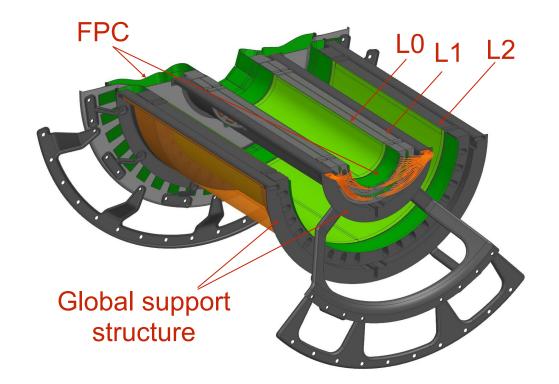


First L0-L1 bare half-barrel prototype

SVT IB status report

On behalf of INFN teams (Bari, Padova, Pavia, Trento*, Trieste)


* Trento (TIFPA) new INFN unit joining ePIC (formally after the summer) and already contributing to SVT IB activities

SVT INNER BARREL

Basic ingredients:

- Wafer-scale MAPS chips (ITS3 65 nm CMOS, thickness ≤ 50 μm)
- Chips bent in semi-cylindrical shape at target radii
- Ultra-light carbon foam/fiber structures
- Air cooling

Layer	Radii (mm)	Single sensor area (mm²)	# of sensors for a half-layer
LO	38	266 x 58.7	2
L1	50	266 x 78.3	2
L2	126	266 x 97.8	4

CONTENT

- Present status and future activities
 - L0-L1 assembly procedures
 - IB Global mechanics
 - IB FPC characterization
 - IB Thermo-mechanical studies

L0-L1 assembly procedure

Sensors alignment and joining

Joint sensors bending

FPC to joint sensors interconnection

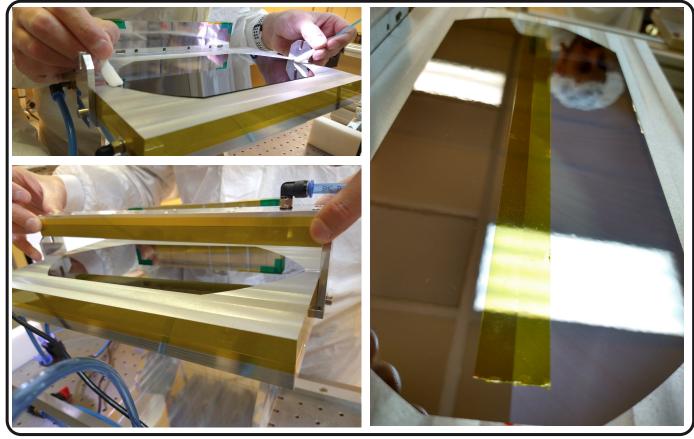
Local support structures gluing

Services integration in layer

L0-L1 half-barrel assembly

L0-L1 assembly procedure

Sensors alignment and joining


Joint sensors bending

FPC to joint sensors interconnection

Local support structures gluing

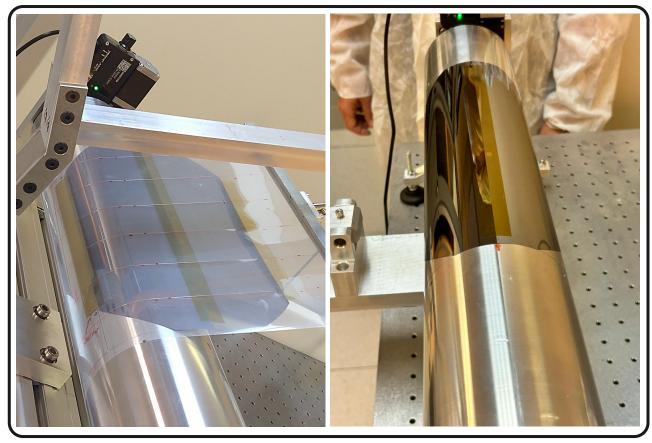
Services integration in layer

L0-L1 half-barrel assembly

Few tens micron precision reached targeting 50 micron pitch between the two sensors

