Sensor and AncASIC Update

Iain Sedgwick

UK WP1 F2F Meeting June 26th 2025

Introduction

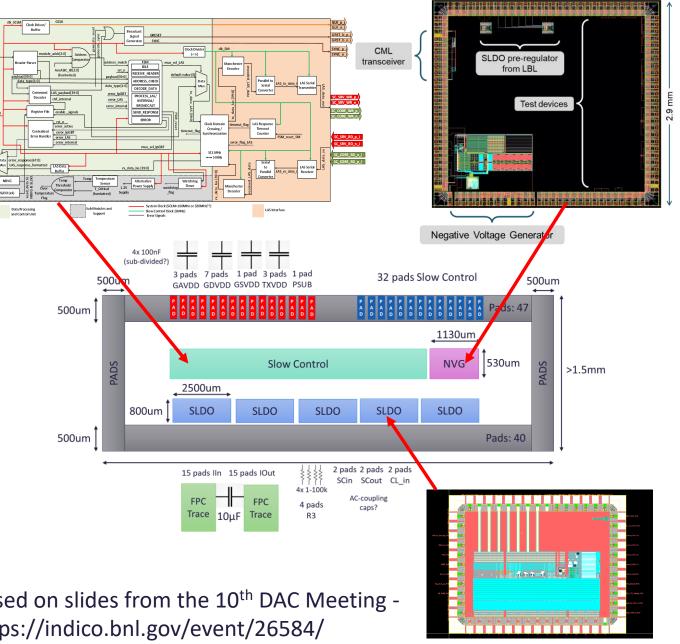
SVT Silicon Scheme

- Plans
- Why AncASIC?

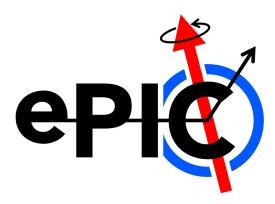
MOSAIX and **EIC-LAS** Update

ER1: MOSS

ER2: MOSAIX


AncASIC Update

- Technology
- Chips Submitted
- **Future Plans**



Based on slides from the 10th DAC Meeting https://indico.bnl.gov/event/26584/

SVT Silicon Scheme

Introduction SVT Silicon Scheme

Inner Barrel (IB) Outer Barrel (OB) Electron and Hadron Endcap Disks (EE, HE)

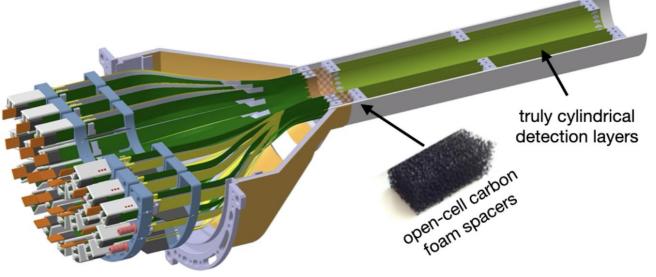
Inner Barrel

- Thinned silicon bent around beampipe
- Use wafer-scale MOSAIX from ITS3

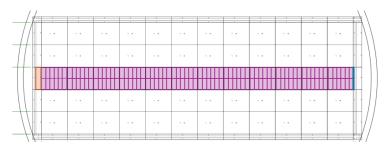
Outer Barrel and Discs

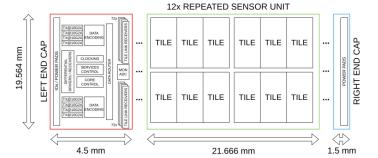
- Smaller Version of MOSAIX with minimum necessary changes (EIC-LAS)
- Supporting AncASIC

Ancillary ASIC


Why AncASIC?

- Some MOSAIX/LAS features require adaptation to stave/disc operation:
 - Point-to-point slow control
 - Point-to-point powering
 - Precise negative back bias
- May be technically unfeasible to integrate these features in the LAS
- Limited prototyping
- MOSAIX schedule is an external dependency
- For these reasons, develop supporting ASIC instead





https://ep-news.web.cern.ch/content/alice-its3-clears-major-milestone

MOSAIX

Ancillary ASIC

Why AncASIC?

