)



Point-like lens:
$$m(\tau) = 1 \rightarrow \mu = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

Define $u_{1.34}$ by $\mu_{\text{tot}}(u \le u_{1.34}) > 1.34$

The threshold impact parameter

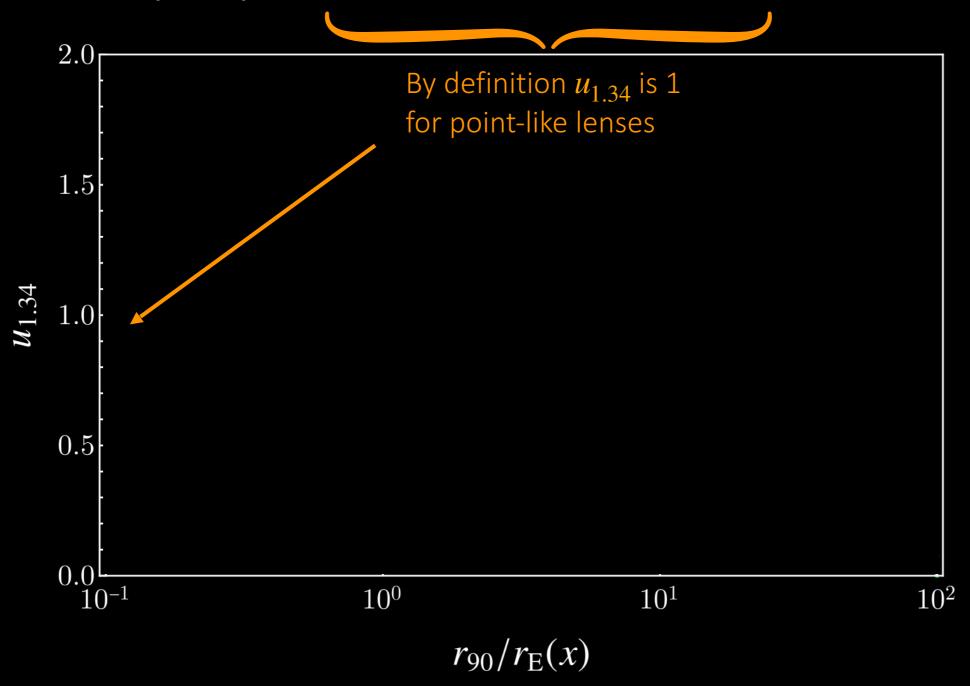
All smaller impact parameters produce a magnification above $\mu > 1.34$

By definition $u_{1.34}$ is 1 for point-like lenses

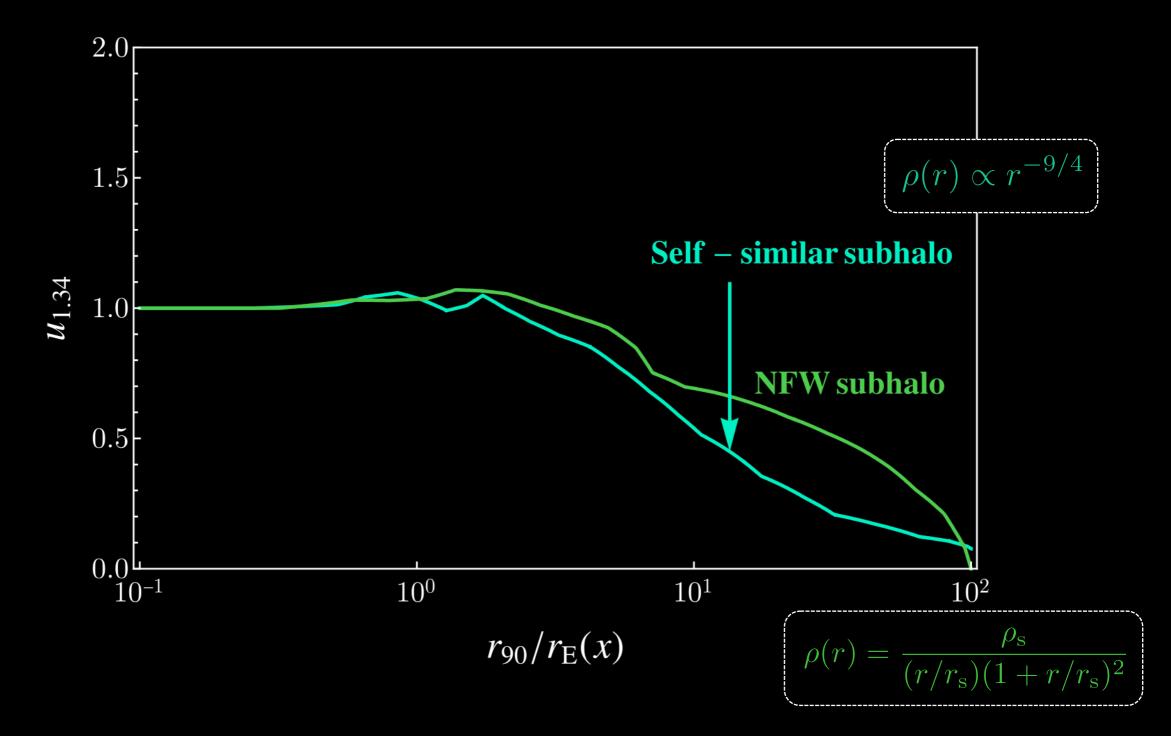
Define $u_{1.34}$ by $\mu_{\text{tot}}(u \le u_{1.34}) > 1.34$

The threshold impact parameter

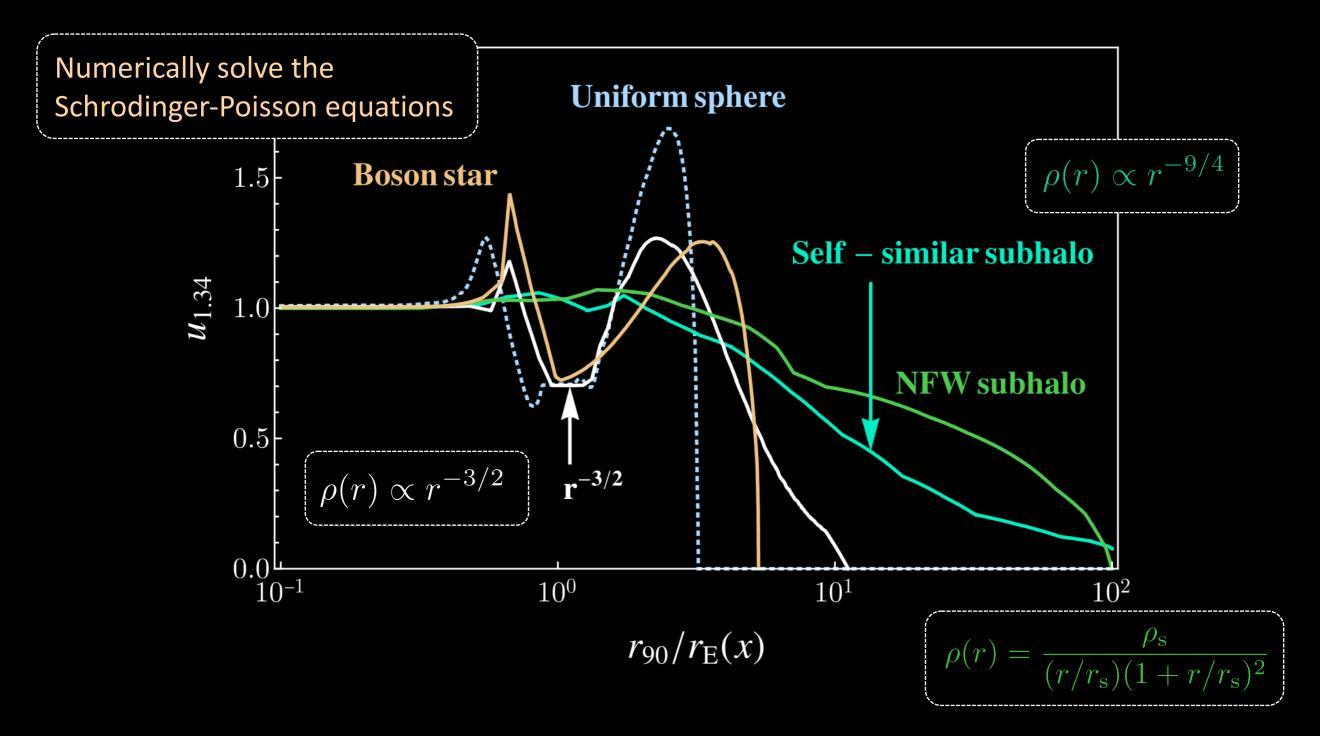
All smaller impact parameters produce a magnification above $\mu > 1.34$



Define $u_{1.34}$ by $\mu_{\text{tot}}(u \le u_{1.34}) > 1.34$ The threshold impact parameter All smaller impact parameters produce a magnification above $\mu > 1.34$



Define $u_{1.34}$ by $\mu_{\text{tot}}(u \le u_{1.34}) > 1.34$ The threshold impact parameter All smaller impact parameters produce a magnification above $\mu > 1.34$

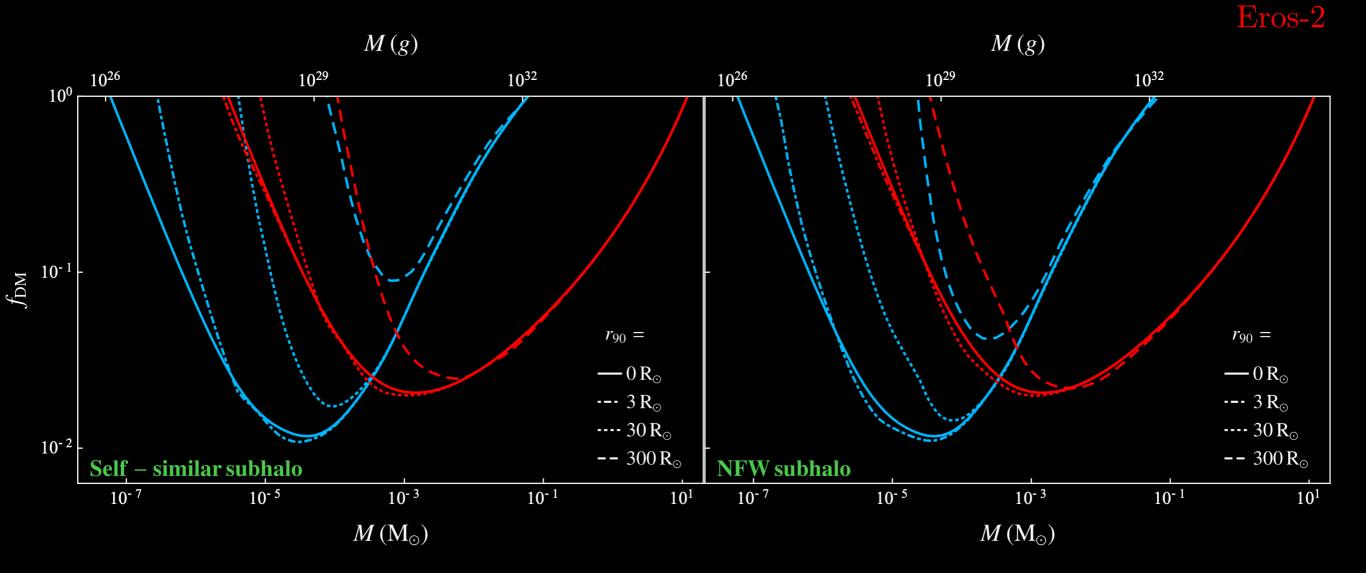


Constraints on DM fraction

Using the differential event rate, find constraints given expected number of (non-observed) events. Use derived efficiency for extended lenses.

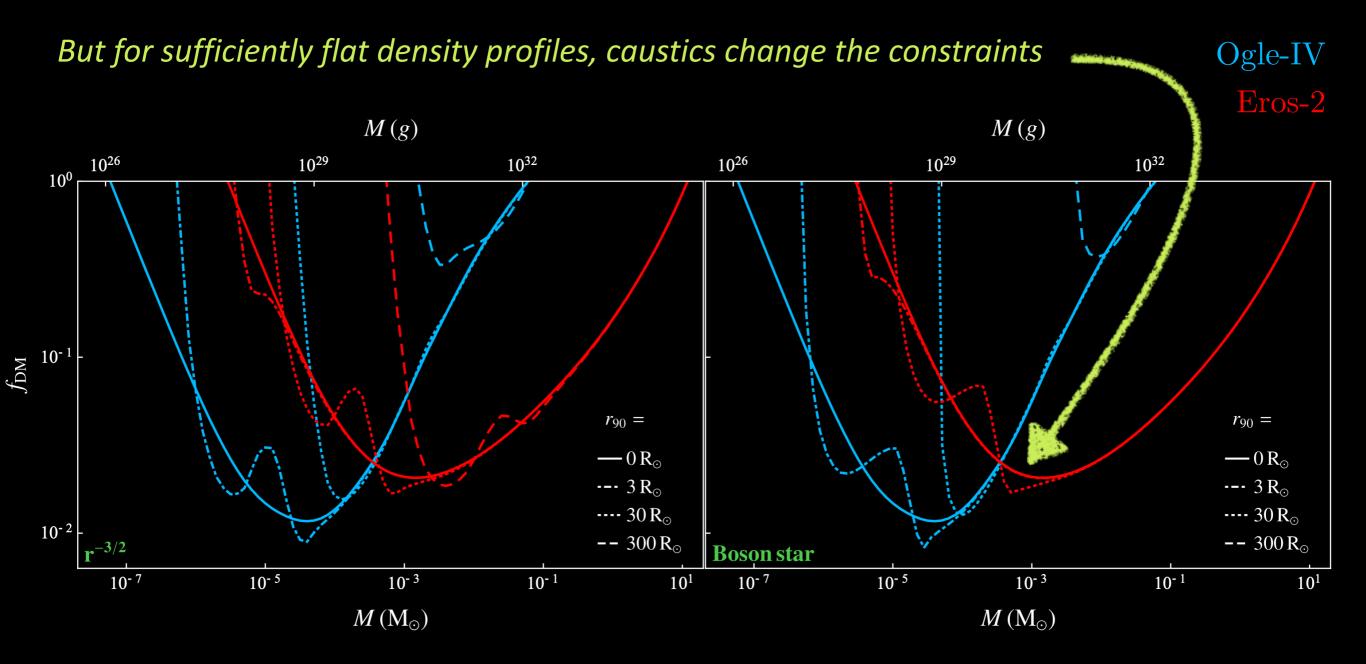
As expected, constraints on extended objects are weaker...