L0-L1 assembly procedure

Sensors alignment and joining


Joint sensors bending

FPC to joint sensors interconnection

Local support structures gluing

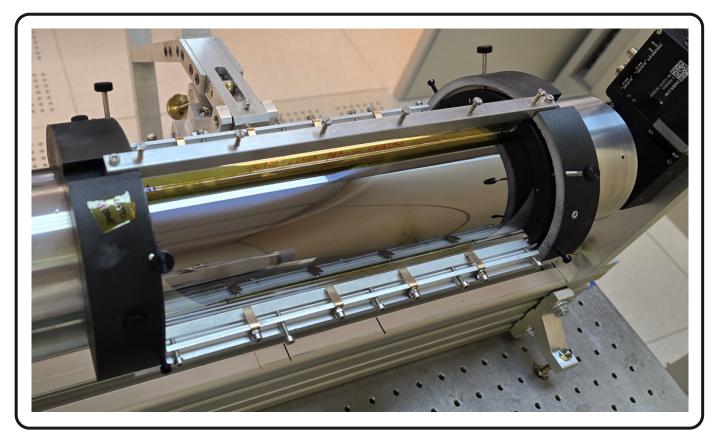
Services integration in layer

L0-L1 half-barrel assembly

Double sensors bending mastered for L0 and L1

L0-L1 assembly procedure

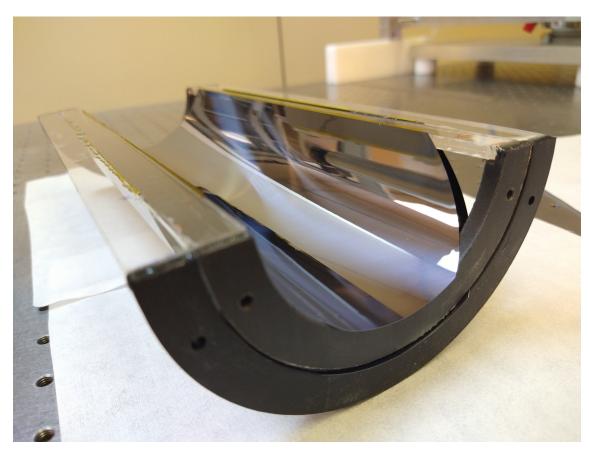
Sensors alignment and joining

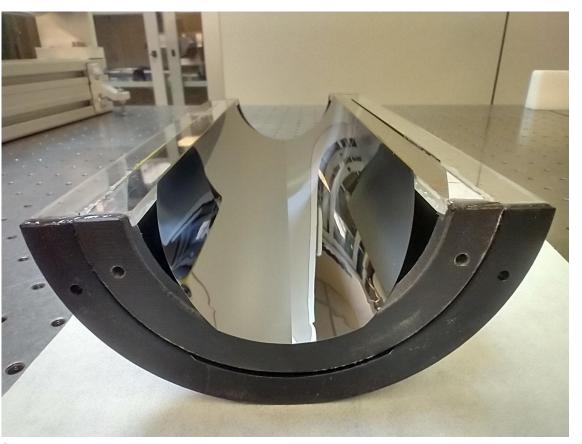

Joint sensors bending

FPC to joint sensors interconnection

Local support structures gluing

Services integration in layer


L0-L1 half-barrel assembly



Local support gluing tools rapidly evolving toward final requirements

L0-L1 assembly procedure

First L0-L1 bare half-barrel prototype

L0-L1 assembly procedure - Activity summary

Layer	Dates	BENDING	GLUING	REMOVAL
LO _{V1}	16/10/24-26/11/24	YES Silicon chipping at one edge; located under the tape, allowed for bending	YES	NO Breakage due to previous damage
L0 _{V2.1}	13/01/25-14/01/25	NO Breakage of one silicon edge possibly during the two sensors alignment	_	_
L0 _{V2.2}	16/01/25-31/01/25	YES	YES	YES
L0 _{V3}	24/03/25-28/03/25	YES	NO Silicon broken already in the transport box	_
LO _{V4}	03/04/25-10/04/25	YES	YES	YES
LO _{V5}	26/05/25-03/06/25	YES	YES	YES
L1 _{V1}	28/04/25-06/05/25	YES	NO Operator error → Tools safety margins improved after failure	_
L1 _{V2}	07/07/25-09/07/25	YES	YES	YES