- Some MOSAIX/LAS features require adaptation to stave/disc operation:
 - Point-to-point slow control
 - Point-to-point powering
 - Precise negative sensor bias
- May be technically unfeasible to integrate these features in the LAS
- Limited prototyping
- MOSAIX schedule is an external dependency.
- For these reasons, develop supporting ASIC instead

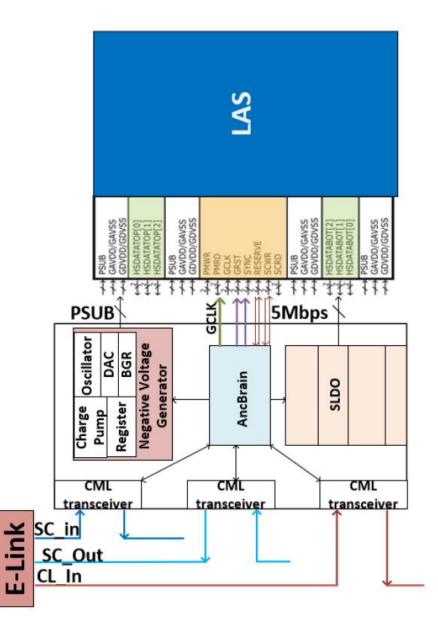
Serialised Slow Control interface from EIC-LAS to lpGBT

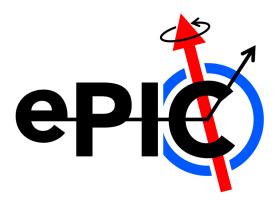
SLDO for serial powering

Local Negative Voltage Generator

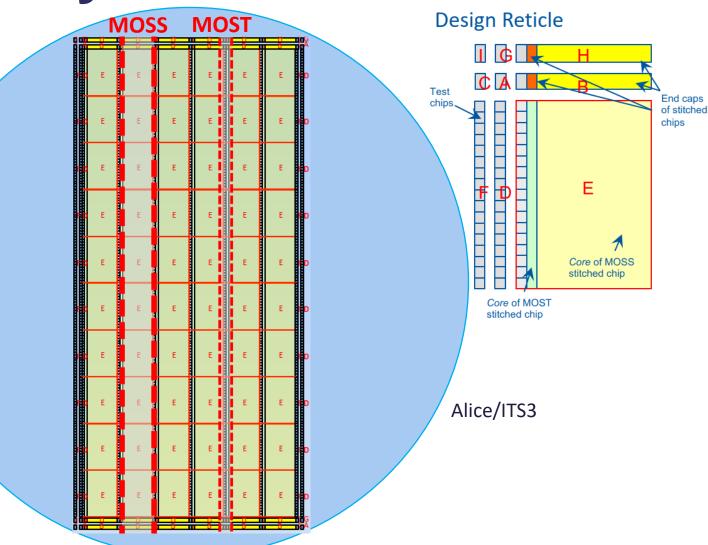
- Develop independent supporting chip
 - Development decoupled from MOSAIX availability
 - No modification of MOSAIX needed
 - 110nm XFAB process
 - 4 MPW runs a year
 - Cost effective

Ancillary ASIC


Why AncASIC?