Ogle-IV

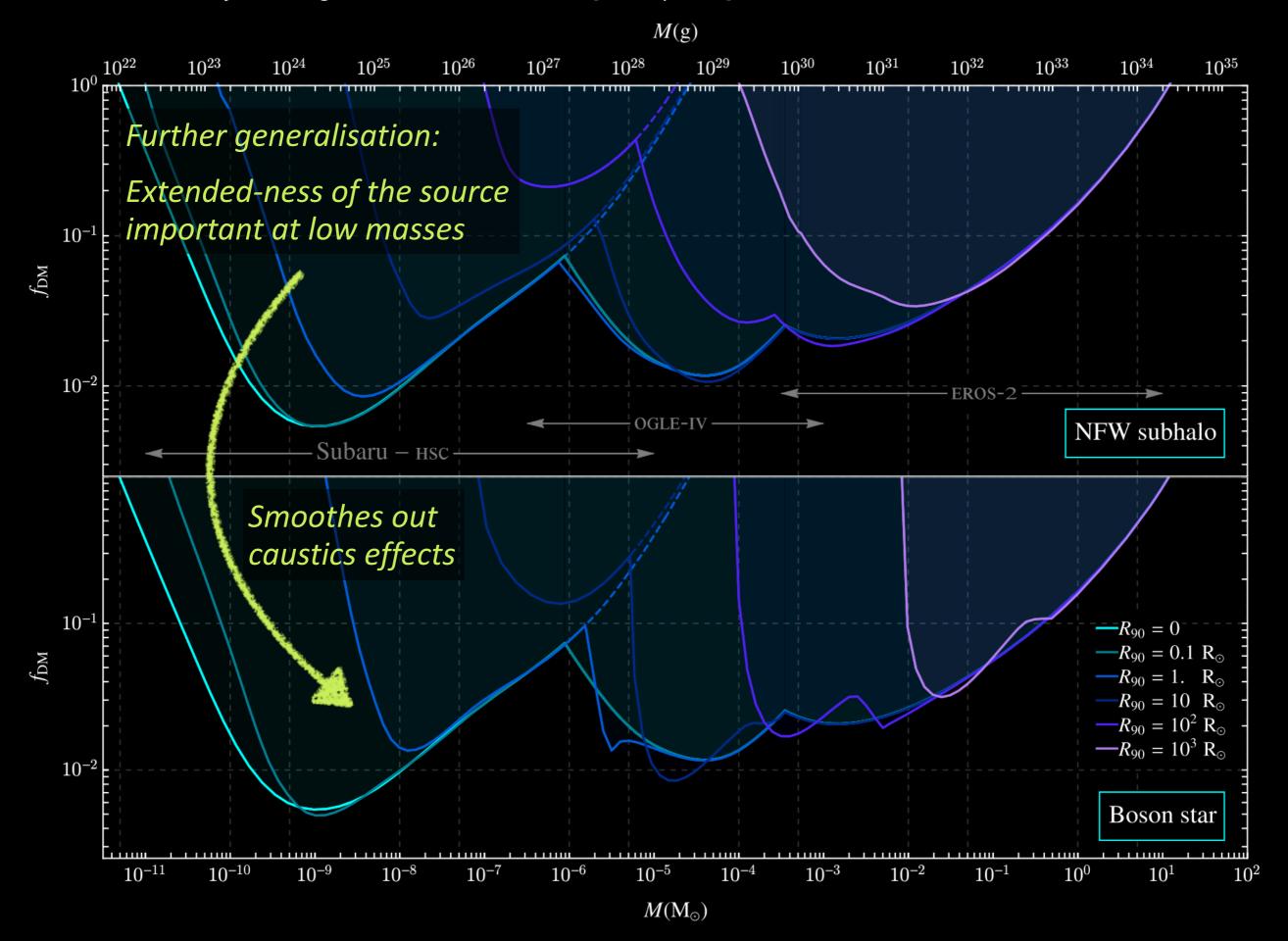


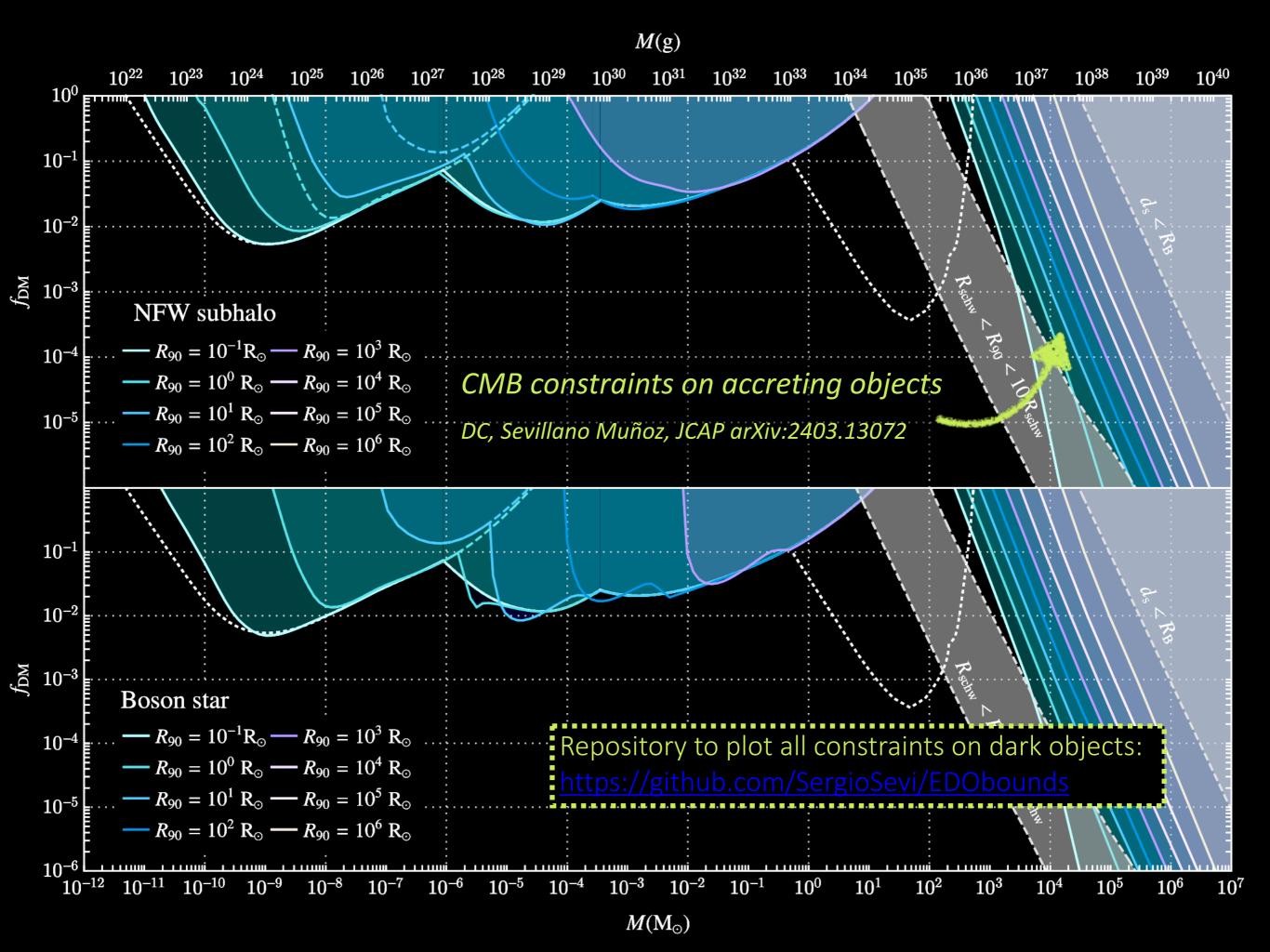
Constraints on DM fraction

Using the differential event rate, find constraints given expected number of (non-observed) events. Use derived efficiency for extended lenses.



DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]

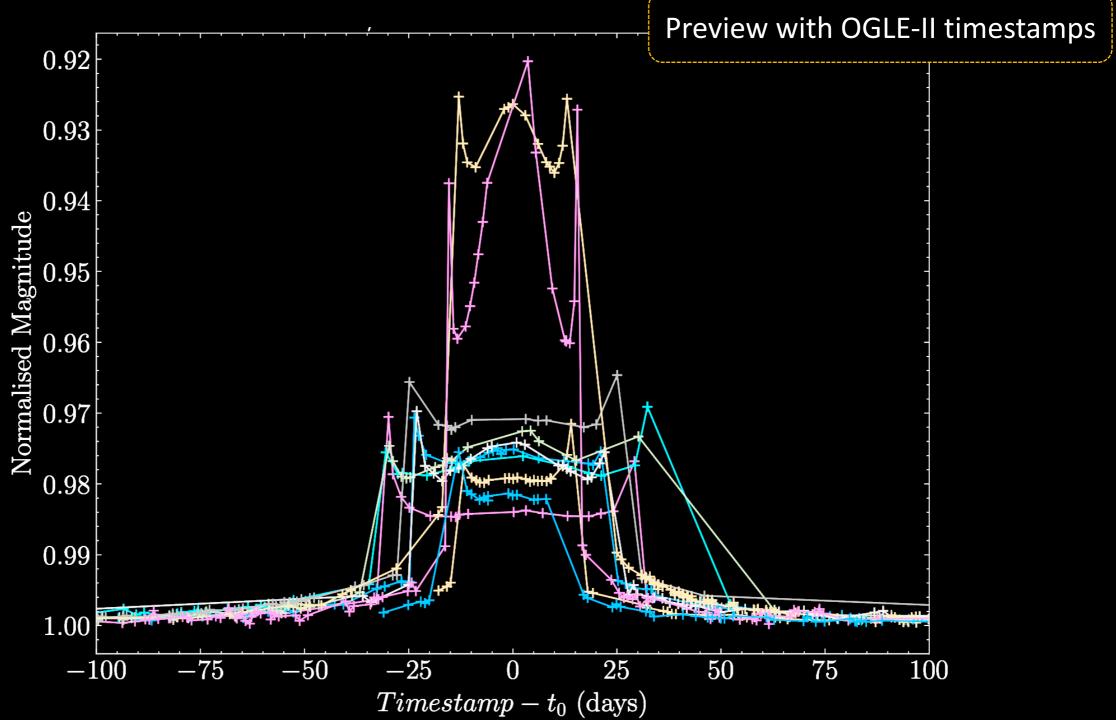




Light curves with caustics

Can we look for these explicitly?

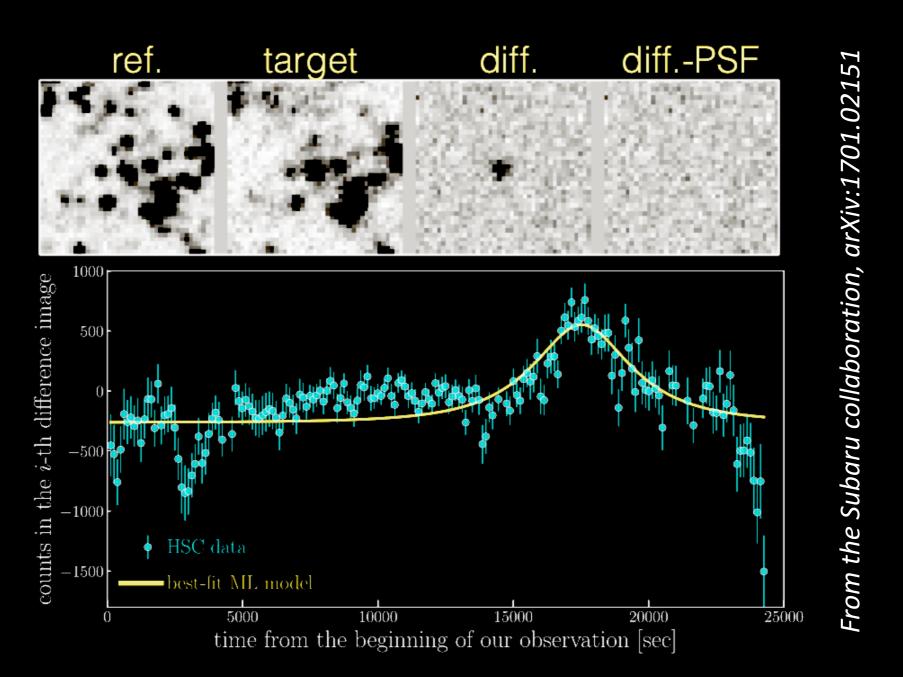
M. Crispim-Romao, DC, PRD, arXiv:2402.00107



ML + ML

Microlensing + Machine Learning

- Microlensing data is time series data
- Challenge: low-cadence data, lower signal-to-noise ratios



ML + ML

Microlensing + Machine Learning

- Microlensing data is time series data
- Challenge: low-cadence data, lower signal-to-noise ratios
- MicroLIA: use a Random Forest (RF) algorithm to find microlensing event (and distinguish from other events)

Godines et al, arXiv:2004.14347

ML + ML

Microlensing + Machine Learning

- Microlensing data is time series data
- Challenge: low-cadence data, lower signal-to-noise ratios
- MicroLIA: use a Random Forest (RF) algorithm to find microlensing event (and distinguish from other events)

Our adaptations:

- Implement boson star and NFW light curves with $0.5 < \tau_m < 5$
- Instead of an RF, we use a histogram-based gradient boosted classifier (HBGC) to improve speed
- Add criterium $\mu \ge 1.34$

(... and a few fixes)

Complete datasets not available

Table 1
Selection Criteria for High-quality Microlensing Events in OGLE GVS Fields

