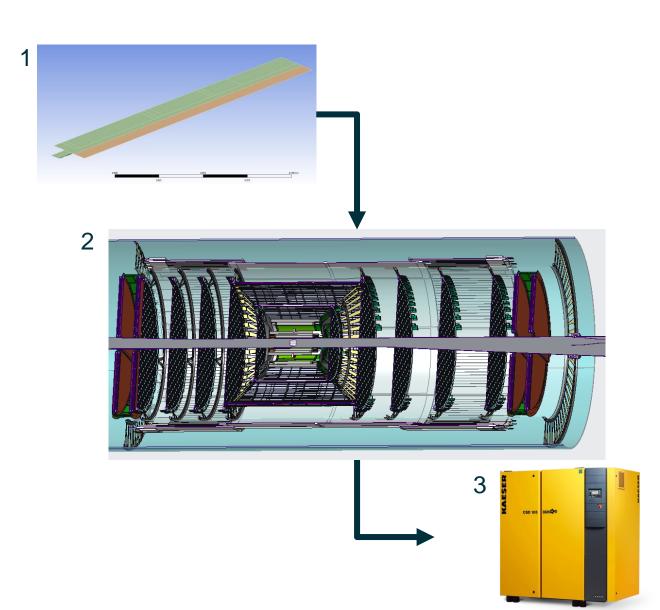


SVT Air Thermal System and Flow Distribution

ePIC SVT Working Meeting

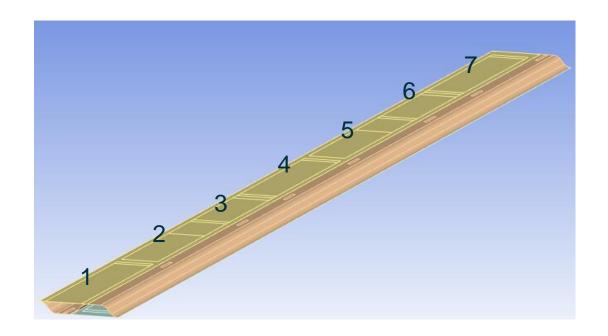

Nick Payne

Stony Brook, NY

7/9/2025

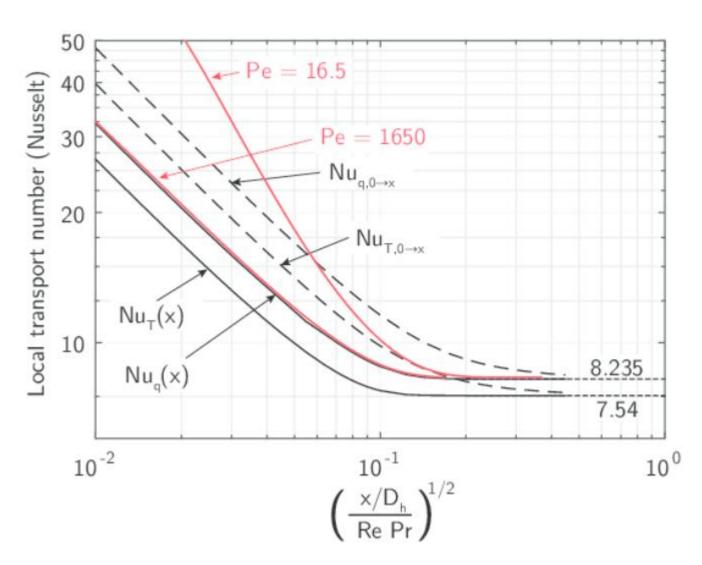
Topics

- Cooling air requirements for 1 channel: CFD+FEA study
- 2. System total air requirements
- System air handling and pressure estimation


Model Approach

FEA Configuration: 7 sensor modules - single channel

Nusselt number correlations for uniform wall temperature and uniform heat flux did not fit well.