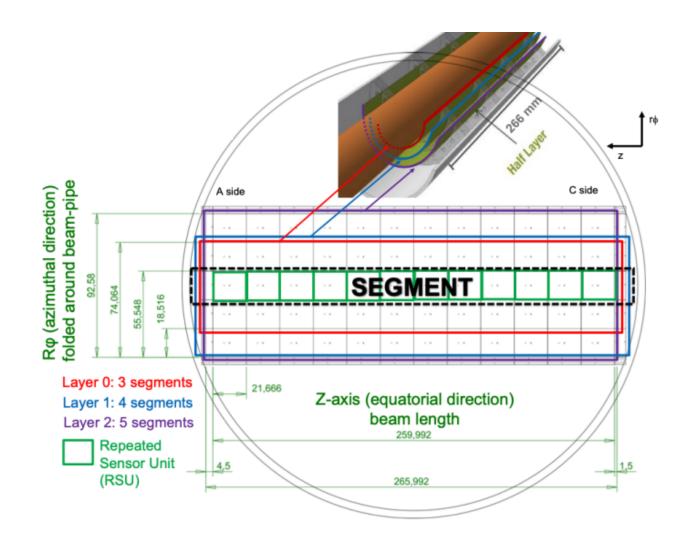

- Some MOSAIX/LAS features require adaptation to stave/disc operation:
 - Point-to-point slow control
 - Point-to-point powering
 - Precise negative back bias
- May be technically unfeasible to integrate these features in the LAS
- Limited prototyping
- MOSAIX schedule is an external dependency
- For these reasons, develop supporting ASIC instead

MOSAIX and EIC-LAS Update

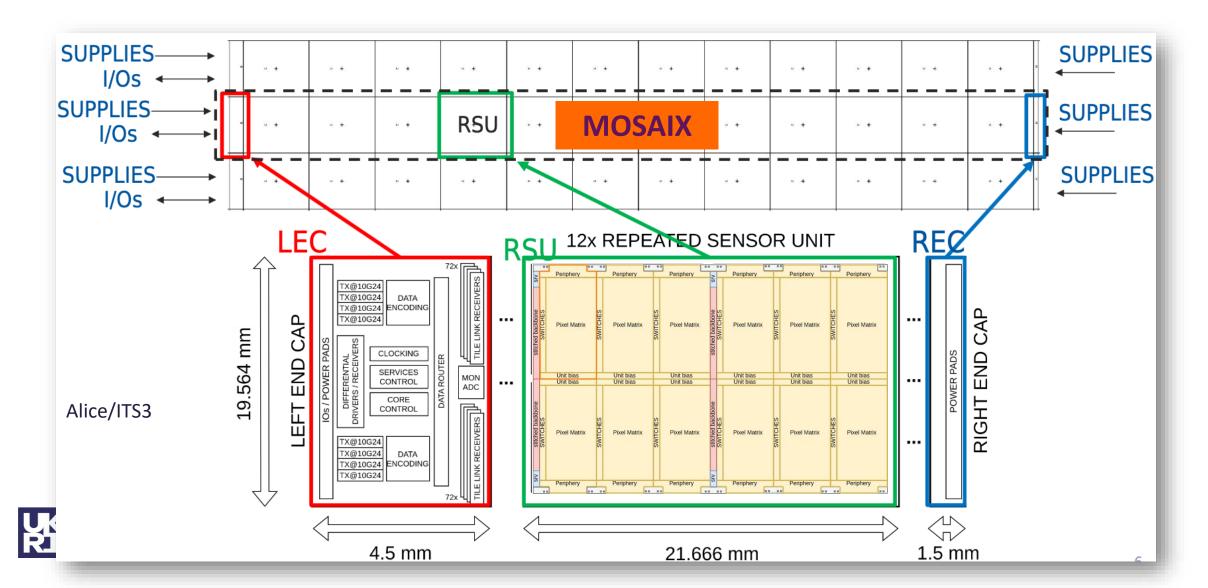


ER1: MOSS and babyMOSS

- Main objective: Learn and prove stitching
- Two large stitched sensor chips (MOSS, MOST)
- Different approaches for resilience to manufacturing faults
- Small test chips (Pixel Prototypes)

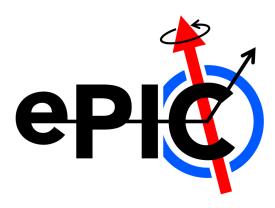

ER2: MOSAIX

- MOSAIX is a full feature prototype of the sensor for ALICE ITS3
- Wafer scale sensor design using the stitching technique
- Process: TPSCo 65 nm CMOS Imaging Sensors(customized)
- MOSAIX design leading to production sensor (ER3)