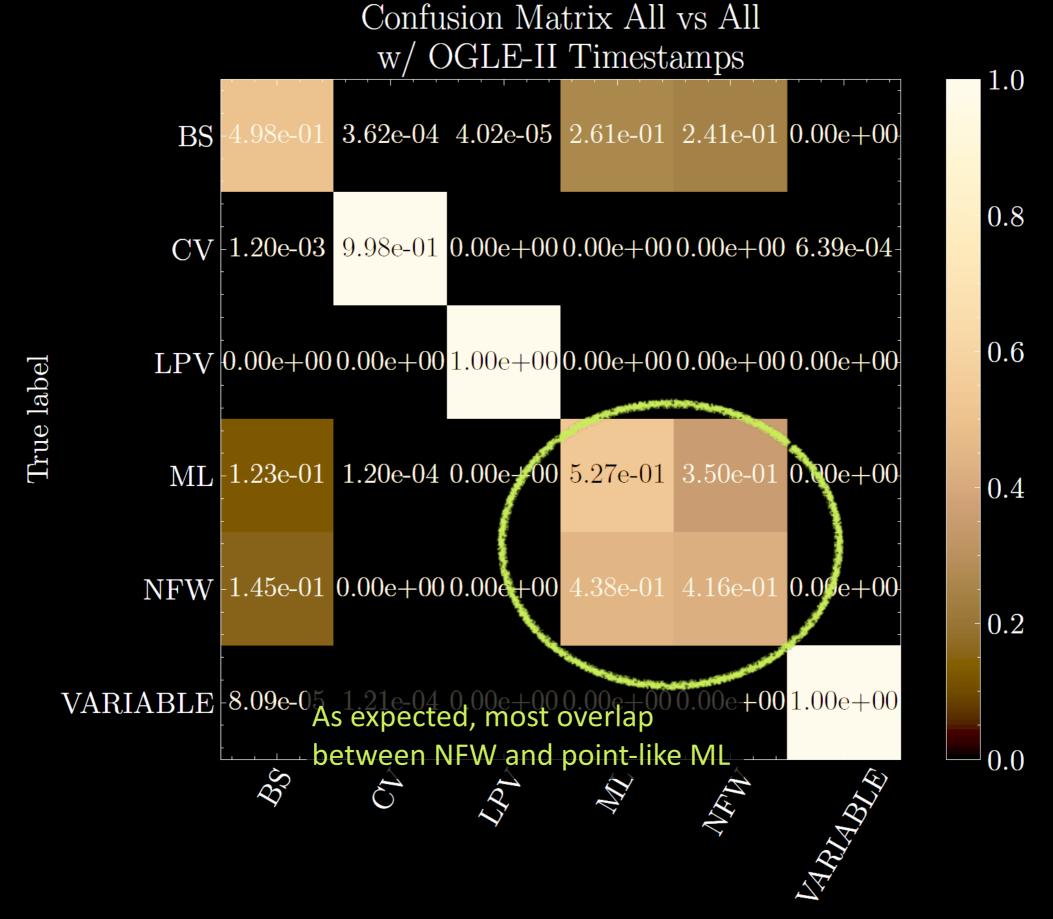
Criteria	Remarks		Number	
All stars in databases			1,856,529,265	
$\chi^2_{ m out}/{ m dof}\leqslant 2.0$	No variability outside a window centered on the event (duration of the window depends on the field)			
$n_{\rm DIA} \geqslant 3$	Centroid of the additional flux coincides with the source star centroid			
$\chi_{3+} = \sum_i (F_i - F_{\text{base}}) / \sigma_i \geqslant 32$	Significance of the bump		23,618	
$A \geqslant 0.1 \text{ mag}$	Rejecting low-amplitude variables			
$n_{\text{bump}} = 1$	Rejecting objects with multiple bumps	Reject events with	18,397	
	Fit quality:	multiple bumps		
$\chi^2_{ m fit}/{ m dof}\leqslant 2.0$	χ^2 for all data			
$\chi^2_{ m fit,tE}/{ m dof} \leqslant 2.0$	χ^2 for $ t-t_0 < t_{\rm E}$			
$\sigma(t_{\rm E})/t_{\rm E} < 0.5$	Einstein timescale is well measured			
$t_{\min} \leqslant t_0 \leqslant t_{\max}$	Event peaked between t_{\min} and t_{\max} , which are moments of the first and last observation of a given field			
$u_0 \leqslant 1$	Maximum impact parameter			
$t_{\rm E} \leqslant 500 { m d}$	Maximum timescale			
$A \geqslant 0.4$ mag if $t_{\rm E} \geqslant 100$ days	Long-timescale events should have high amplitudes			
$I_{\rm s}\leqslant 21.0$	Maximum I-band source magnitude			
$F_{\rm b} > -F_{\rm min}$	Maximum negative blend flux, corresponding to $I = 20.5$ mag star			

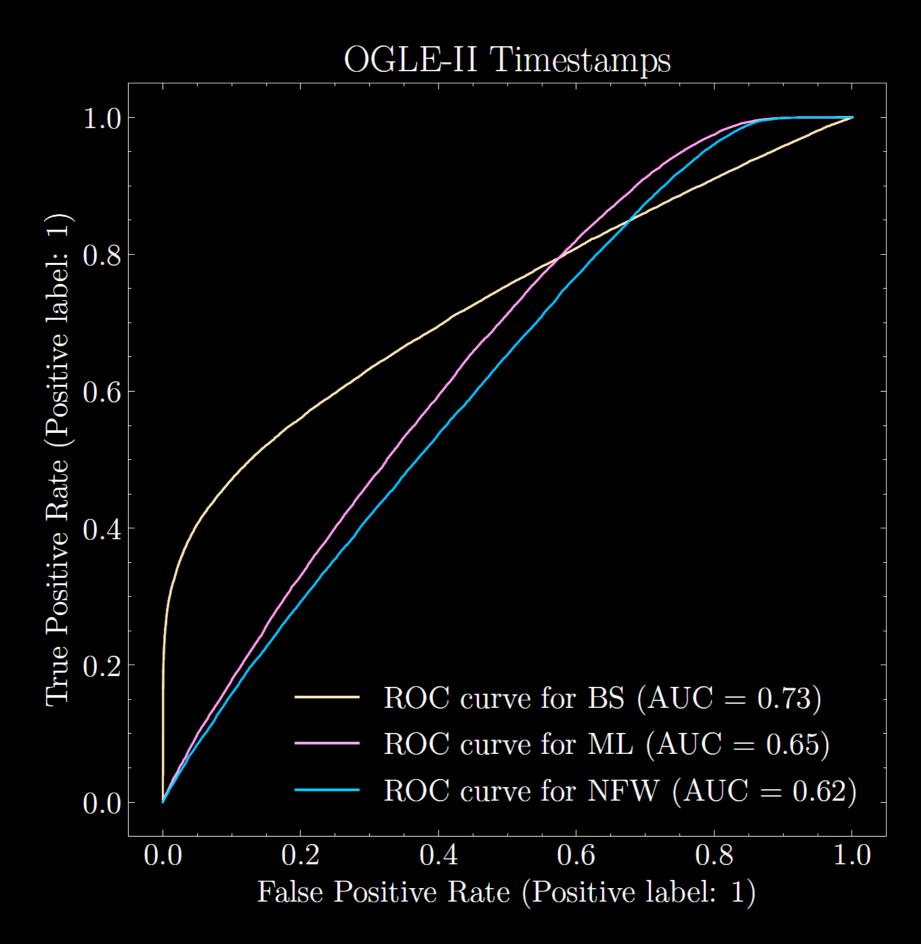
So for now... generating and injecting events

w/ OGLE-II Timestamps 1.0 3.62e-04 4.02e-05 2.61e-01 2.41e-01 0.00e+00BS0.8 CV-1.20e-03 9.98e-01 0.00e+000.00e+000.00e+00 6.39e-04-0.6LPV = 0.00e + 000.00e + 001.00e + 0000.00e + 0000.00e1.23e-01 1.20e-04 0.00e+00 5.27e-01 3.50e-01 0.00e+00ML0.4 NFW 1.45e-01 0.00e+00 0.00e+00 4.38e-01 4.16e-01 0.00e+00 0.20.0 S_Q $\mathcal{A}_{\mathcal{O}}$

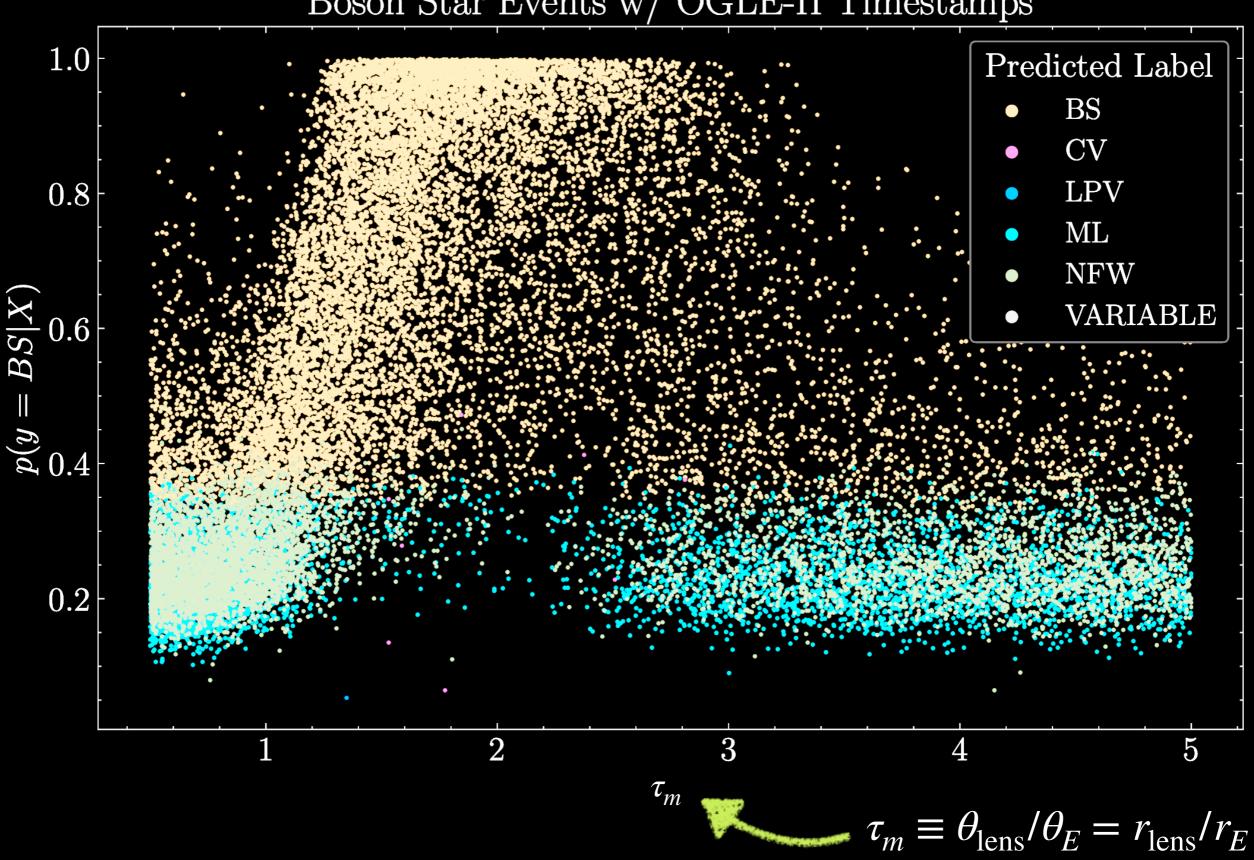
Confusion Matrix All vs All

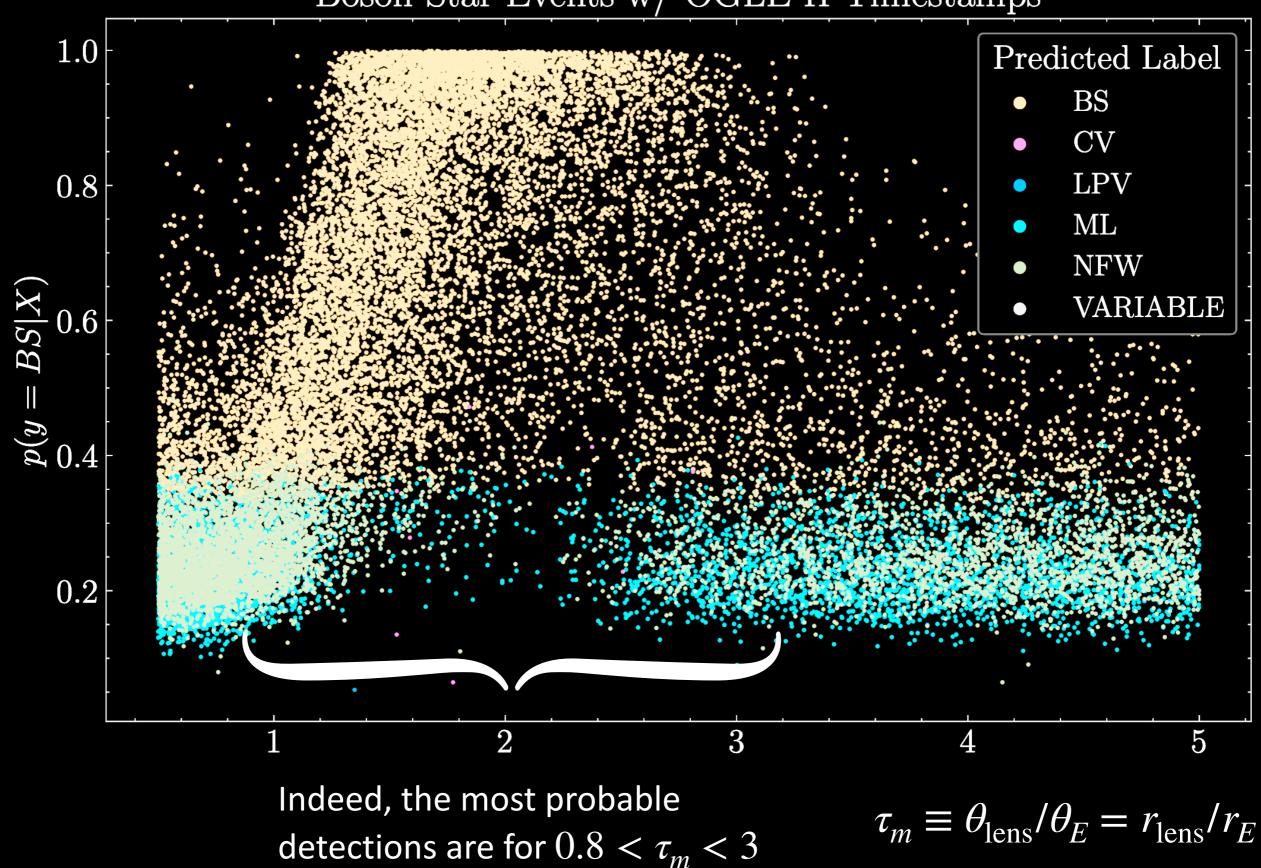
Predicted label





Boson Star Events w/ OGLE-II Timestamps

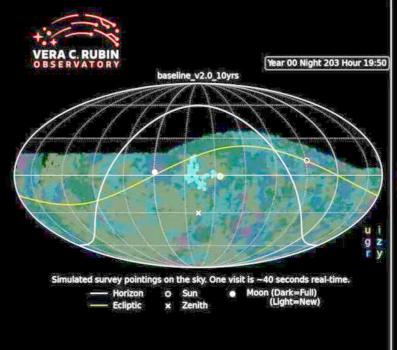


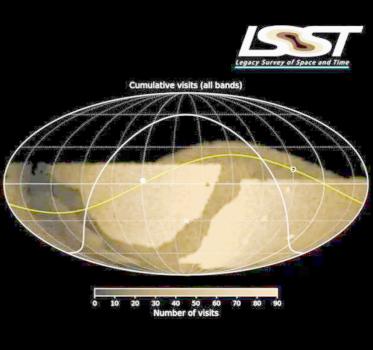


LSST by Rubin

The Legacy Survey of Space and Time

- 10-year survey by the Vera C. Rubin Observatory
- Large field of view and rapid survey speed
- Relatively high cadence observations, allowing frequent monitoring of $\sim 10^9\, \rm stars$
- However, sparse develop follow up strategies