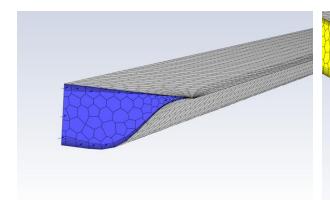

CFD + FEA coupled thermal fluid simulation

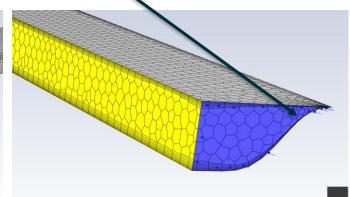
- CFD model resolves the cooling air flow and HTC.
- FEA model computes the heat transfer of the channel structure.

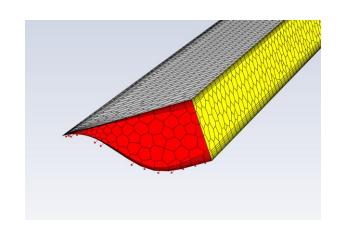
Entrance Region

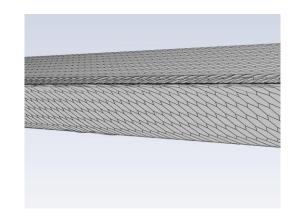
- Nusselt number is inherently higher at the entrance of the duct.
- Temperature of air changes by about 5°C during passage through the channel.

CFD Model Details

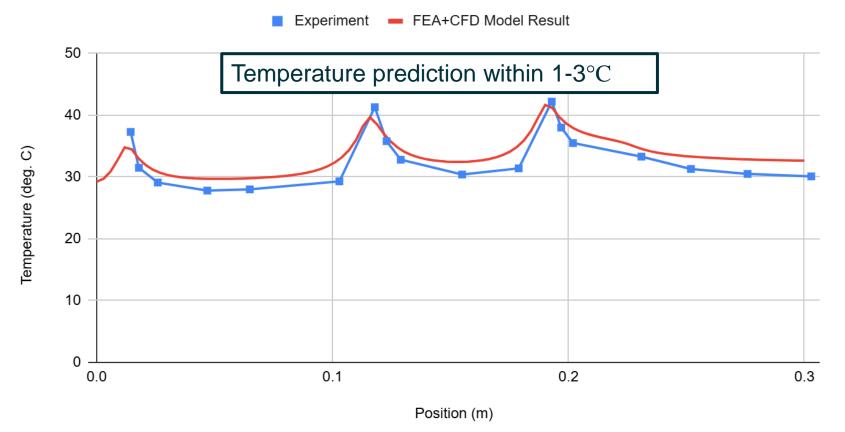

Turbulence model: **SST k-omega**, target y+measure is on the order of **1**.

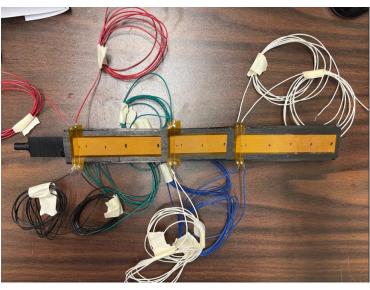

Fluid material model: air, Ideal gas


Boundary conditions:


- 1. Inlet (blue) 8.9 m/s air
- 2. Outlet (red) 0 psig
- 3. Symmetry (yellow) no mass, thermal flux
- 4. Wall (gray) fluid velocity = 0