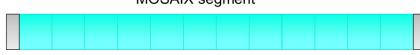
ER2: MOSAIX

MOSAIX: Status and Outlook


RSU, LEC, MOSAIX

- All components and top level now designed and implemented.
- DOING: refinements of Quality of Results (QoR), powering signoff and polishing of physical integrity.
- Verification
- Functional verification on RTL models completed.
- DONE: complete signoff reviews of simulations of SBB and MOSAIX powering transients.
- DOING: verification with GLN models, SEU simulations, power aware simulations.
- Physical Rules on full wafer gds in very good state

MOSAIX to EIC-LAS



MOSAIX to EIC-LAS

Inner Barrel

MOSAIX segment

- 12 RSUs
- 8 data links
- 7 slow control links
- Direct powering

Improve yield and coverage

Lower material budget

Lower material budget, fit integration requirements

Lower material budget, fit integration requirements

Outer Barrel, E/H Endcaps

EIC-LAS and ancillary chip

- 5 or 6 RSUs
- Single data link
- Multiplex slow control
- Serial powering

EIC-LAS

Ancillary ASIC

MOSAIX: Power

Only goes one way...

- Some (all?) of the latest MOSAIX power numbers for the LEC exceed our estimates
- Our previous power number for the LEC was 411mW typ and 570mW in max

Summary: MOSAIX Power

ITS3 TDR Table 3.10

	Power density [mW cm ⁻²]			
	Expected 25 °C	$^{\rm Max}_{\rm 25^{\circ}C}$	Max 45°C	
Left end cap (LEC)		791		
Active area (RSU)	28	44	62	
Pixel matrix	15	32	51	
Biasing	168	168	168	
Readout peripheries	432	457	496	
Data backbone	719	719	719	

Impact on EIC-LAS
The foreseen modifications on LEC will reduce this power / potential issue
No changes foreseen for the RSU. However, MOSAIX- RSU power is expected to perform as planned.

Final numbers can only be provided after MOSAIX has been tested, which is expected in early 2026.

LEC Power post implementation

	LEC Power [mW]		LEC Power Density [mW/cm^2]	
Scenario	Тур	Max	Тур	Max
3 x 10 Gbit/s	697	904	792	1027
6 x 5 Gbit/s	1043	1358	1185	1543

LEC Area 0.88 [cm^2]

RSU Power post implementation

	Power [mW]		Power density [mW/cm2]
	Typ N	1ax	Typ Max
Matrix (12)	45.36	89.71	11.5 22.8
Biasing Unit			
(12)	4.32	4.32	168.0 168.0
Periphery (12)	74.88	84.96	434.4 492.9
SBB Unit (4)	14.40	14.40	1200.0 1200.0
RSU Total	138.96	193.39	32.8 45.6

10th EIC DAC Meeting João de Melo 14

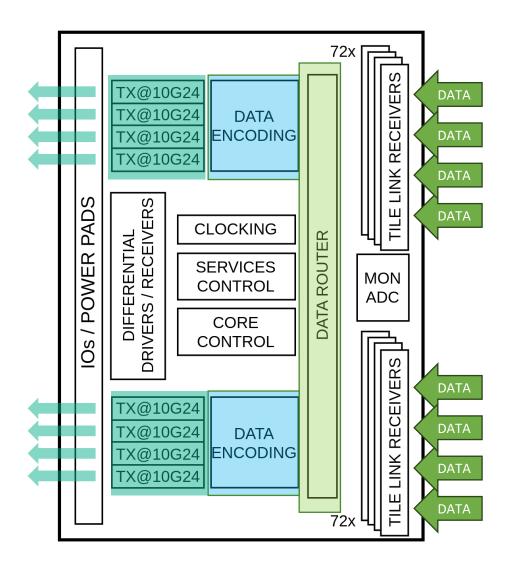
MOSAIX Power

So what does that mean?