LSST by Rubin: simulations

https://zenodo.org/records/15005108

Miguel Crispim-Romao, DC, Daniel Godines, arXiv:2503.09699

Simulated, using rubinsim, 7 classes of observations:

- Constant
- Mira long-period variables (LPV)
- RR Lyrae and Cepheid Variables (RRLyrae)

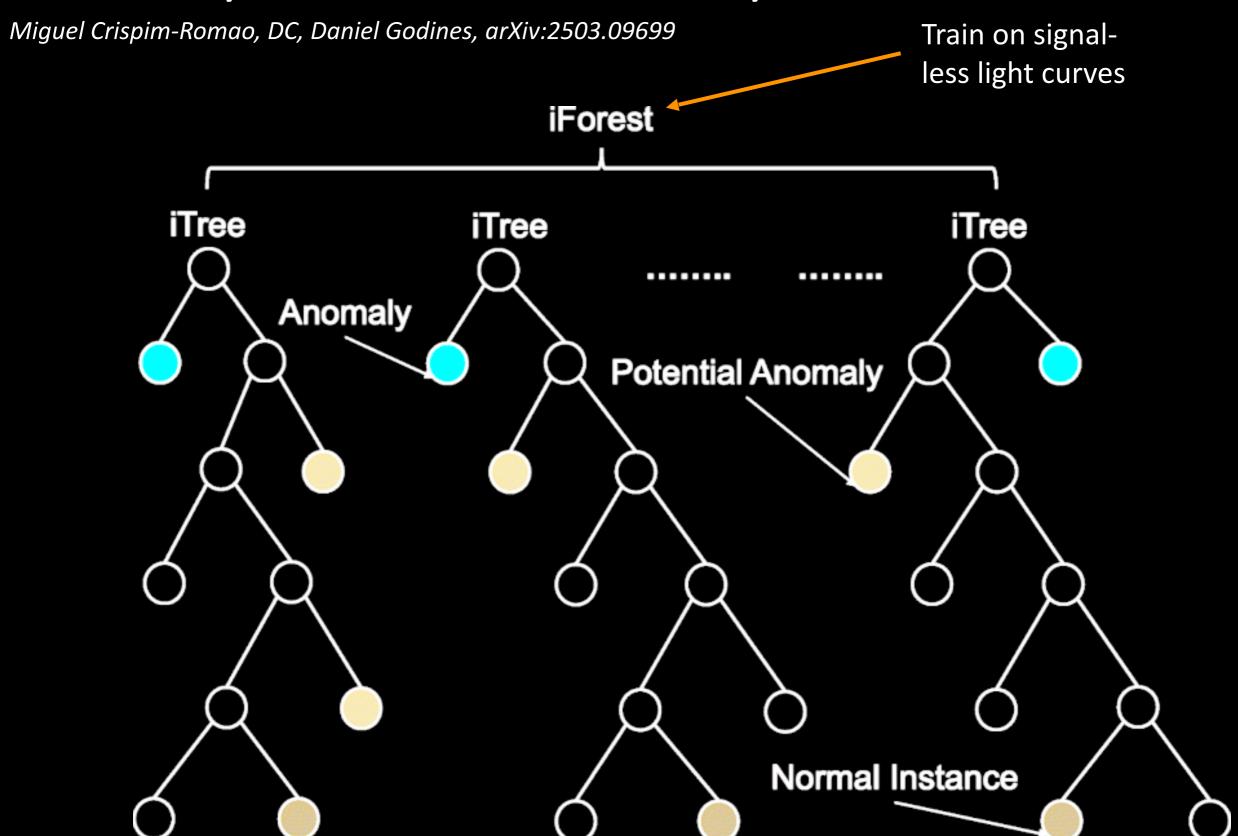
Cadence:

(baseline_v2.0_10yrs)

- point-like microlensing (ML)
- binary microlensing
- microlensing by NFW-subhalos
- microlensing by boson stars (BS)

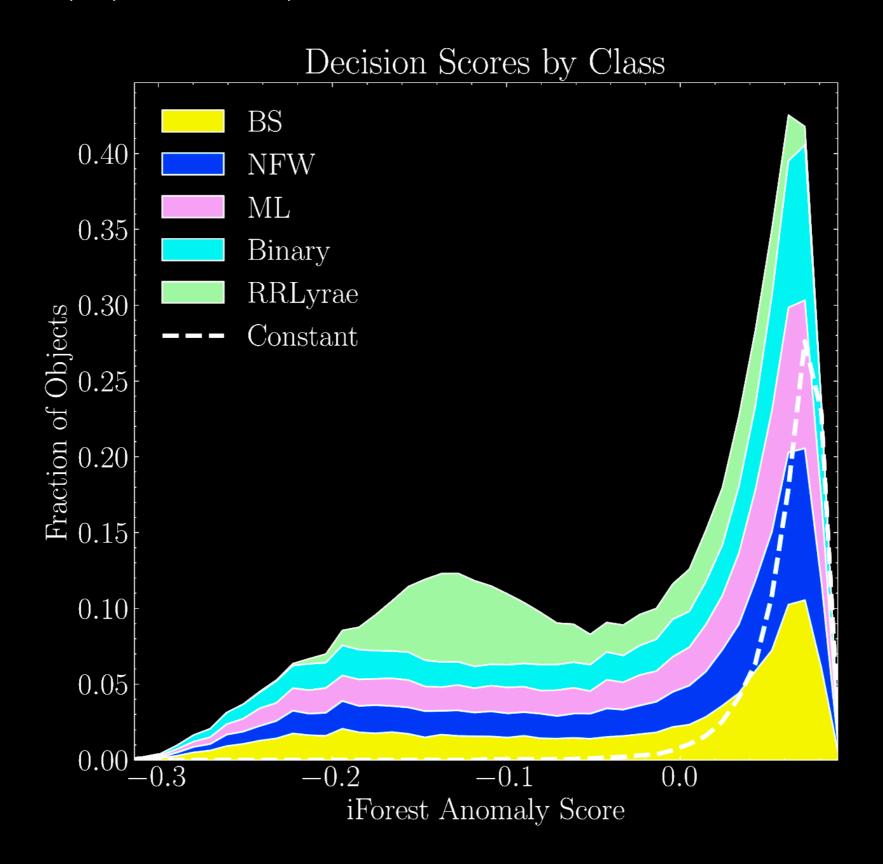
parameter	\min	max	spacing
$t_E \; ({ m days})$	0	100	$_{ m linear}$
u_0	0	3	$_{ m linear}$
$ au_m$	0.05	5	logarithmic

LSST by Rubin: anomaly detection



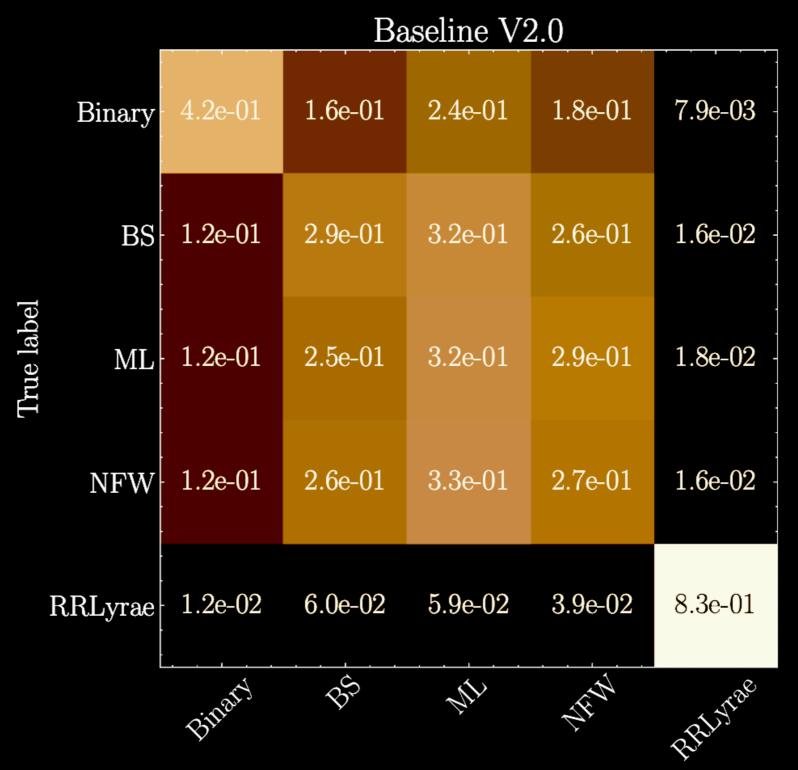
LSST by Rubin: offline analysis

Miguel Crispim-Romao, DC, Daniel Godines, arXiv:2503.09699



LSST by Rubin: offline analysis

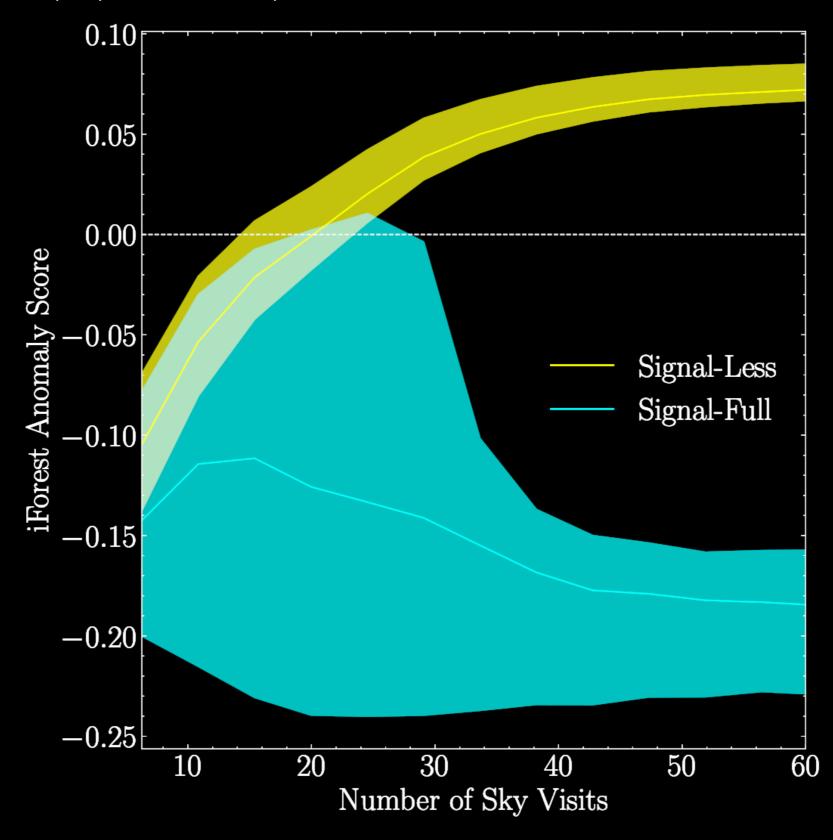
Miguel Crispim-Romao, DC, Daniel Godines, arXiv:2503.09699