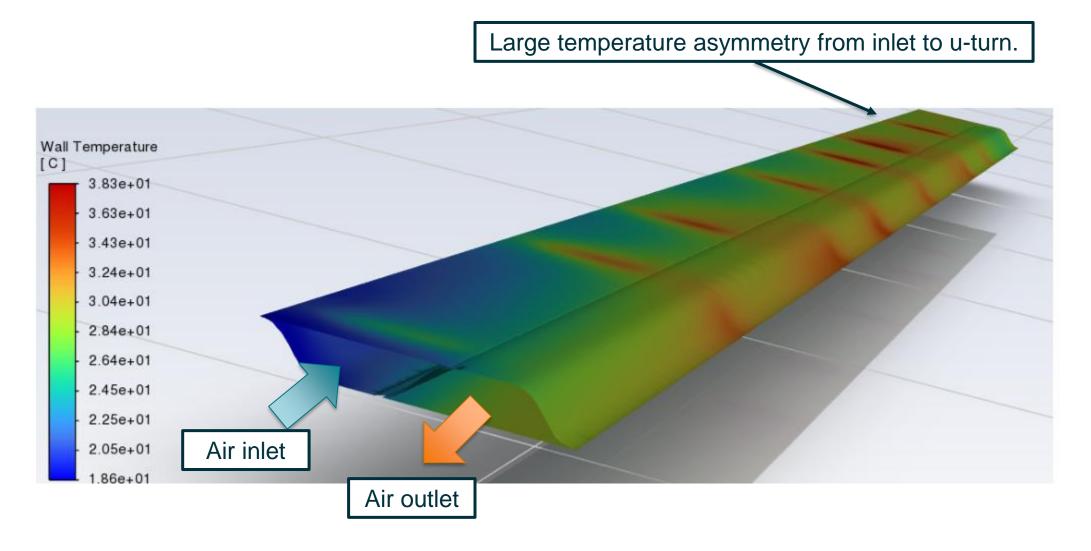
Coarse mesh in corners, high y+. Relatively little flow in this region.

