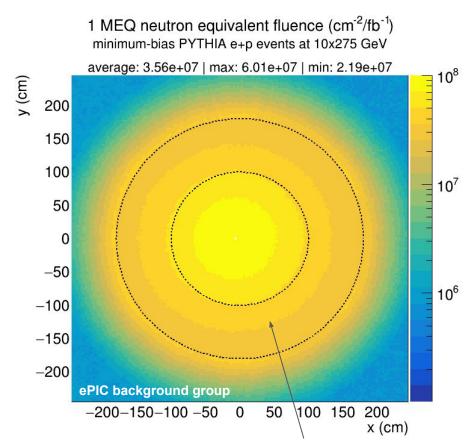
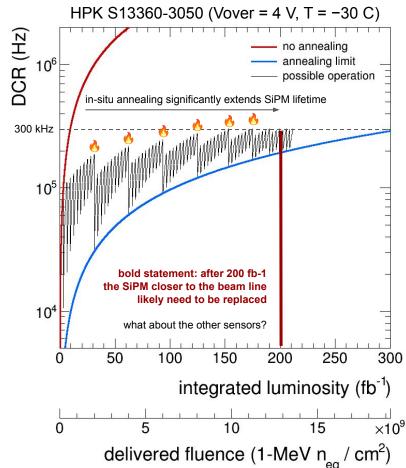
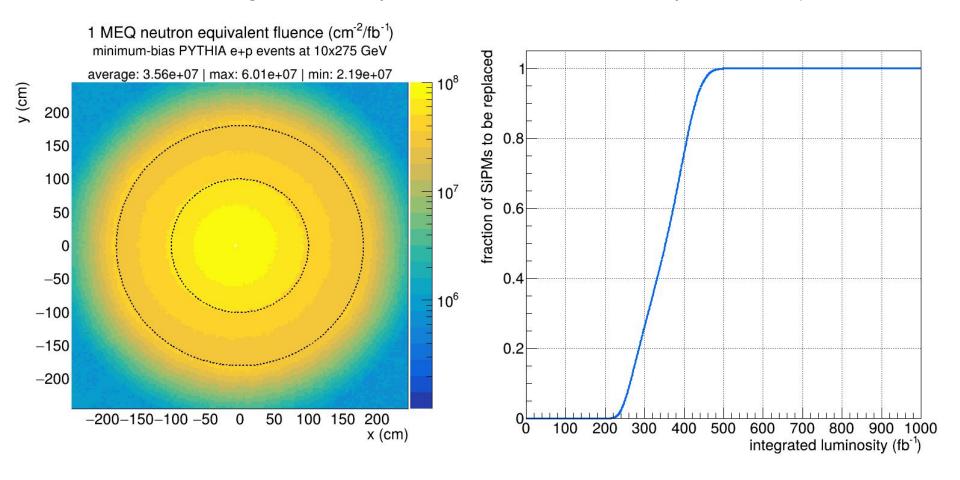

Considerations on the lifespan of SiPMs over the years of EIC operation

Roberto Preghenella

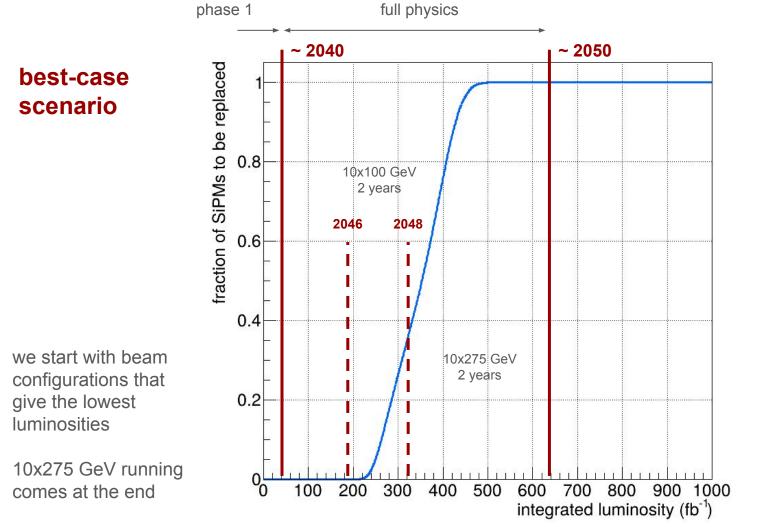
Radiation Level Estimates Update

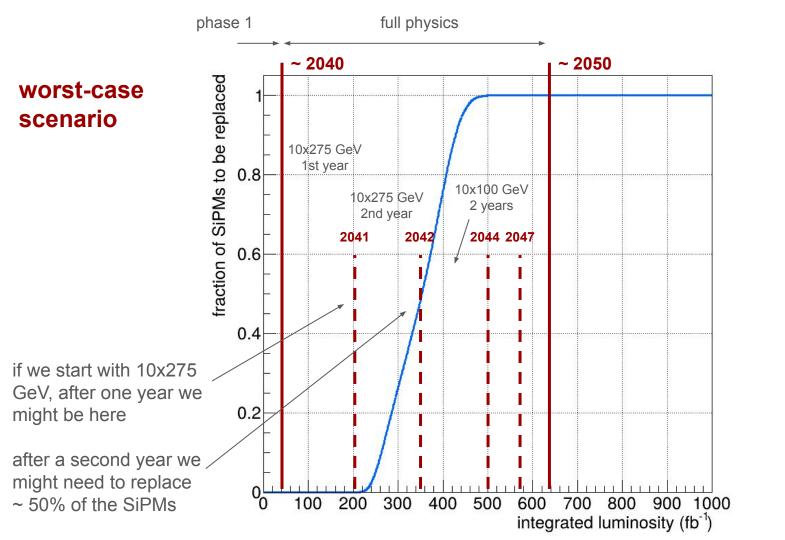





Radiation Level Estimates Update

the farther you go from the beamline, the longer the SiPM will survive. But still, after some point with the increase of the integrated luminosity, the fraction of SiPMs that will likely need to be replaced increases




how does this translate in years?