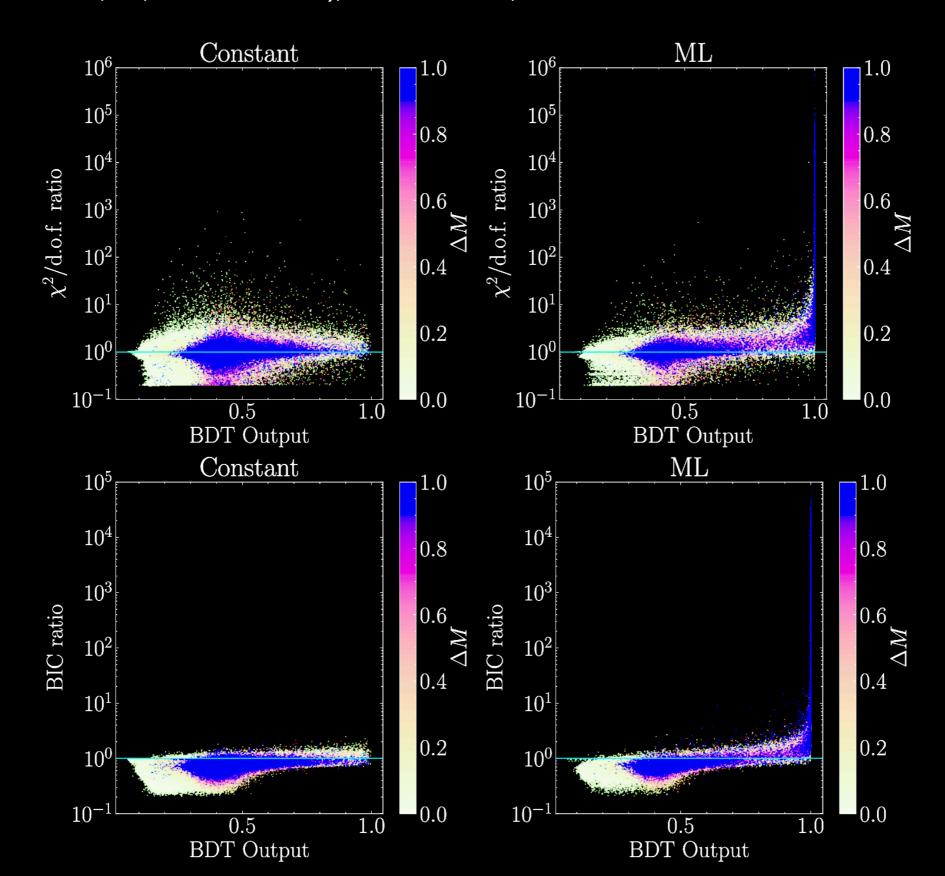
Predicted label

LSST by Rubin: online analysis

Miguel Crispim-Romao, DC, Daniel Godines, arXiv:2503.09699

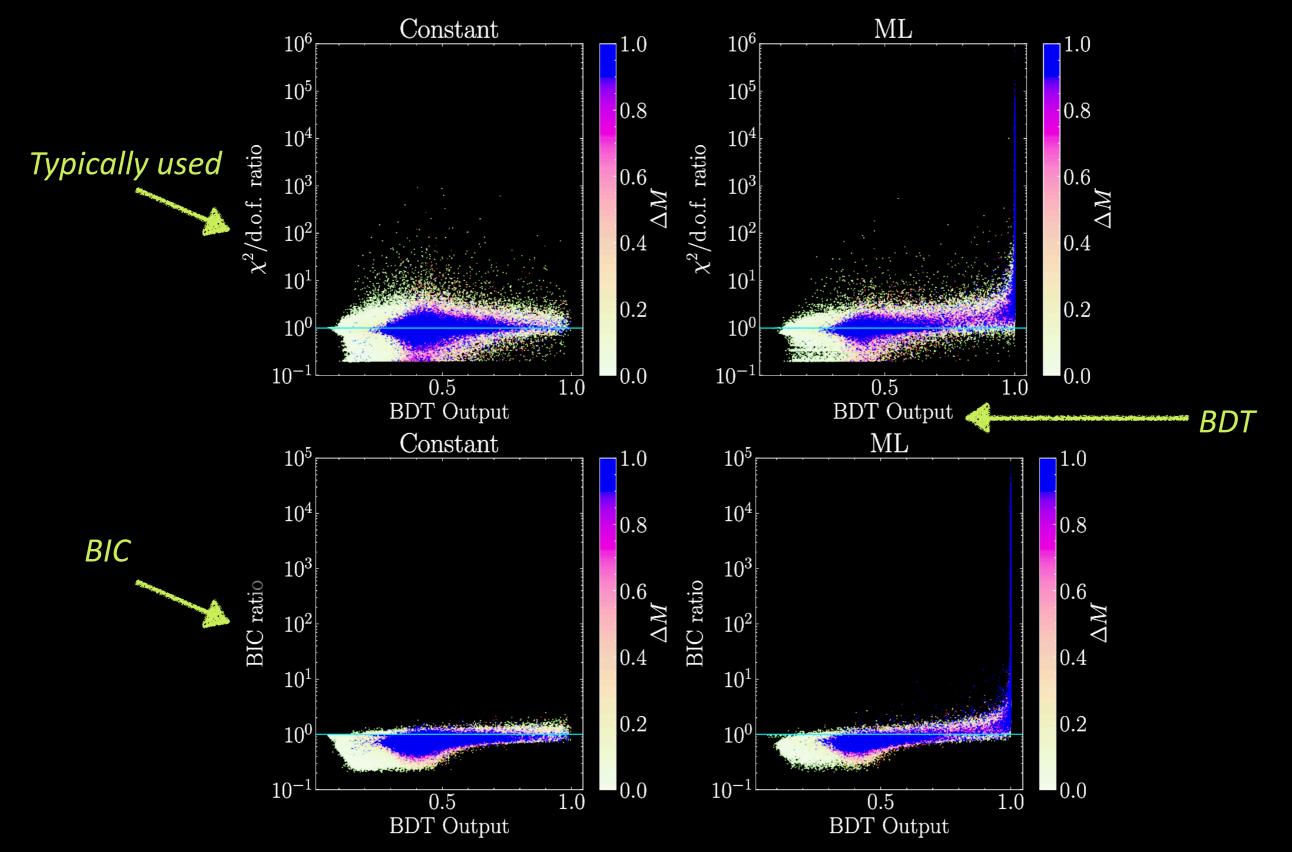


Miguel Crispim-Romao, DC, Benedict Crossey, Daniel Godines, arXiv:2506.XXXX

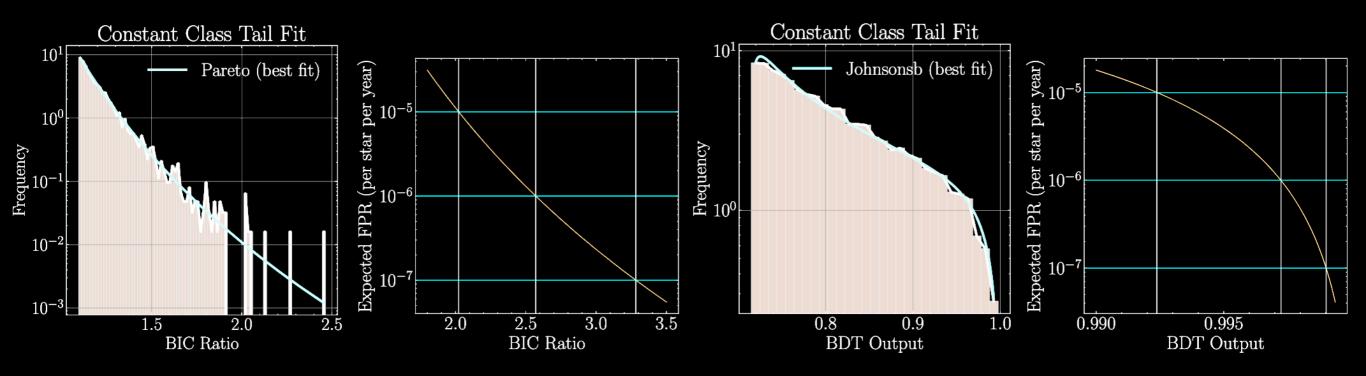


Miguel Crispim-Romao, DC, Benedict Crossey, Daniel Godines, arXiv:2506.XXXX

Goal: design cuts which optimise efficiency while minimising false positives



Miguel Crispim-Romao, DC, Benedict Crossey, Daniel Godines, arXiv:2506.XXXX

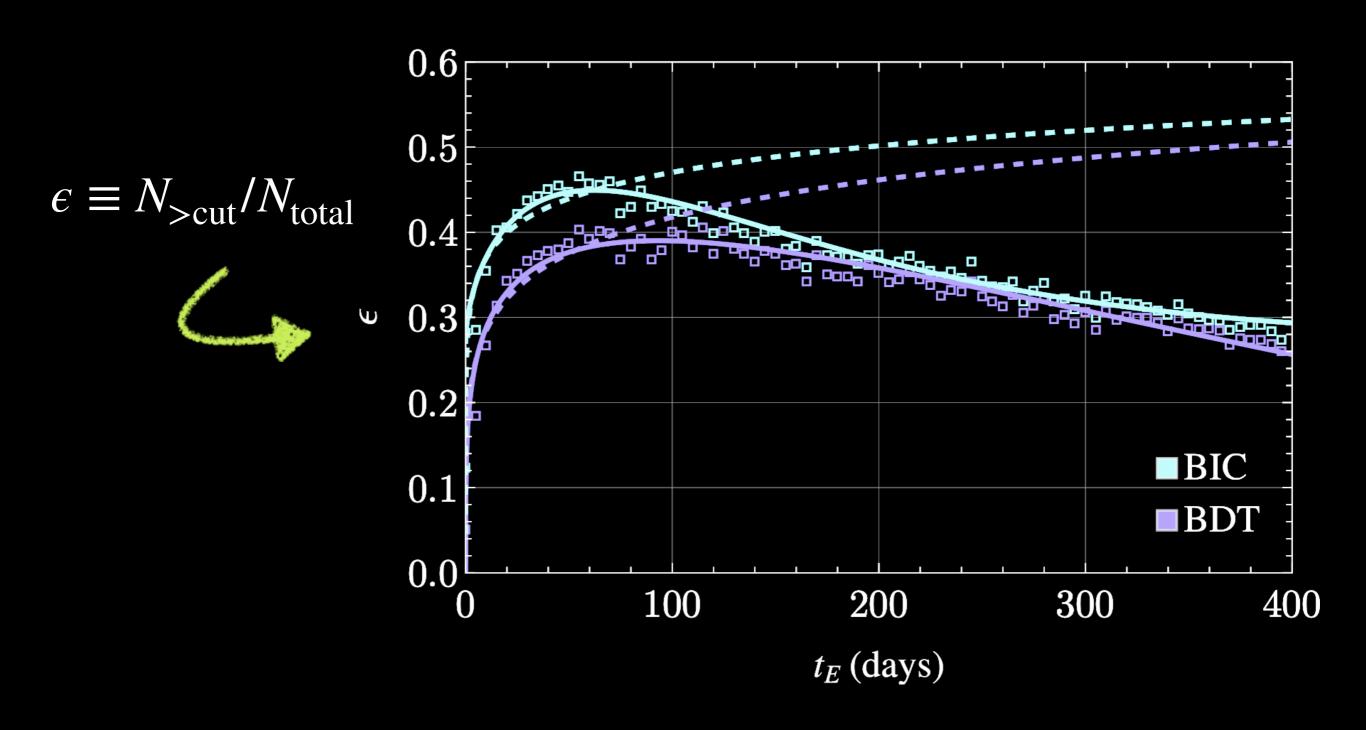


For competitive constraints, need FPR $\,< 10^{-7}$

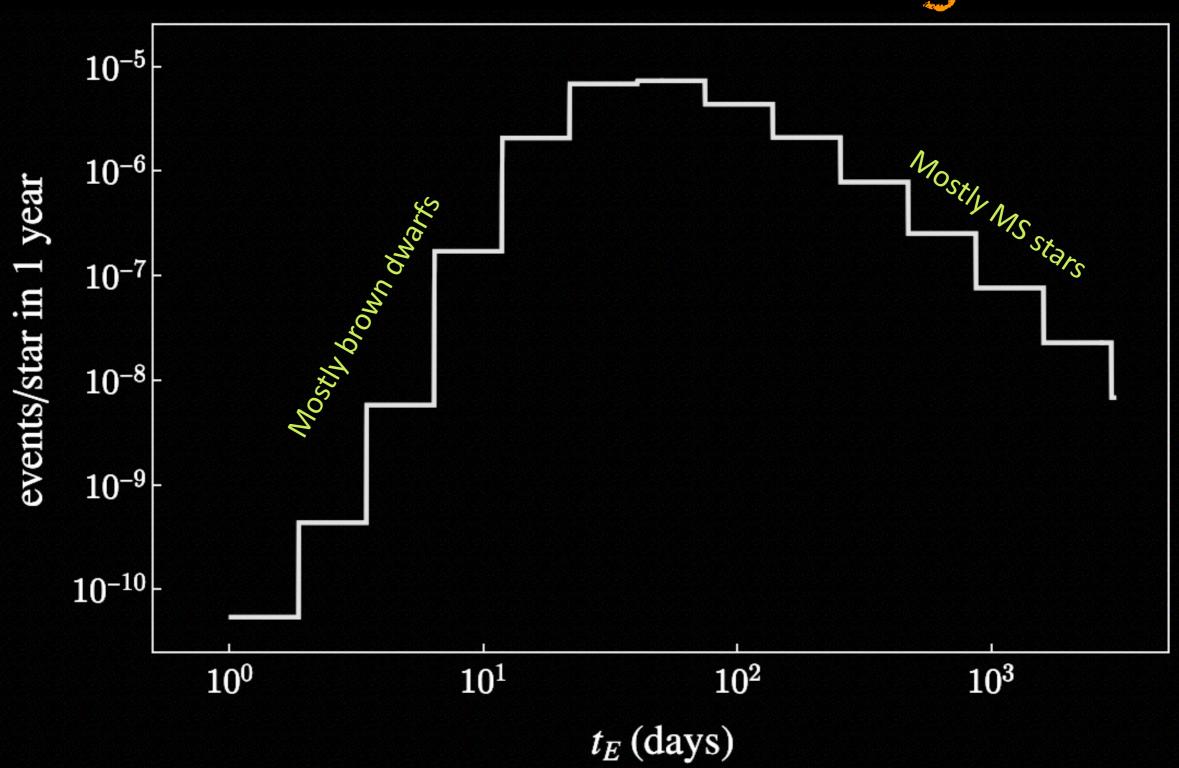
cut	FPR	$ar{\epsilon}$
BIC ratio > 3.28	10^{-7}	0.38
BDT > 0.999	10^{-7}	0.34
$\chi^2/\text{d.o.f.}$ ratio > 10	3.5×10^{-4}	0.30
$\chi^2/\text{d.o.f. ratio} > 10, \widetilde{u}_0 < 1$	1.1×10^{-4}	0.20

Miguel Crispim-Romao, DC, Benedict Crossey, Daniel Godines, arXiv:2506.XXXX

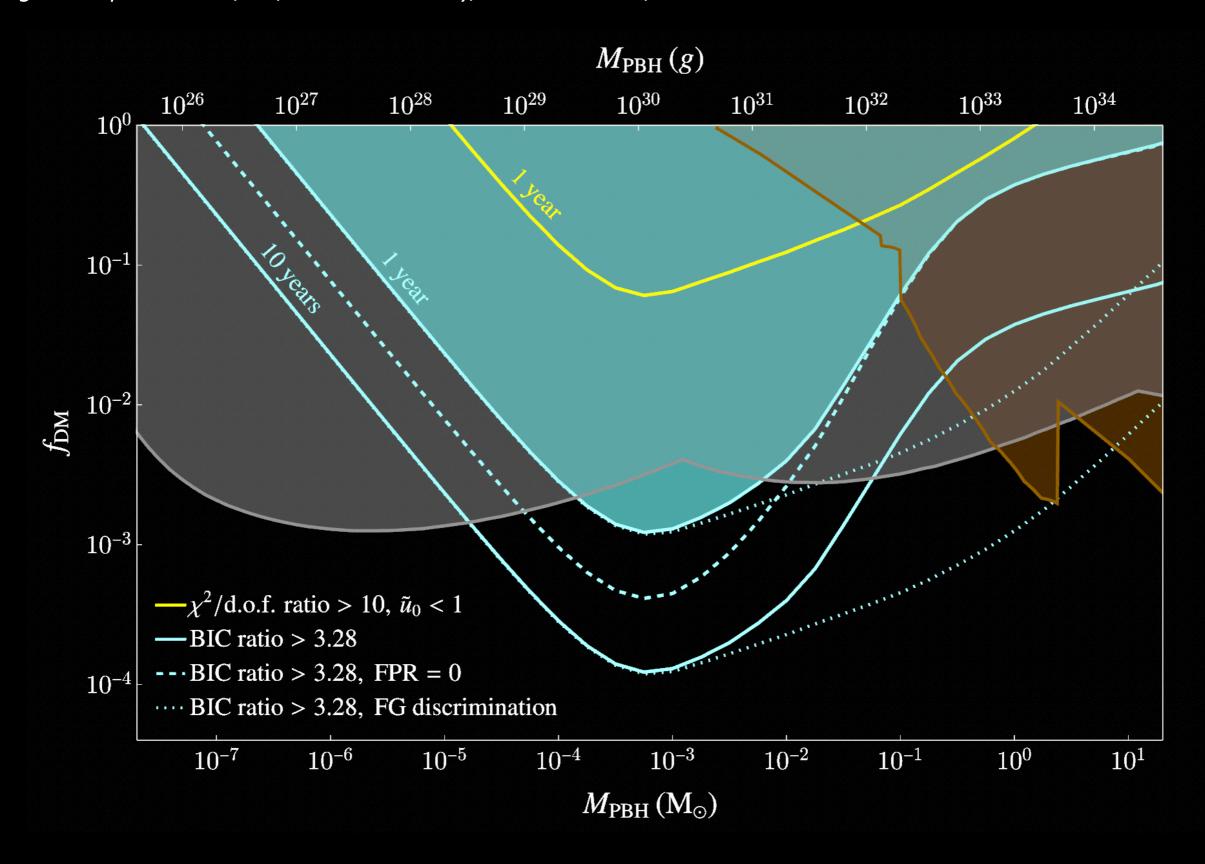
Define a cut in false positives — what fraction of events is identified?