L0-L1 assembly procedure - Prototype campaign, material procurement

Prototype	Components	Goal
IBL01_P1 (half-layer)	 2 naked silicon L1 sensors L1 local support structure (3-D printed) outer support shell (machined in PEEK) 	finalize half-layer assembly procedure
IBL01_P2 (half-barrel)	 IBL01_P1 + 2 naked silicon L0 sensors L0 local support structure (3-D printed) 	finalize half-barrel assembly procedure
IBL01_P3 (half-layer)	 2 naked silicon L1 sensors L1 local support structure (carbon foam) outer support shell 	 thermal chamber test
IBL01_P4 (half-barrel)	 IBL01_P3 + 2 naked silicon L0 sensors L0 local support structure (carbon foam) 	 thermal chamber test
IBL01_P5 (half-barrel)	 2+2 silicon L0+L1 sensors with heaters from CERN L0+L1 local support structures (carbon foam) outer support shell (carbon fiber, to be defined) air distribution inlet et outlet (to be designed) PT1000 sensors (to be glued on heater surface) 	wind tunnel test

Material:

fully available
 Completed by October 25

Material:

- Silicon pieces available
- Carbon foam under procurement
- Outer shell to be produced Completed by November 25

Material:

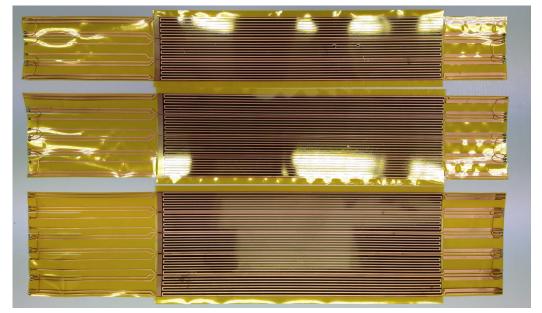
- Heaters available
- Carbon foam under procurement
- Outer shell and air-ducts to be produced

Completed by January 26

L0-L1 assembly procedure - Prototype campaign, material procurement

Prototy	otype Components (Goal		
IBL012_P6/	/7	 2+2+4 ER2 pad wafer L0+L1+L2 sensors (x 2 HB?) L0+L1+L2 local support structures gloabal support mechanics (advanced design) FPCs (advanced design) air distribution inlet & outlet (advanced design) 	 first complete IB HB prototype w/o sensors including test of wirebonding to FPCs final test on HB support mechanics possibly built 2 complete HBs (to allow HB mechanical support matching test) 	→	rangoung <u>oary zo</u>
IBL012_P8		 2+2+4 ER2 wafer L0+L1+L2 sensors L0+L1+L2 local support structures mechanics, FPCs, cooling (~final/advanced design) 	 complete IB HB prototype w/ sensors qualification model w/ bent sensors for cooling + powering/DAQ/DCS finalisation 		Requires - ER2 sensors - FPC (?)
					- Power/Readout system (?)

Targeting October 26


L0-L1 assembly procedure - Prototype campaign, material procurement

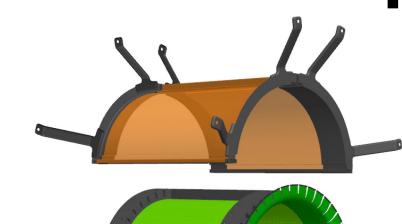
Silicon pieces	4 L0 - 4 L1	AVAILABLE	Spares under procurement	
Heaters	2 L0 - 2 L1	AVAILABLE	Spares: 2 L0 / 2 L1	
Pad sensors	[2 L0 - 2 L1 - (4 L2)] x 2	2026	If two HB (16 pad sensors = 16 wafers) → No spares	
ER2 sensors	2 L0 - 2 L1 - (4 L2)	2026	Only one half-barrel → No spares	