Species	proton	electron	proton	electron	proton	electron	proton	electron	proton	electron
Energy [GeV]	275	18	275	10	100	10	100	5	41	5
CM energy [GeV]	14	0.7	10	4.9	63	3.2	44	1.7	2	8.6
Bunch intensity [10 ¹⁰]	19.1	6.2	6.9	17.2	6.9	17.2	4.8	17.2	2.6	13.3
No. of bunches	29	90	11	.60	11	60	11	.60	11	160
Beam current [A]	0.69	0.227	1	2.5	1	2.5	0.69	2.5	0.38	1.93
RMS norm. emit., h/v [μm]	5.2/0.47	845/71	3.3/0.3	391/26	3.2/0.29	391/26	2.7/0.25	196/18	1.9/0.45	196/34
RMS emittance, h/v [nm]	18/1.6	24/2.0	11.3/1.0	20/1.3	30/2.7	20/1.3	26/2.3	20/1.8	44/10	20/3.5
β*, h/v [cm]]	80/7.1	59/5.7	80/7.2	45/5.6	63/5.7	96/12	61/5.5	78/7.1	90/7.1	196/21.0
IP RMS beam size, h/v [μm]	119	/11	95/	/8.5	138	/12	125	/11	198	3/27
K _x	11	.1	11	1.1	11	.1	11	1.1	7	7.3
RMS $\Delta\theta$, h/v [µrad]	150/150	202/187	119/119	211/152	220/220	145/105	206/206	160/160	220/380	101/129
BB parameter, $h/v [10^{-3}]$	3/3	93/100	12/12	72/100	12/12	72/100	14/14	100/100	15/9	53/42
RMS long. emittance [10 ⁻³ , eV·s]	36		36		21		21		11	
RMS bunch length [cm]	6	0.9	6	0.7	7	0.7	7	0.7	7.5	0.7
RMS $\Delta p / p [10^{-4}]$	6.8	10.9	6.8	5.8	9.7	5.8	9.7	6.8	10.3	6.8
Max. space charge	0.007	neglig.	0.004	neglig.	0.026	neglig.	0.021	neglig.	0.05	neglig.
Piwinski angle [rad]	6.3	2.1	7.9	2.4	6.3	1.8	7.0	2.0	4.2	1.1
Long. IBS time [h]	2.0		2.9		2.5		3.1		3.8	
Transv. IBS time [h]	2.0		2		2.0/4.0		2.0/4.0		3.4/2.1	
Hourglass factor H	0.91 0.94		94	0.90		0.88		0.93		
Luminosity [10 ³³ cm ⁻² s ⁻¹]	1.	54	10	.00	4.	48	3.	68	0	.44

				1			
		Electron En	ergy	Hadron Energy			
	5 GeV	10 GeV	18 GeV	41 GeV	100 GeV	275 GeV	
	3 years	34 years	4 years	2 years	43 years	45 years	
	: :		:		:	: :	
	$= 0.44 \ 10^{33} \ c$		GeV> 2	years	∫ lumi = 13.9 f		
lumi	$= 3.68 \ 10^{33} \ c$	^{cm-2} s ⁻¹ 5 x 10	00 GeV>	1 year	∫ lumi = 58.2 f	b ⁻¹	
<mark>lumi</mark>	$= 4.48 \ 10^{33} \ c$	cm ⁻² s ⁻¹ 10 x 1	100 GeV>	2 years	∫ <mark>lumi = 141.3</mark>	fb ⁻¹	
<mark>lumi =</mark>	= 10.00 10 ³³ c	<mark>cm⁻² s⁻¹10-x-2</mark>	275 GeV	2 years	<mark>∫ lumi = 315.4</mark>	fb ⁻¹	
olli <mark>lumi</mark>	$= 1.54 \cdot 10^{33} \text{ c}$	^{cm-2} s ⁻¹ 18 x 2	275 GeV>	> 3 years	∫ <mark>lumi = 72.8</mark> f	⁻ b ⁻¹	
• •	104 0005						

assumes 6 months/year at top luminosity kept at 100% duty time

Summary

- this is a very crude estimate
 - unlikely a real prediction yet
- assumption of 6 months / year at 100% duty cycle at full lumi
 - o might be too much, might be overestimated (asked Elke)
- EIC Phase-1
 - will be relatively easy to reach 2040
- EIC full physics
 - o if we start with ep at 1034 full steam, we might need to replace SiPMs in early 2040
 - o if we start with combinations at lower luminosities, we might comfortably get up to 2045