Miguel Crispim-Romao, DC, Benedict Crossey, Daniel Godines, arXiv:2506.XXXX



Miguel Crispim-Romao, DC, Benedict Crossey, Daniel Godines, arXiv:2506.XXXX



EDOs and the early Universe

• Ultracompact mini haloes (UCMH, $\rho \sim r^{-3/2}$) are formed from the collapse of primordial overdensities

 The non-observation of UCMH can therefore be used to draw conclusions about the primordial power spectrum

• This has been done for e.g. PTAs and WIMPs (= model-dependent)

Clark, Lewis, Scott, MNRAS, arXiv:1509.02938

Bringmann, Scott, Akrami, PRD, arXiv:1110.2484

But we now have far more gravitational probes...

- Primordial curvature perturbations with amplitude $\mathcal{P}_{\mathcal{R}}(k)$ determine the variance $\sigma_{\chi,H}(R)$ of CDM density fluctuations at horizon entry
 - If $\delta_{\chi}(R)$ exceeds a threshold $\delta_{\chi}^{\min}(R) \sim 10^{-3}$, the region collapses into an UCMH (much smaller than for PBHs)
 - If $\sigma_{\chi,H}(R)$ is too large many regions will exceed $\delta_{\chi}^{\min}(R)$

- Primordial curvature perturbations with amplitude $\mathcal{P}_{\mathcal{R}}(k)$ determine the variance $\sigma_{\chi,H}(R)$ of CDM density fluctuations at horizon entry
 - If $\delta_\chi(R)$ exceeds a threshold $\delta_\chi^{\min}(R) \sim 10^{-3}$, the region collapses into an UCMH
 - If $\sigma_{\chi,H}(R)$ is too large many regions will exceed $\delta_\chi^{\min}(R)$
- From f_{DM} we work backward:
 - f_{DM} sets a max collapse probability $eta_{max}(R)$ at redshift z_c
 - In Gaussian theory, $\beta(R)\sim \exp[-\delta_{min}^2/(2\sigma^2(R))]$. Thus β_{max} fixes the largest allowable $\sigma(R)$
 - Since $\sigma^2(R)$ is essentially an integral over $\mathscr{P}_{\mathscr{R}}(k)$ around $k \sim 1/R$, limiting $\sigma(R) \Rightarrow$ upper limit on $\mathscr{P}_{\mathscr{R}}(k)$

Assume a generalised power spectrum

EDOs formed with

$$\frac{R(z_c)}{\text{pc}} = 0.019 \left(\frac{1000}{z_c + 1}\right) \left(\frac{M(z_c)}{M_{\odot}}\right)^{1/3} \text{ with } M(z_c) = \frac{z_{\text{eq}} + 1}{z_c + 1} M_i$$

Assume a generalised power spectrum

EDOs formed with

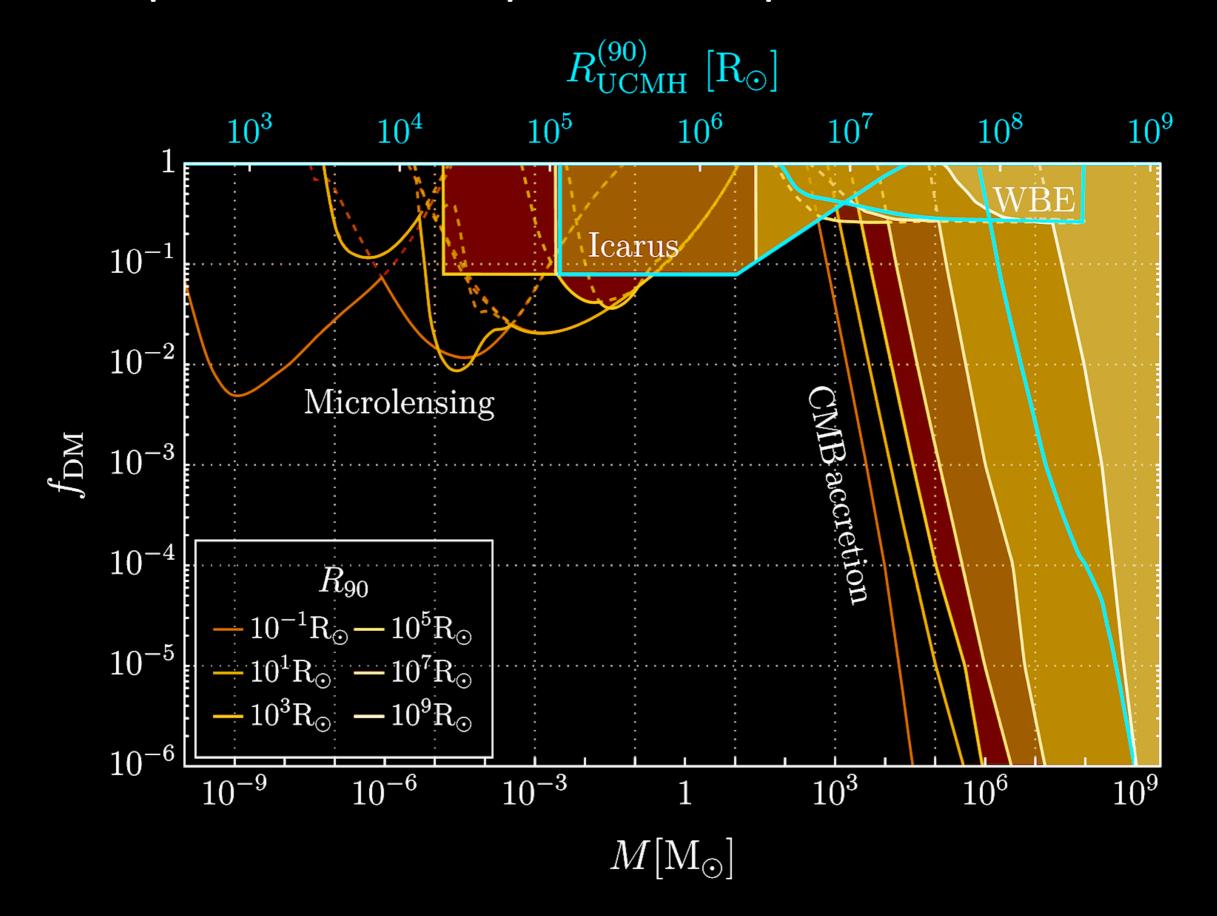
$$\frac{R(z_c)}{\text{pc}} = 0.019 \left(\frac{1000}{z_c + 1}\right) \left(\frac{M(z_c)}{M_{\odot}}\right)^{1/3} \text{ with } M(z_c) = \frac{z_{\text{eq}} + 1}{z_c + 1} M_i$$

This means not all EDO constraints map to primordial power spectrum constraints

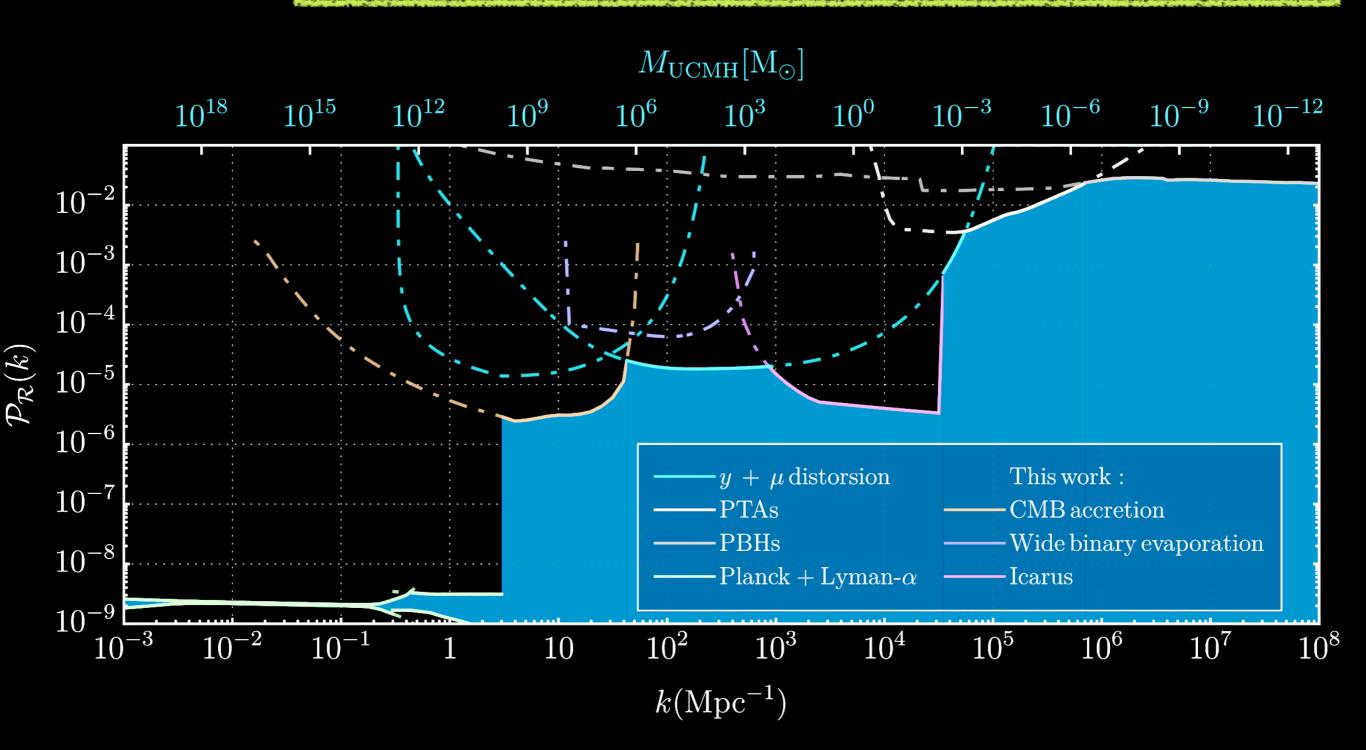
- $\bullet f_{\rm DM} < 1 \text{ for } \bullet$
 - CMB accretion (generalised to larger EDOs)
 - Wide binary evaporation

Ramirez and Buckley, MNRAS, arXiv:2209.08100

"ICARUS" microlensing (generalised from PBHs to EDOs)



for UCMH collapsing at
$$z_c$$
, $\frac{R(z_c)}{\text{pc}} = 0.019 \left(\frac{1000}{z_c + 1}\right) \left(\frac{M(z_c)}{M_{\odot}}\right)^{1/3}$ with $M(z_c) = \frac{z_{\text{eq}} + 1}{z_c + 1} M_i$



To conclude,

- All of our current evidence for Dark Matter is gravitational; many dark matter models feature substructure
- Microlensing provides a way to look for dark matter substructure of a large range of sizes and masses
 - → Extended objects may give unique microlensing signatures
 - → Non-observation can be used to derive constraints

To conclude,

- All of our current evidence for Dark Matter is gravitational; many dark matter models feature substructure
- Microlensing provides a way to look for dark matter substructure of a large range of sizes and masses
 - → Extended objects may give unique microlensing signatures
 - → Non-observation can be used to derive constraints
- Microlensing signatures of extended objects can be distinguished using machine learning
 - Anomaly detection finds events early in wide-field surveys

To conclude,

- All of our current evidence for Dark Matter is gravitational; many dark matter models feature substructure
- Microlensing provides a way to look for dark matter substructure of a large range of sizes and masses
 - → Extended objects may give unique microlensing signatures
 - → Non-observation can be used to derive constraints
- Microlensing signatures of extended objects can be distinguished using machine learning
 - Anomaly detection finds events early in wide-field surveys
- Gravitational constraints on EDOs lead to constraints on the primordial power spectrum

Many opportunities for future work!

Thank you!

...ask me anything you like!