Blank silicon pieces of exact L0 and L1 sizes

Heaters integrating blank silicon

L0-L1 assembly procedure - Prototype campaign, material procurement

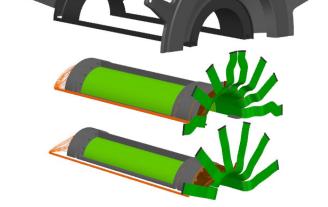
3D printed	Mixing printed and manufactured in very first exercises
Carbon fibre/foam	 Material for support structure elements Half-ring on LEC → Allcomp K9 (standard density, 200-260 kg/m³) Longerons and half-ring on REC → Carbon RVC Duocel (density 45 kg/m³, PPI 100) Carbon fleece: wet-laid non woven carbon fibre veil(8 g/cm²) Outer shell: carbon fibre (from global structure) Foam procurement Allcomp K9 → Not easy to procure in small amount; try to associate with large request (e.g. ATLAS) ERG Carbon RVC Duocel → Company in USA, but possible purchasing from Europe Foam shaping Procedure details collected from CERN colleagues Ongoing at Genova INFN → First example completed (in POCOfoam) Berkley (Nikki) or U.K. (George) → Expressed availability Local workshop → To be identified Carbon fibre production Multiple-producers under investigation (Padova)


First samples of ERG Carbon RVC Duocel.
Thanks to Nikki!
Material sent to Genova for machining

Global mechanics

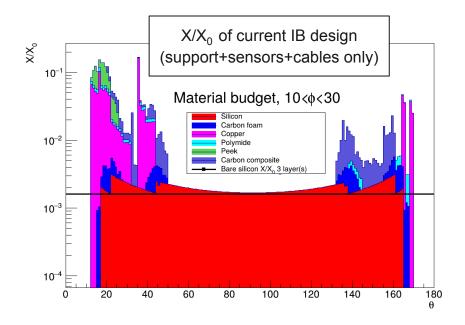
- Current global support design
 - modifications subject to better definition of services
 - CFC bi-layer laminate or woven fabric configuration (depending on the part/position)

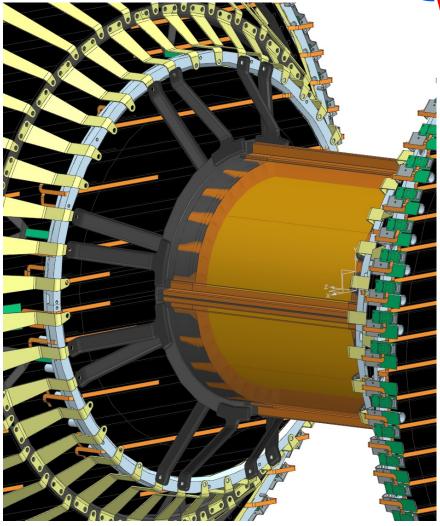
- three companies available for production (all in Italy)
 - → already received the offers, two consistent, one much cheaper
 - → few pre-production pieces will be qualified to decide
- connected to the L0-L1 prototype campaign
 - → raw versions of the L0-L1 external shell ready/ shipped to Bari for IBL01-P3&4 (October 2025) and IBL01-P5 (December 2025)
 - → going to investigate (also within SVT DSC) for possible help on the preliminary production of such support structure


L2 external shell

L2 layer

L0-L1 external shell


L1 layer

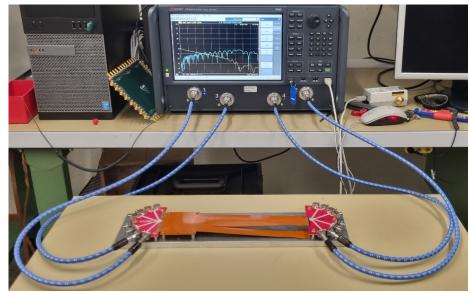

L0 layer

Global mechanics

- Current global support design
 - modifications subject to better definition of services
 - CFC bi-layer laminate or woven fabric configuration (depending on the part/position)
 - current design integrated in the general detector structure (collaboration with BNL)
 - material budget always checked after updates