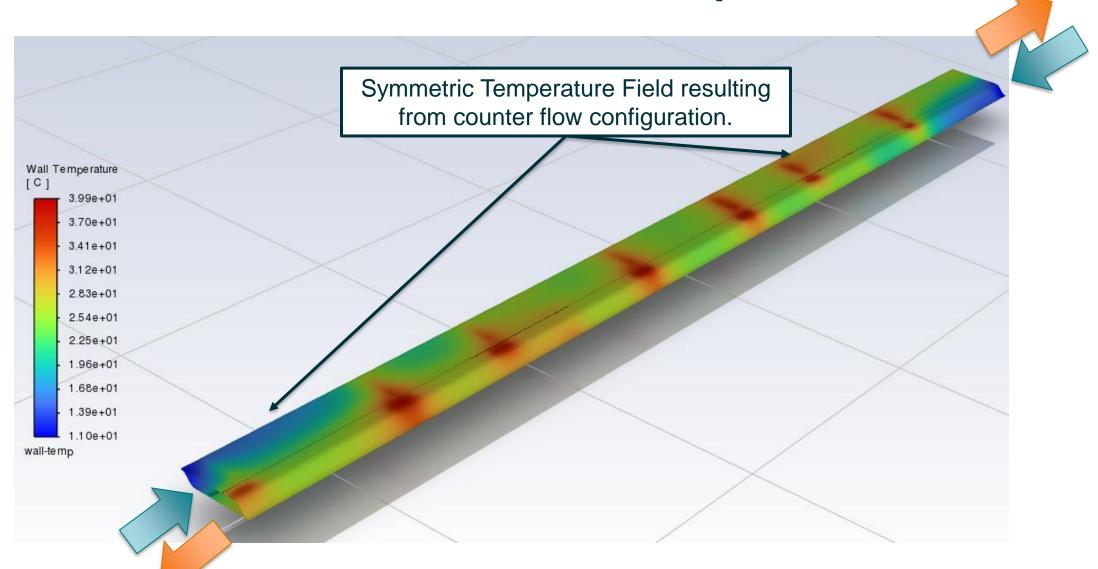




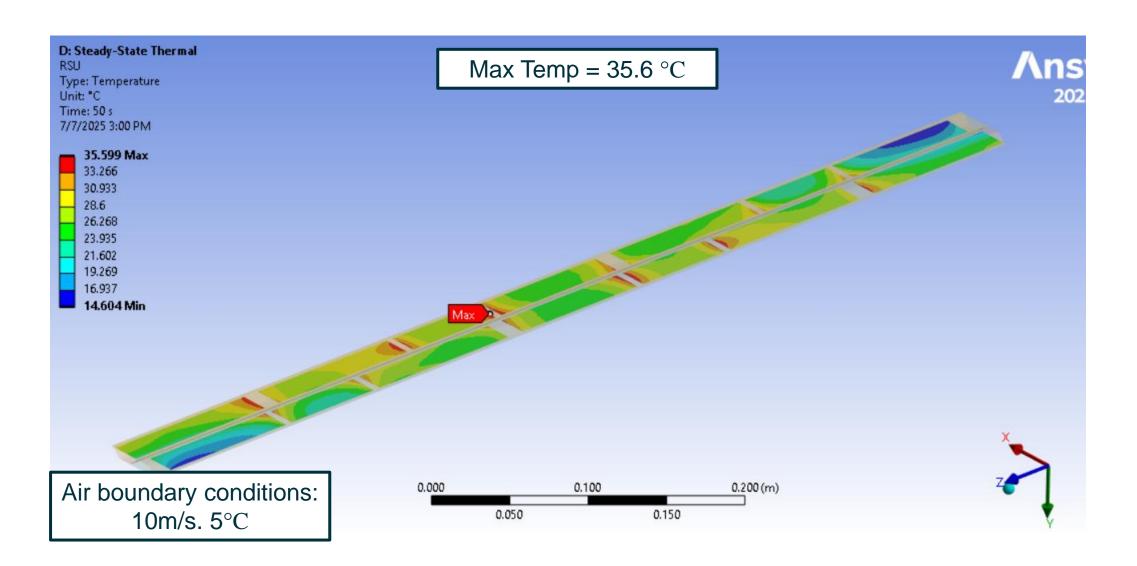
Model Validation

Bright Temperature versus Position


Air V = 8.9 m/s, 25 deg. C

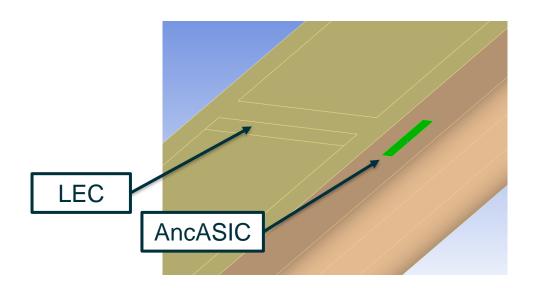


6


"U-turn" Model Result – Wall Temperature

Counter Flow Model Result – Wall Temperature

FEA Model - RSU Maximum Temperature

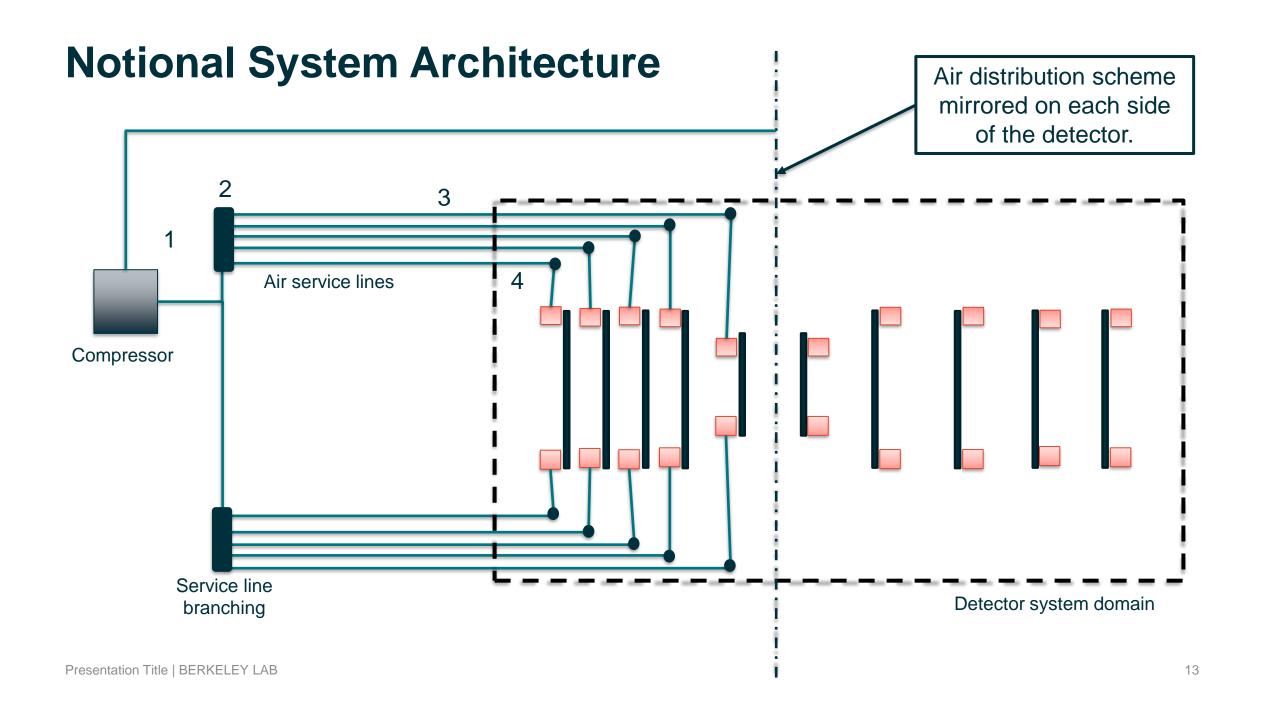


Temperature versus Channel Position

Overall Study Findings

- Required cooling air velocity per channel is ≈10 m/s.
- 2. Air inlet temperature required to be **5°C**.
- 3. AncASIC required to be placed away from the LEC to avoid high power density region.
- 4. Flow configuration: Alternating flow directions in neighboring channels minimize temperature gradient in the channel.

Total Disc Air Requirements


Variable	Value	Units	Description		
T_supply	5.00	°C	Temperature of air supplied for cooling		
n_sensors	2316		Total number sensors		
n_5total	204		Total number of 5-unit sensors		
n_6total	2112		Total number of 6-unit sensors		
q_outer	7180.8	W	Total power for outer discs		
q_inner	615.1	W	Total power for inner discs		
air_outer	883.9	cfm	Total air flow for outer discs		
air_inner	119.3	cfm	Total air flow for inner discs		

Total number of channels: 454

<i>7795.9</i> W	Total disc power
<i>1007.2</i> cfm	Total disc volume air flow
0.72 kg/s	Total disc mass air flow
7.85 in^2	Total air tube cross sectional area

at 1 atm.

Assuming pressure < 100 psig

Flow Branching and Pressure Estimation

Assumptions:

- All flow is balanced at every junction.
- Only pipe friction losses incorporated.
- Adiabatic process.
- Isentropic process.
- Approximately incompressible (M<0.3)

Compressor Pressure Estimation

Boundary conditions source T_{s} K 287 temperature bar source pressure 3.530 357,668 Pa 51.9 psi source mass flow kg/s \dot{m}_s 0.73 rate final exit pressure (atmosphere) Pe bar