 Our previous power number (based on the MOSAIX Engineering Review) for the LEC was 411mW typ and 570mW in max

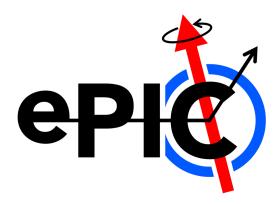
Condition	Typ Power (mW)	Max Power (mW)
Our previous estimate	411	570
Latest MOSAIX (3x 10G)	697	904
Latest MOSAIX (6x 5G)	1043	1358
Latest MOSAIX (1x 5G)	391	493

- So if we can reduce to 1 5G link, we will be around our original estimate.
- But this is just my first attempt to integrate these values
 - Need to re-simulate
 - Does the expected data imply 1 link is OK? Who is simulating this?



MOSAIX to EIC-LAS: LEC Modifications

Reduce LEC to one channel


- Bypass Serializer LDOs
- Study on the performance before and after removing LDOs.
- Dedicated decap cells, star routing (supply), and functional adjustments (no LDO controls).
- Data Encoding and Router (serialization of the data to a single channel)
- Challenge to adapt/change
- Slow control needs to be modified

AncASIC Update

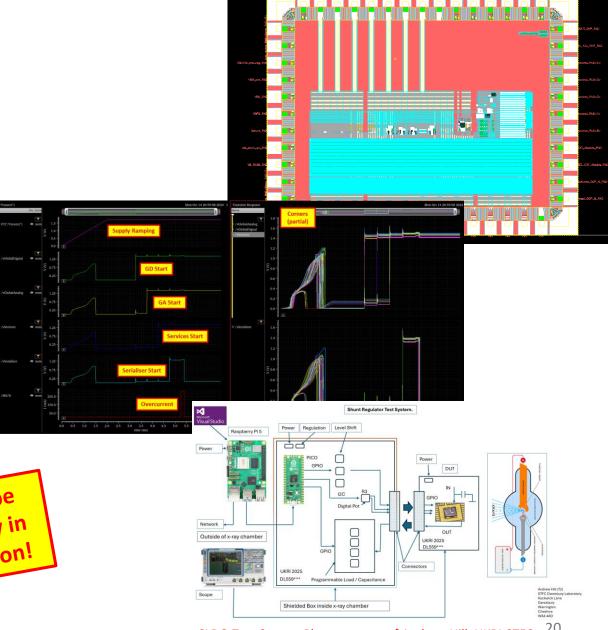
Technology Selection

XFAB XT011

- 110nm BCD-on-SOI Technology
 - SOI permits floating grounds for negative voltage generation
 - Thick copper top layer very low resistance for power dissipation
 - High gate density suitable for AncBrain
 - All design sites have experience with XFAB
 - Radiation hardness untested
 - ePIC radiation requirement low [1]
 - Derived from a previously tested technology [2]
 - Test structures in fabrication

Shunt LDO

SLDO


- Serial powering required for services reduction
- Reviewed with external participants
- SLDO test structure (including preregulator) submitted March 2025 (UK funded, submitted via Europractice)
- Expected back September 2025
- Test system in preparation