IB integration into the SVT

Flexible Printed Circuit



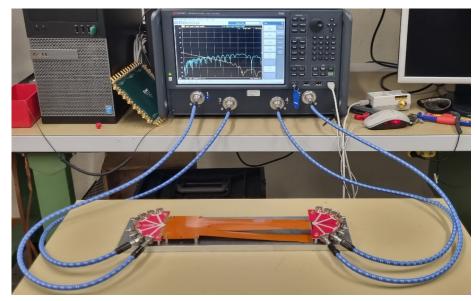
- Design and production of test pieces, selection of aluminium based technology
- Development of procedures and tools for FPC bending and interconnection to the sensor
- Qualification tests of flat and bent FPC test pieces
 - Mainly signal integrity tests of high speed links at 10.24 Gbps S-Parameter measurement (VNA), eye diagram (High speed scope), BERT (FPGA)

Ongoing and planned activities in 2025

- Ongoing discussion with LTU and Daresbury for the production of simple FPC test pieces - 25 cm long, differential lines
- Commissioning of setup and first signal integrity tests of ITS3 FPC (flat configuration)
- FPGA boards, adapter boards and ITS3 FPC prototype acquired

ITS3 FPC test setup and interconnections

Flexible Printed Circuit



- Ongoing discussion with LTU and Daresbury for the production of FPC test pieces based on ITS3 FPC design three, double layer FPCs assembled together
- Bending and bonding trials with 2025 test pieces
- Signal integrity tests of 2025 test pieces, in flat and bent configuration
- Signal integrity tests of 2026 test pieces, in flat configuration

Some bottlenecks

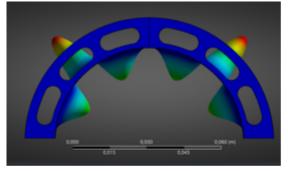
- Available oscilloscope not sufficient for tests of 10.24 Gbps signals (4 GHz, 40 GS/s) - looking into rental or loan possibilities of fast oscilloscope
- 2-channel VNA available; funding requested (by ALICE INFN groups) for High-speed Interconnect Analyzer or 4channel VNA - if approved, available in 2026

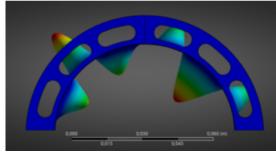
ITS3 FPC test setup and interconnections

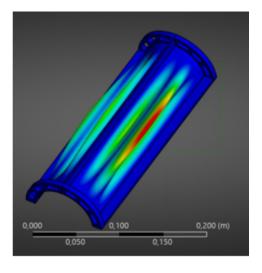
Thermo-mechanical studies

- Vibrational studies
 - FEA based simulations
 - Experimental measurements
- Thermal studies
 - Fluent simulations
 - Thermal expansion tests (in climatic chamber)
 - Air-flow measurements (in wind tunnel)

To identify potential issues/failures and

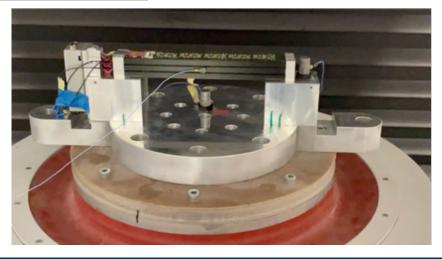

→ evaluate the short-term/long-term
reliability of SVT-IB


To define the operational parameters of the air-cooling system


Thermo-mechanical studies - Vibrational studies

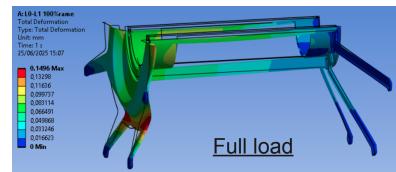
- Modelling strategy developed to analyse the vibrational behaviour of thin silicon shell structures for the SVT-IB.
- FEM modal analysis validated against analytical models to ensure high accuracy and reliability of the simulations.
- First FEM random vibrational test with PSD aerospace spectrum to assess the structural integrity and mechanical resilience of the silicon shells under severe transport conditions.