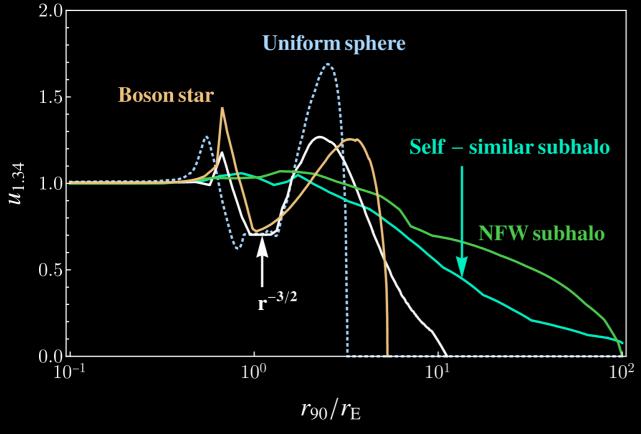
djuna.l.croon@durham.ac.uk | djunacroon.com

Back up slides

Extended sources: $r_E = \theta_E D_L \sim r_S$

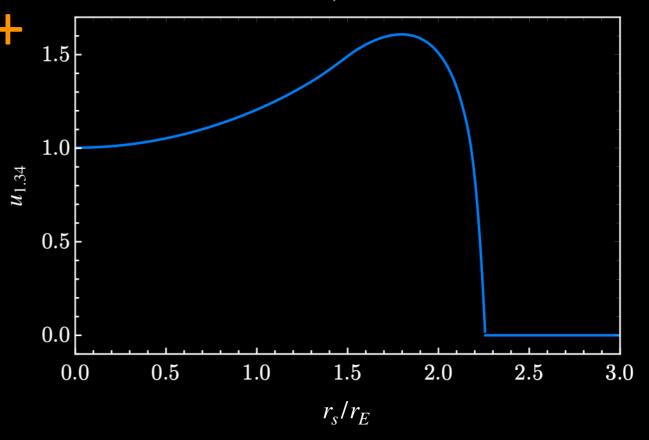
Same procedure as before, but now $u_{1.34}$ is a function of both r_{90} and $r_{\rm S}$

DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]



For point-like lenses, see for example,
Witt and Mao, Astrophys. J (1994);
Montero-Camacho, Fang, Vasquez, Silva, Hirata,
[JCAP, arXiv:1906.05950];
Smyth, Profumo, English, Jeltema, McKinnon,
Guhathakurta [PRD, arXiv:1910.01285];

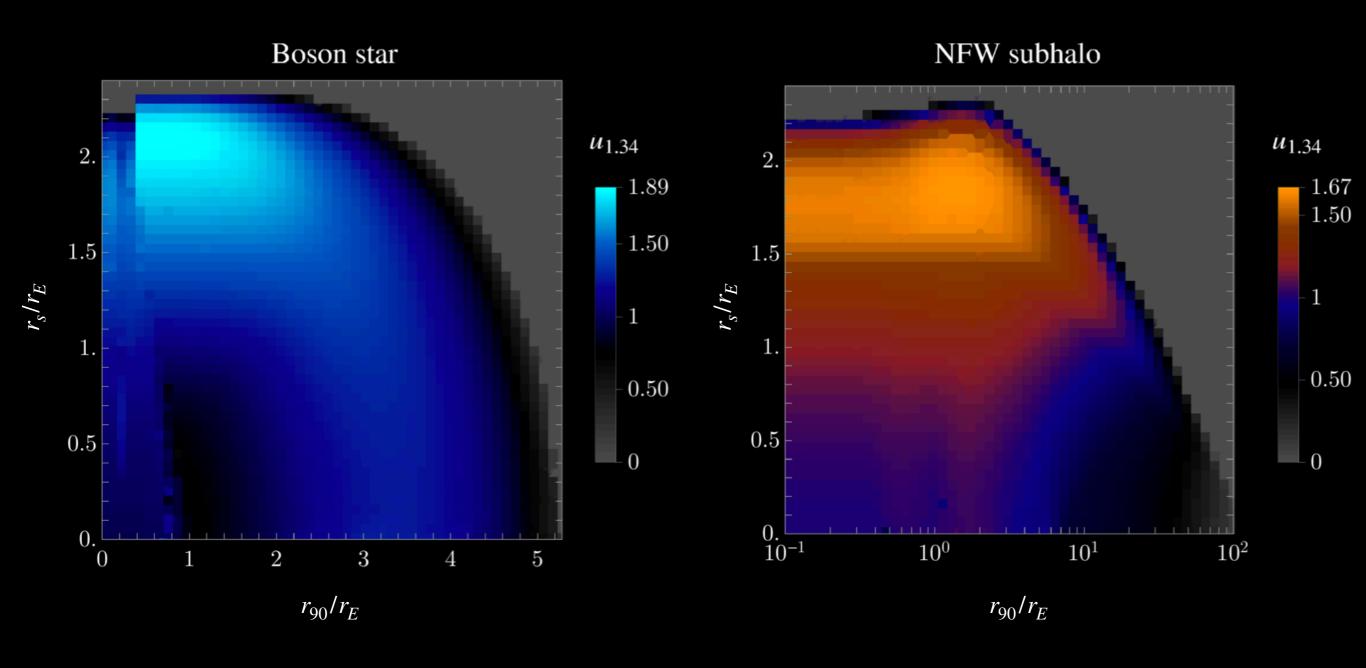
Point-like lens, extended source



Extended sources: $r_E = \theta_E D_L \sim r_S$

Same procedure as before, but now $u_{1.34}$ is a function of both r_{90} and $r_{\rm S}$

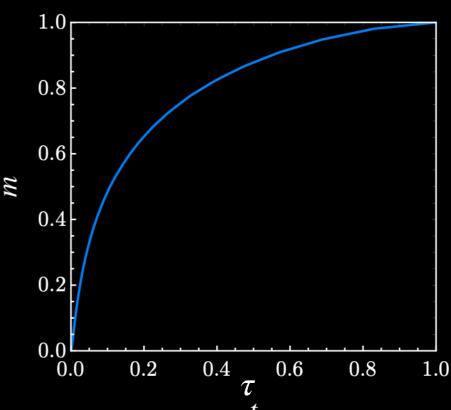
DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]



Case study 1: NFW-halo mass profile

• Well-known halo profile: $\rho(r) = \frac{\rho_{\rm S}}{(r/r_{\rm S})(1+r/r_{\rm S})^2}$

- As the mass inclosed formally diverges, we cut it off at $R_{\rm cut} = 100 R_{\rm sc}$
- Enclosed mass $\propto \log(\kappa+1) (\kappa/(\kappa+1))$ where $\kappa = R_{\rm cut}/R_{\rm sc}$
- Computing $m(\tau)$ is then a trivial exercise:



Case study 2: Boson star mass profile

• The Schrodinger-Poisson equation,

$$\mu\Psi = -\frac{1}{2m_{\phi}} \left(\Psi'' + \frac{2}{r} \Psi' \right) + m_{\phi} \Phi \Psi$$

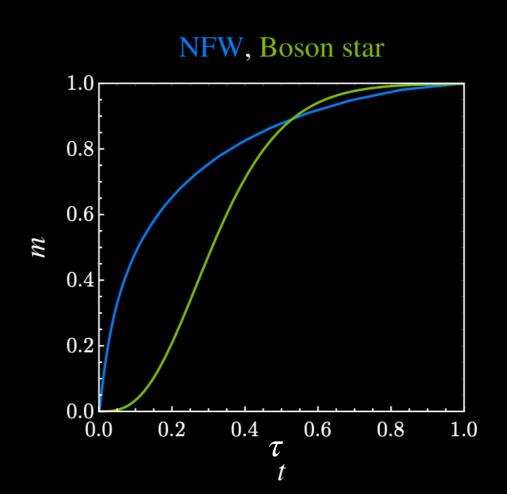
Describes the radial distribution

describes a spherically symmetric ground state of a free scalar field in the non-relativistic limit

The mass enclosed is given by

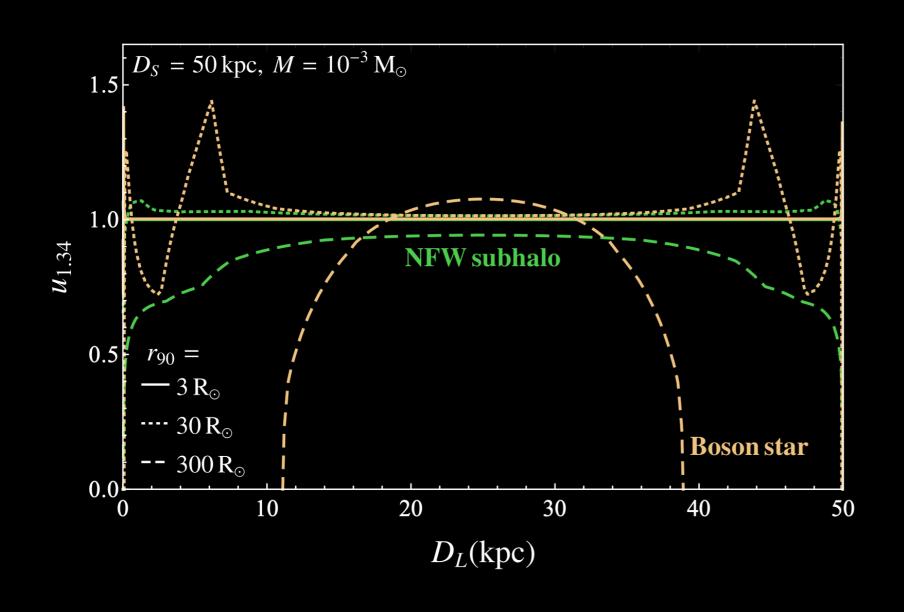
$$M_{\rm BS}(r) = \frac{1}{m_{\phi}G} \int_0^{m_{\phi'}} dy y^2 \Psi^2(y)$$

from which $m(\tau)$ may be computed



Caustics

Consequence: the Einstein tube is not a tube; not ellipsoidal



→ Depending on the source, experiments may be more or less sensitive to extended objects compared to point sources in different locations

Obtaining constraints

To obtain limits, we have to account for the observed events

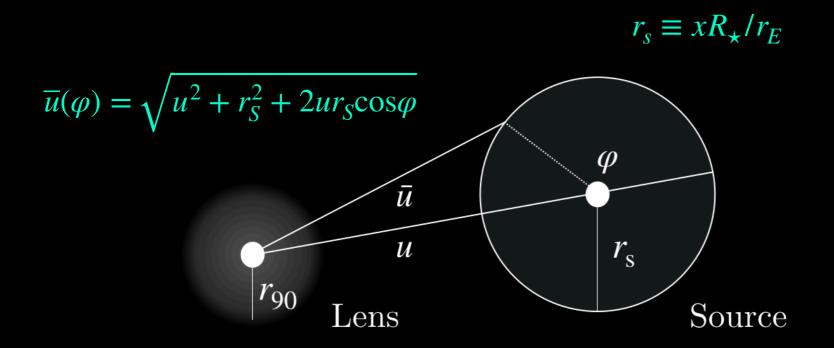
- EROS-2: 3.9 events at 90% CL
- OGLE-IV: $\mathcal{O}(1000)$ astrophysical events, Poissonian 90% CL: $\kappa = 4.61$

Bin events in
$$t_{\rm E}$$

$$\kappa = 2 \sum_{i=1}^{N_{\rm bins}} \left[N_i^{\rm FG} - N_i^{\rm SIG} + N_i^{\rm SIG} \ln \frac{N_i^{\rm SIG}}{N_i^{\rm FG}} \right]$$

Lensing geometry

- Up to this point, we have assumed that the sources are pointlike light sources (a good approximation for EROS/OGLE)
- This approximation breaks down when $r_E = \theta_E D_L \sim r_S$
- Geometry in the lens plane:



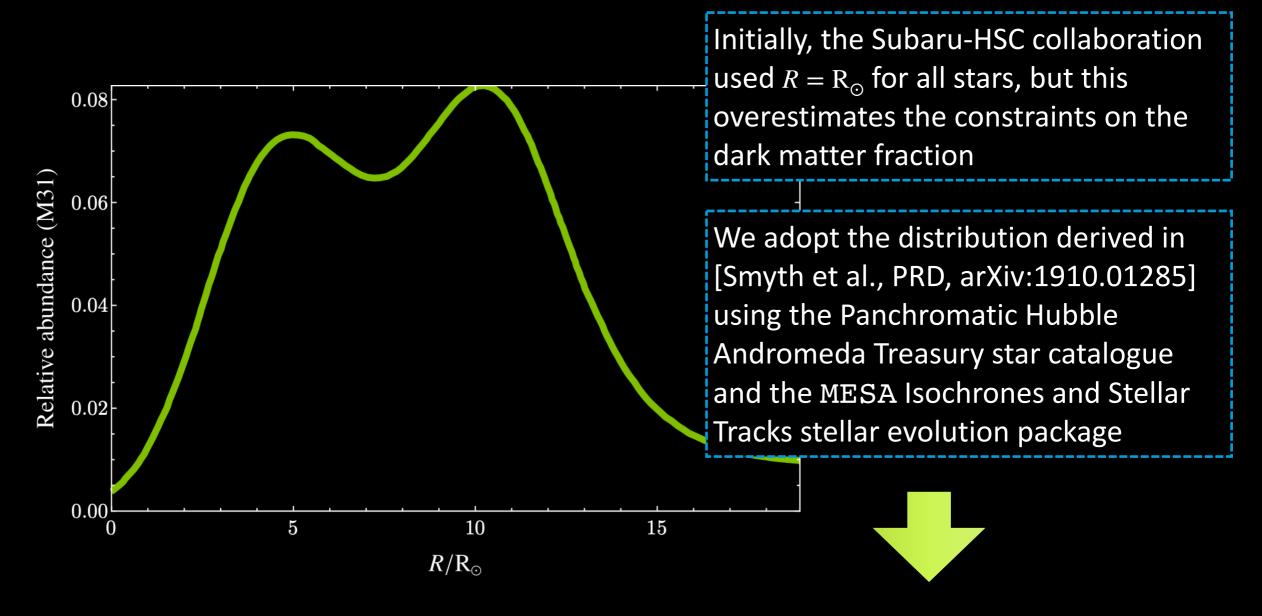
Lensing equation:

$$\overline{u}(\varphi) = \tau(\varphi) - \frac{m(\tau(\varphi))}{\tau(\varphi)}$$

Image Image parity position

$$\mu_{i} = \eta \frac{1}{\pi r_{S}^{2}} \int_{0}^{2\pi} d\varphi \frac{1}{2} \tau_{i}^{2}(\varphi)$$