Negative Voltage Generator

NVG test structure layout, courtesy of Praful Purohit, BNL

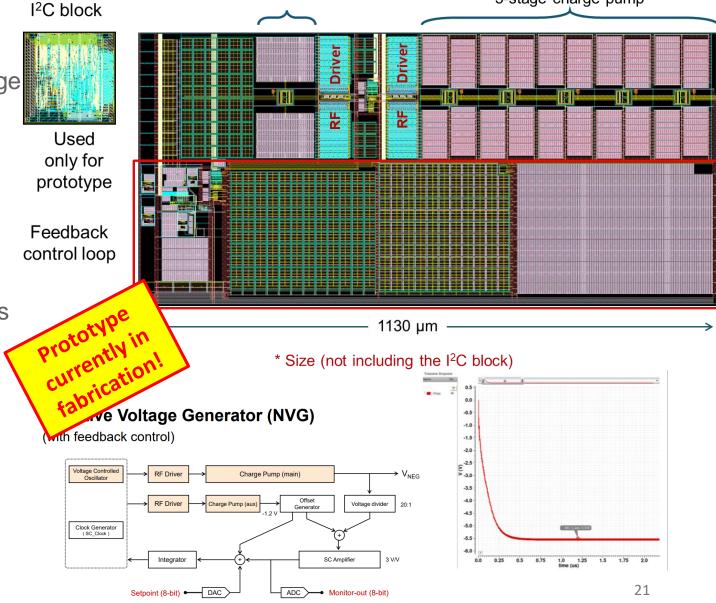
5-stage charge pump

NVG

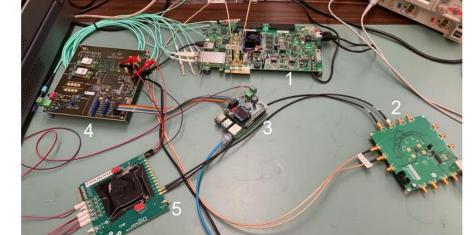
 Local generation of sensor bias voltage needed due to combination of serial powering and low bias level (~1V)