SVT DSC meeting June 24 (https://indico.bnl.gov/event/28692/) by E. Serra: https://docs.google.com/presentation/d/1T2sU62jXrhPWwts Kt3RfQ5yjr9m1gCf/edit?usp=share link&ouid=113048360736710244169&rtpof=true&sd=true

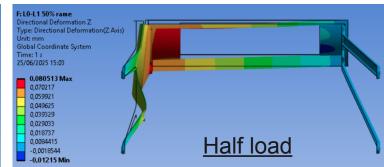

Thermo-mechanical studies - Vibrational studies

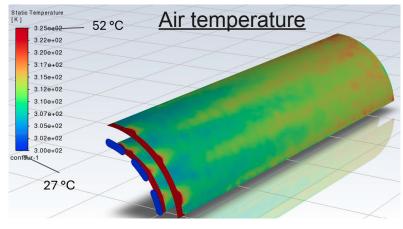
- Developing a FEM-based model of the whole SVT-IB for estimating the displacement noise in the silicon sensors due to multiple sources of vibrations (air-flow, seismic/cultural, thermal)
- Configuring a dedicated experimental apparatus for performing extensive vibrational tests at PRIM facility in Trento

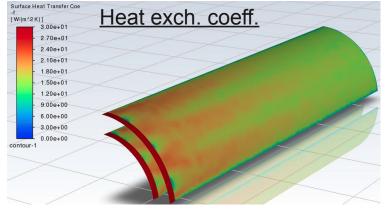
https://promfacility.eu Trento



Vibrational test of ALPIDE sensors mounted on a CFRPs stave.

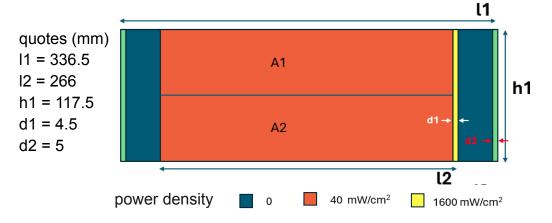

Thermo-mechanical studies - Ansys/Fluent simulations


Study of support deformation with different copper quantity: full and half load.- w.i.p.!

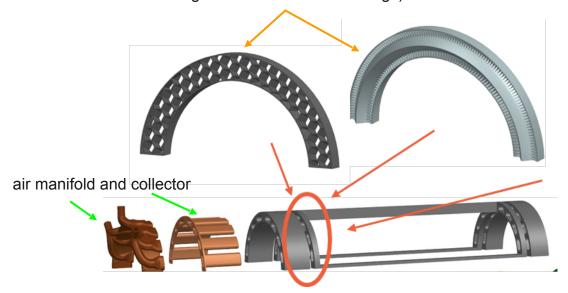


Weak points show up (bends in the supporting arms)

A small (~8 µm max.) deformation appears in the sensor region


Simulation of heat transfer between a surface emitting 40 mW/cm² + 8 W/cm² sensor + LEC and air flow @ 15 m/s.

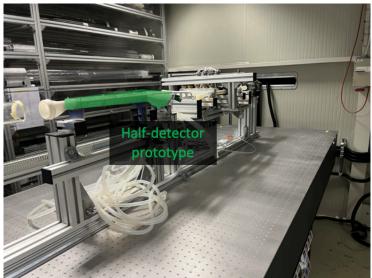
Thermo-mechanical studies - Cooling tests (preliminary)



- Test of air cooling with high LEC power (1.6 W/cm²) with alternative dissipators in aluminium 3D printed.
- Measurement of air flow (hot-wire anemometer) and temperature (IR camera and PT100).
 Local mechanics and global support (simplified design) 3D printed.
- Test results expected by fall 2025.

Dummy heat load, sized as two joined sensors, both L0 and L1 dummies will be built in order to simulate first 2 layers of a half barrel.

Dissipators (2 options), 3D-printed, aluminium (but same material budget as carbon foam half-rings) for the h-side



Thermo-mechanical studies - Cooling tests (advanced)

- Dedicated prototype IBL01_P5 (> January 2026)
 - L0 and L1 heaters
 - Proper carbon foam or alternatives
 - Air-ducts and temperature sensors (PT1000)
- Wind tunnel setup
 - Investigating where to assemble it
 - going to investigate

 (also within SVT DSC)
 for possible help, both
 for infrastructure and
 person-power

ITS3 wind tunnel @CERN

ITS3 BBM6 prototype

Thermo-mechanical studies - Thermal expansion studies (in climatic chamber)