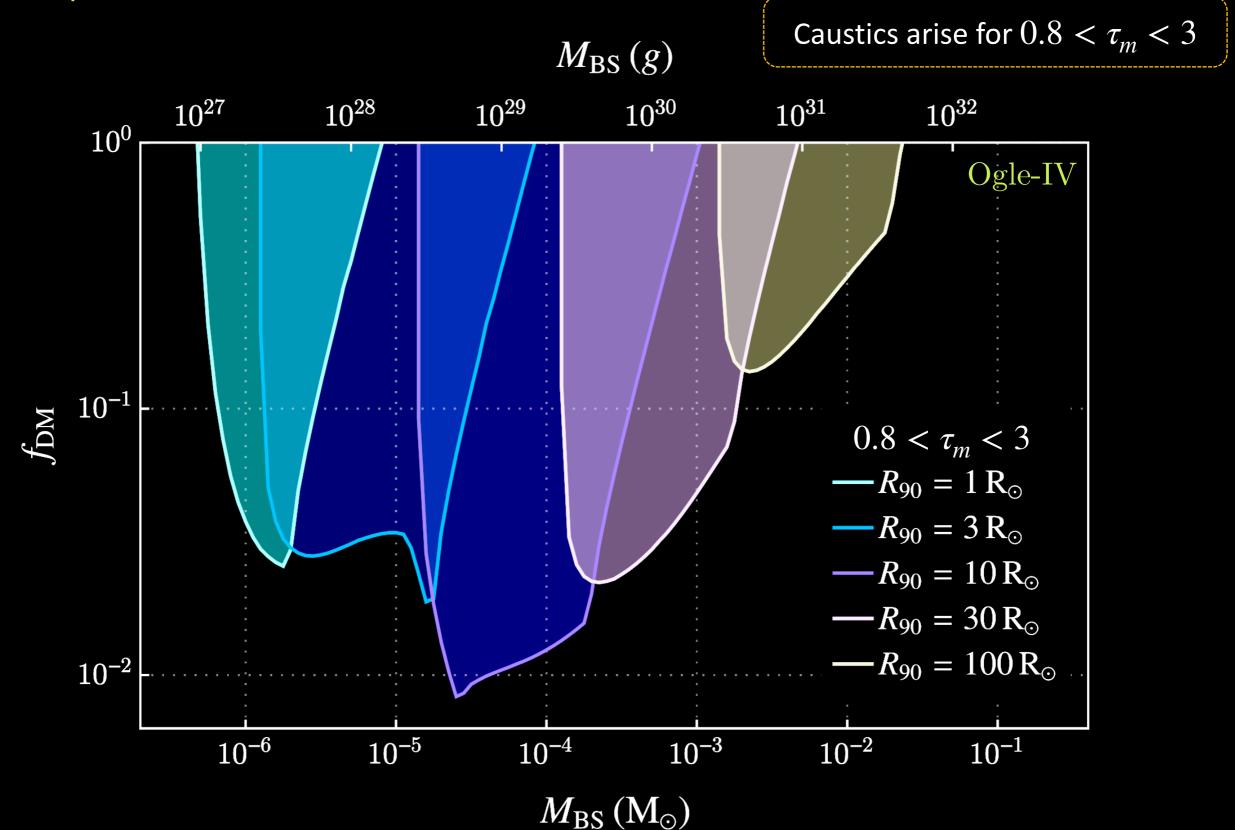
Star sizes in M31



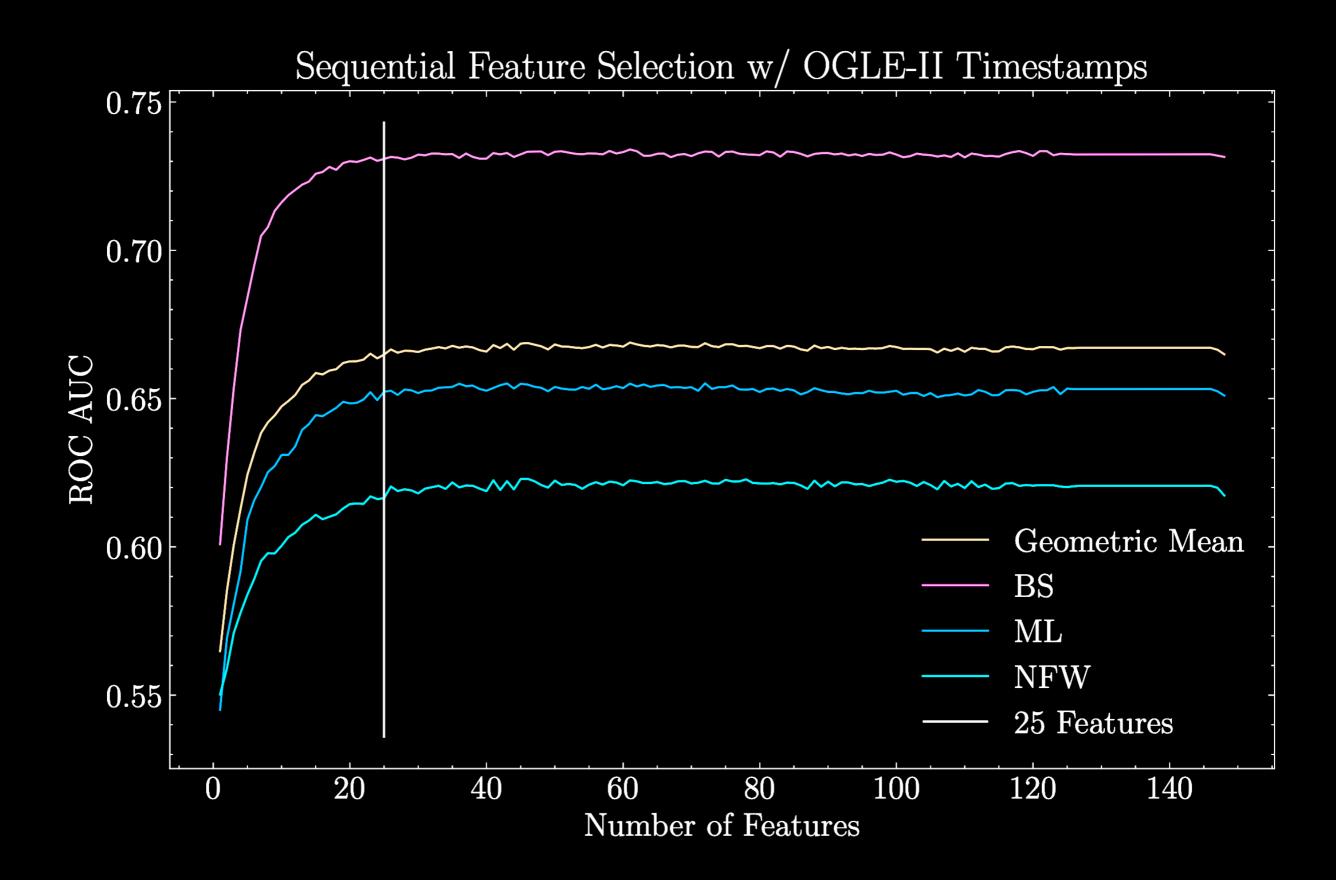
$$N_{\text{events}} = N_{\star} T_{\text{obs}} \int dt_{\text{E}} \int dR_{\star} \int_{0}^{1} dx \frac{d^{2}\Gamma}{dx dt_{\text{E}}} \frac{dn}{dR_{\star}}$$

Opportunities for positive detection

M. Crispim-Romao, DC, PRD, arXiv:2402.00107

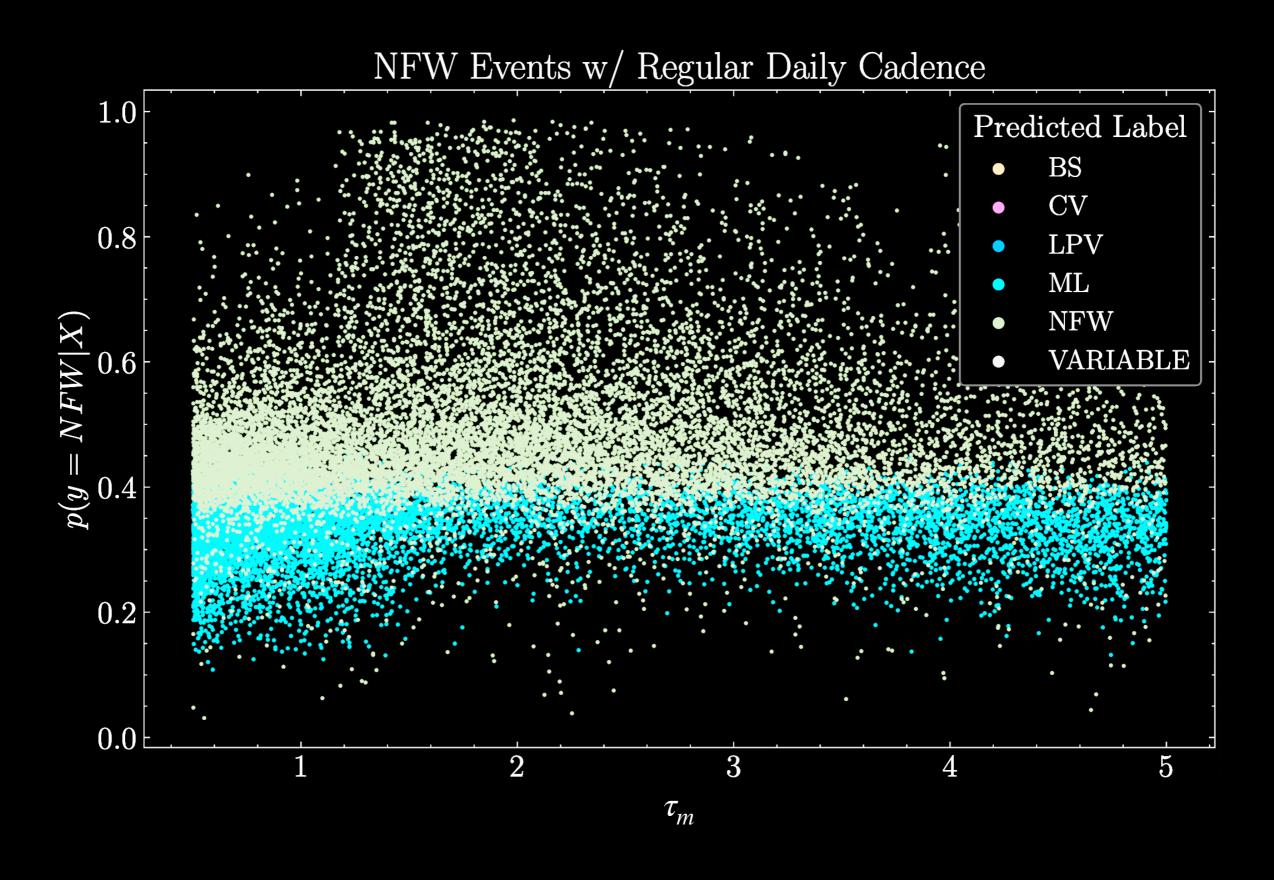


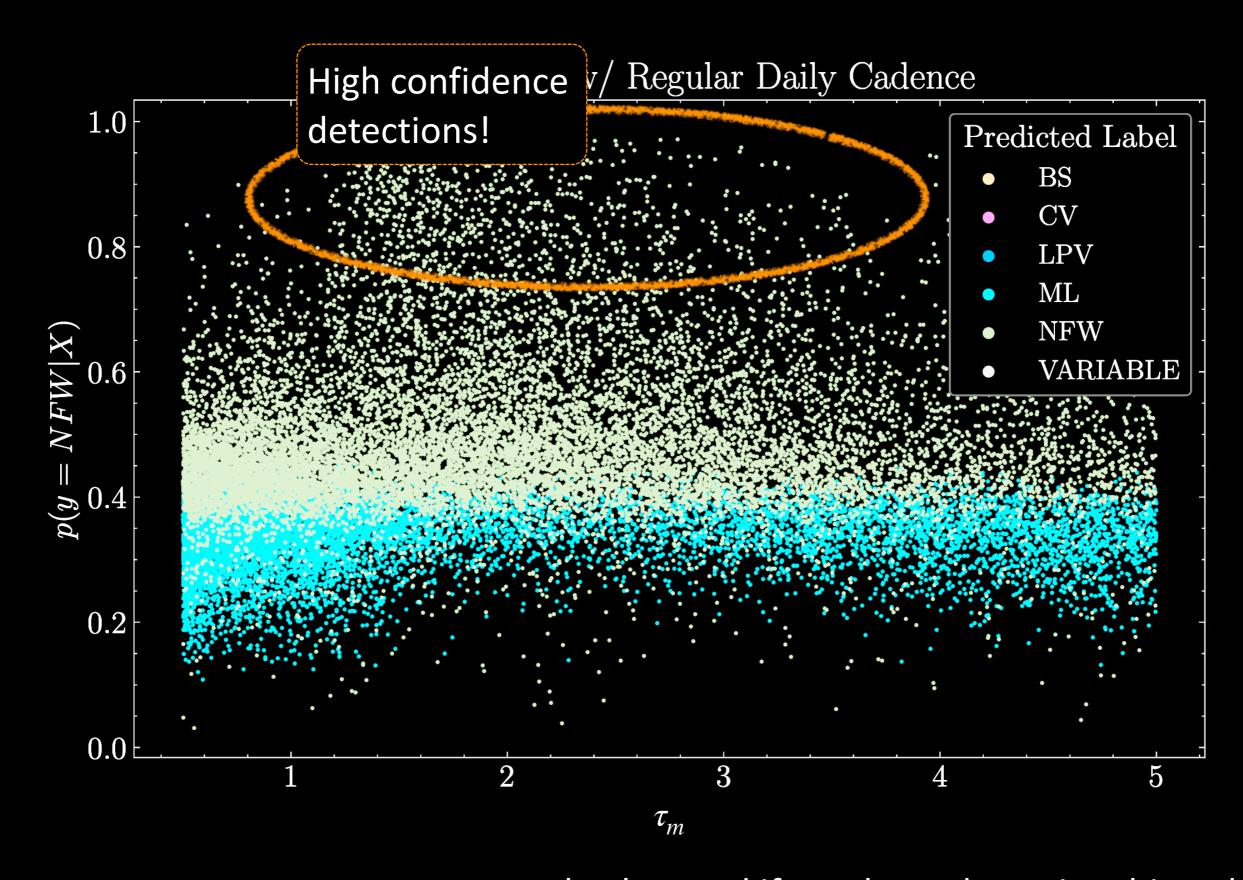
Feature importance



Let's dream...

- The OGLE time steps are quite irregular
- Many different factors play a role...
 - Observational Constraints (weather, moon phase, ...)
 - Resource Allocation
 - Target Prioritization
 - Technical Maintenance and Downtime
- But it is interesting what the effect of cadence (ir)regularity is on the observational prospects
- So, let us imagine for a moment that we could achieve perfect daily cadence





... only observed if regular cadence is achieved