Author: Joseph Silber, LBNL

stage index	-	-	0	1	2	3
num channels (per parent channel)	n	-	1	10	1	50
mass flow per channel	m = (m _s or previous stage m) / n	kg/s	0.730	0.073	0.073	0.001
length	L	m	20.000	3.000	0.500	0.500
hydraulic diameter (mm)	D_mm	mm	50	25	25	11.5
hydraulic diameter	D	m	0.050	0.025	0.025	0.012
cross-sectional area along length L	$A_{12} = \pi D^2 / 4$	m²	1.96E-03	4.91E-04	4.91E-04	1.04E-04
interior height for "squashed" tube in annulus	hs	mm	12	8	8	n/a
interior width for "squashed" tube in annulus	ws	mm	163.6	61.4	61.4	-
entrance temperature	$T_1 = T_s$ or previous stage T_3	K	287	282.4	282.4	277.9
entrance pressure	$P_1 = P_s$ or previous stage P_3	Pa	357,668	278,488	161,442	120,841
entrance density (ideal gas law)	$\rho_1 = P_1 / (R * T_1)$	kg/m³	4.342	3.436	1.992	1.515
entrance dynamic viscosity	$\mu_1 = \mu_0 * (T_1/T_0)^0.76$	Pa*s	1.78E-05	1.76E-05	1.76E-05	1.74E-05
Reynold's number	Re = $4 \dot{m} / (\pi D \mu_1)$	-	1.04E+06	2.11E+02	2.11E+02	9.28E+00
friction factor (Blasius)	f = 64/Re, Re < 2300 = 0.316/Re^0.25 otherwise	-	0.010	0.303	0.303	6.895
friction pressure drop (Darcy-Weisbach)	$\Delta P_{12} = -f * (L/D) * \dot{m}^2 / (2 \rho_1 A_{12}^2)$	Pa	-62,954	-117,046	-33,651	-19,438
downstream pressure	$P_2 = P_1 + \Delta P_{12}$	Pa	294,714	161,442	127,791	101,402
downstream temperature (assume minimal heating)	T ₂ ~ T ₁	K	287.0	282.4	282.4	277.9
downstream density (ideal gas law)	$\rho_2 = P_2 / (R * T_2)$	kg/m³	3.578	1.992	1.577	1.271
average density	$\rho_{a} = (\rho_{1} + \rho_{2})/2$	kg/m³	3.960	2.714	1.784	1.393
average volumetric flow	$V_a = \dot{m} / \rho_a$	m³/s	0 184	0.027	0.041	0.001
average volumetric flow (cfm)	V _a cfm	cfm	390.6	57.0	86.7	2.2
average air speed	$u_a = V_a / A_{12}$	m/s	93.9	54.8	83.3	10.1
cross-sectional area on other side of outlet	$A_3 = \infty$ or next stage's $(A_{12} * n)$	m²	4.91E-03	4.91E-04	5.21E-03	1E+99
area change pressure drop (non-choked)	$\Delta P_{23n} = \dot{m}^2/(2*\rho_2)*(1/A_3^2 - 1/A_{12}^2)$	Pa	-16,226	0	-6,951	-77
			278,488	-	120,841	
outlet pressure if non-choked	$P_{3n} = P_2 + \Delta P_{23n}$	Pa D-		161,442		101,325
outlet pressure if choked	$P_{3x} = P_2 * \beta_x$	Pa	155,692	85,287	67,510	53,569
pressure ratio calculated with non-choked eqn	$\beta_{3n} = P_{3n} / P_2$	-	0.945	1.000	0.946	0.999
is choked?	$\beta_{3n} < \beta_{X}$	boolean	FALSE	FALSE	FALSE	FALSE
outlet pressure	$P_3 = P_{3n}$ or P_{3x}	Pa	278,488	161,442	120,841	101,325
outlet pressure (bar)	P ₃ _bar	bar	2.75	1.59	1.19	1.00
outlet temperature (isentropic expansion)	$T_3 = T_2 * (P_3 / P_2)^k$	K	282.4	282.4	277.9	277.9

Concluding Remarks and Future Work

- Compressor required likely somewhat large for these conditions
 - 3.5 bar @ 390 cfm for discs only. Additional capacity will be needed for the inner and outer barrels.
- Approximate cross section for air tubing: 7.85 in^2 (5065 mm^2)
- Thermal system interlocks needed during startup.
- Solution needed to prevent over-pressure condition.
- Air return area required.