- Dedicated prototype IBL01 P3+P4
 - L0 and L1 naked silicon pieces
 - Proper carbon foam and carbon fibre external shell
- Test schedule (from ITS3 TDR) to be refined
 - Temperature: from 40°C to 10°C, in steps of 2 °C (with a 15-minute interval) and a ramp rate of 0.5°C per minute.
 - o Relative humidity in the climate chamber maintained at a constant 50% during thermal cycles.
 - Testing phase, including multiple thermal cycles, should last 50 hours.
 - Subsequent thermal tests will be conducted to examine both the effect of a rapid temperature increase (ramp rate up to 10°C per minute) and determine the maximum temperature before failure.
- Scheduled after the completion of dedicated prototype in October

Model: Genviro 030LC

Temperature range: from -70 °C to +90 °C Humidity range: from 10% to 98 %

Dimensions : 330 mm x 280 mm x 330 mm

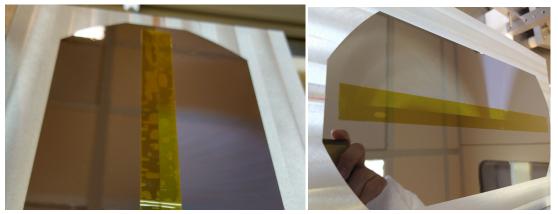
Summary

- L0-L1 assembly procedure
 - bare barrel procedure definition in advanced status
 - prototype campaign defined for Q4 of 2025 and 2026
 - material procurement issues on carbon foam (K9 Allcomp)
- Global mechanics: first prototype expected mid-2026
 - non-CFC prototypes for assembly/integration tests needed by late 2025
 - L0-L1 external shell production issue
- FPC activities focus on progressing test pieces development, commissioning and initial signal integrity tests
- Thermo-mechanical studies
 - First development FEA vibrational analysis completed and more detailed studies planned for the coming months
 - Thermal effect simulation in Ansys/Fluent: activity started
 - Thermal expansion studies in preparation for Q4 2025/ Q1 2026
 - Cooling tests developing now, first results during fall 2025
 - Wind tunnel tests: infrastructure and person-power issue

Back-up

L0-L1 assembly procedure - Activity summary

Alignment btw sensors (flat)

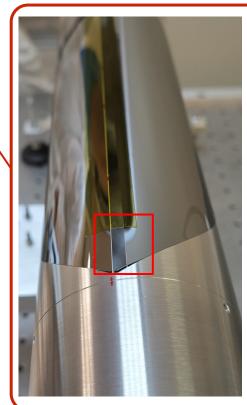

Parallelism has higher priority than pitch minimisation since a large tilt can affect the success of the bondings to FPC.

#	ID	Average pitch (µm)	Tilt angle (°)
1	L0v1	150	±0.021
2	L0v2	285	±0.008
3	L0v3	144	±0.006
4	L0v4	141	±0.002
5	L1v1	75.5	±0.0014
6	L0v5	51.5	±0.0004*

- + Offline measurements by analysing pictures
- + Design of accessories to reduce the number of attempts to reach the desired tilt and pitch.

Kapton tape

- Commercial tape: tesa® 51408 (or M3)
- Approximate length: ~250 mm (TBD)
- Tolerance: 1-2 mm of asymmetries in both the directions
- Air bubbles are minimised keeping the object rest for a night with vacuum ON



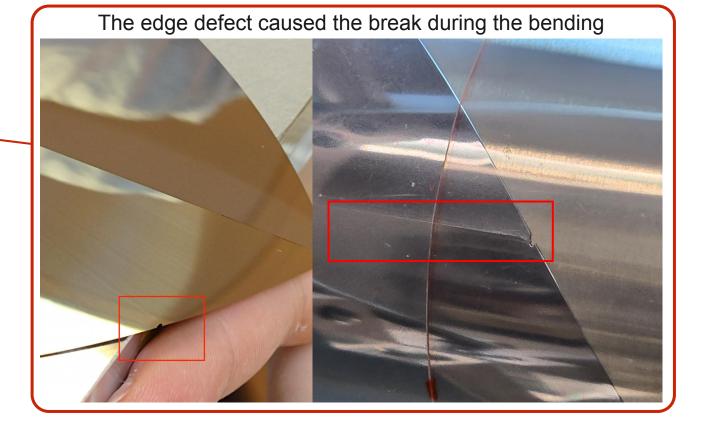
Negligible cuspids are observed after the bending

^{*}tilt under the resolution of dinoscope

L0-L1 assembly procedure - Activity summary

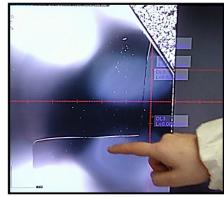
Layer	Dates	BENDING	GLUING	REMOVAL	
L0 _{V1}	16/10/24-26/11/24	YES Silicon chipping at one edge; located under the tape, allowed for bending	YES	NO Breakage due to previous damage],
L0 _{V2.1}	13/01/25-14/01/25	NO Breakage of one silicon edge possibly during the two sensors alignment	_	_	
L0 _{V2.2}	16/01/25-31/01/25	YES	YES	YES	
L0 _{V3}	24/03/25-28/03/25	YES	NO Silicon broken already in the transport box	_	
LO _{V4}	03/04/25-10/04/25	YES	YES	YES	
LO _{V5}	26/05/25-03/06/25	YES	YES	YES	
L1 _{V1}	28/04/25-06/05/25	YES	NO Operator error → Tools safety margins improved after failure	-	
L1 _{V2}	07/07/25-09/07/25	YES	YES	YES	

Silicon breakage located under the tape, still allowed the bending


Final breakage during removal from mandrel

ePIC Collaboration meeting | 20-24th Jan 2025 | Bari team

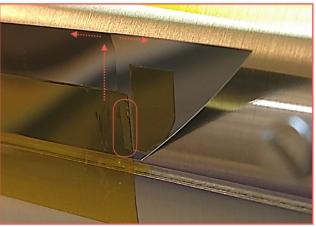
L0-L1 assembly procedure - Activity summary


Layer	Dates	BENDING	GLUING	REMOVAL
LO _{V1}	16/10/24-26/11/24	YES Silicon chipping at one edge; located under the tape, allowed for bending	YES	NO Breakage due to previous damage
L0 _{V2.1}	13/01/25-14/01/25	NO Breakage of one silicon edge possibly during the two sensors alignment	_	_
L0 _{V2.2}	16/01/25-31/01/25	YES	YES	YES
L0 _{V3}	24/03/25-28/03/25	YES	NO Silicon broken already in the transport box	_
LO _{V4}	03/04/25-10/04/25	YES	YES	YES
LO _{V5}	26/05/25-03/06/25	YES	YES	YES
L1 _{V1}	28/04/25-06/05/25	YES	NO Operator error → Tools safety margins improved after failure	_
L1 _{V2}	07/07/25-09/07/25	YES	YES	YES

ePIC Collaboration meeting | 20-24th Jan 2025 | Bari team

L0-L1 assembly procedure - Activity summary

Layer	Dates	BENDING	GLUING	REMOVAL
LO _{V1}	16/10/24-26/11/24	YES Silicon chipping at one edge; located under the tape, allowed for bending	YES	NO Breakage due to previous damage
L0 _{V2.1}	13/01/25-14/01/25	NO Breakage of one silicon edge possibly during the two sensors alignment	_	_
L0 _{V2.2}	16/01/25-31/01/25	YES	YES	YES
L0 _{V3}	24/03/25-28/03/25	YES	NO Silicon broken already in the transport box	_
LO _{V4}	03/04/25-10/04/25	YES	YES	YES
LO _{V5}	26/05/25-03/06/25	YES	YES	YES
L1 _{V1}	28/04/25-06/05/25	YES	NO Operator error → Tools safety margins improved after failure	_
L1 _{V2}	07/07/25-09/07/25	YES	YES	YES


Broken silicon pipe found in the same box

- Don't stack many silicons in the same box
- Visual inspection before each assembly

Crack stopped during bending procedures using microscope (not easily visible by eye).

Discovered fracture was covered by extra kapton tape

Extra tape was not sufficient: fracture was the source of the successive break in the picture