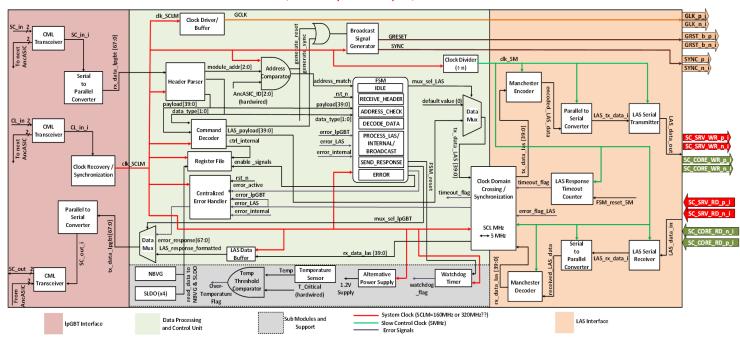
Reviewed with external participants

Test structure submitted March 2025


 Also included transistor test structures and other blocks

- Expected back September 2025
- Test system in preparation

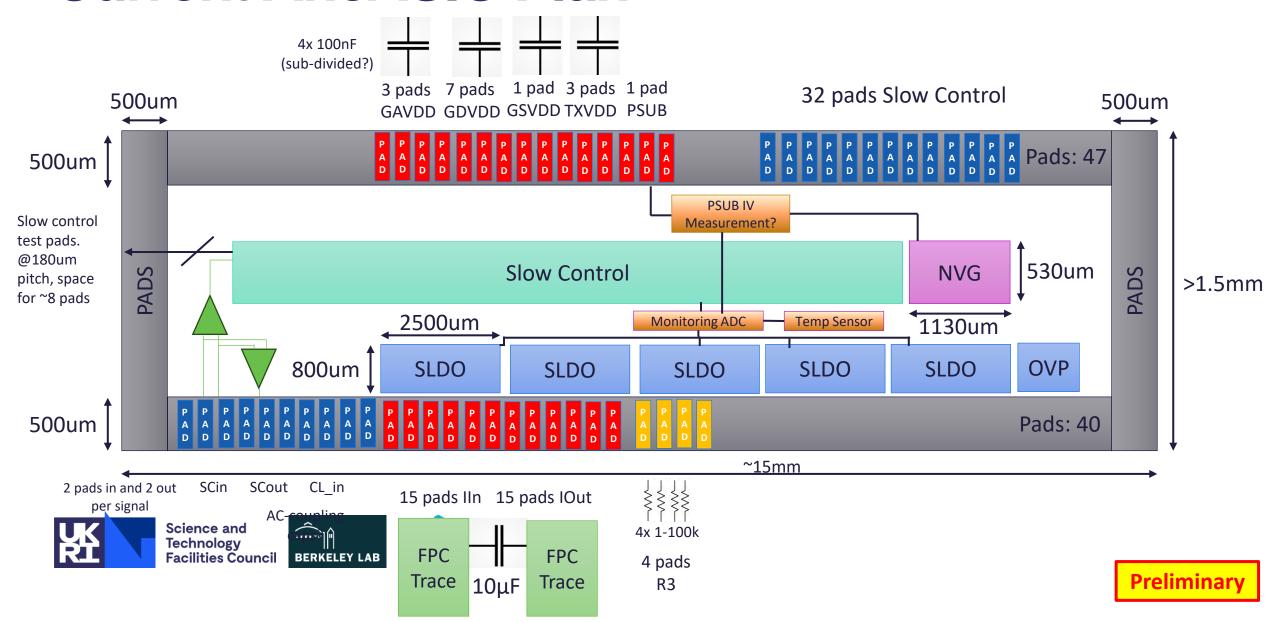



AncBrain

AncBrain

- Required for services reduction and control of NVG and SLDO
- Core modules complete, working on tests with MOSAIX emulator
- Plan to submit as part of first AncASIC
- Hardware emulator in preparation between LBNL, ORNL and BNL

AncBrain Plan, courtesy of Arif Igbal, BNL



- 1. KCU105
- 2. Clock generator
- 3. PiGBT (status monitor only)
- 4. VLDB+
- 5. ETROC2 test board

Current AncASIC Plan

Progress, Next Steps and Challenges

Progress and Next Steps

AncASIC requires three main blocks. Prototypes for 2 have already been submitted:

MPW1 (NVG)

MPW2 (SLDO)

March 2025 March 2025

Work has started on the next components, and planning for further phases:

- Complete MPW1/2 Test Systems
- Complete MPW1/2 Testing
- Complete AncBrain Design and Validation
- Submit AncASIC V1
- Complete AncASIC V1 Test System
- Complete AncASIC V1 Testing
- Complete AncASIC V2 Design Modifications
- AncASIC V2 Production

September 2025 (to match out-of-fab date)

March 2026

Q3 CY2025

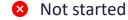
September/November 2025

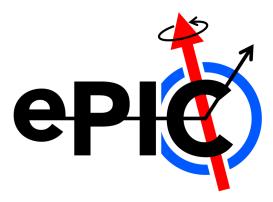
March/June 2026

Aug/December 2026

Q1 CY2027

Q1 CY2027





Conclusion

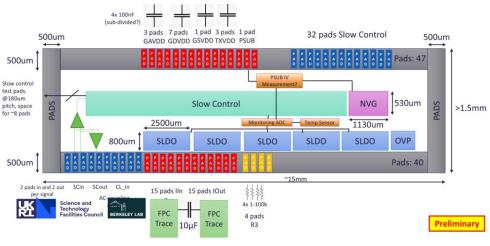
Conclusion

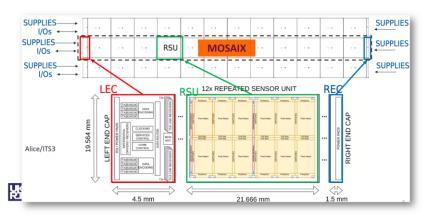
AncASIC Status

AncASIC

- Design progressing well
- First test structures in fabrication
- AncBrain design under way
- Next steps are testing, AncBrain completion and full integration
- DSA to be agreed (although some movement)

MOSAIX/EIC-LAS


- Submission very soon
- CERN/DOE agreement still needed



Current AncASIC Plan

ER2: MOSAIX

Questions?

References

[1] Radiation and Rate Environment, Gonella L., ePIC Collaboration Meeting, Argonne, Jan 9 2024, https://indico.bnl.gov/event/20473/contributions/84983/

[2] S. Fernandez-Perez, M. Backhaus, H. Pernegger, T. Hemperek, T. Kishishita, H. Krüger, N. Wermes, *Radiation hardness of a 180nm SOI monolithic active pixel sensor*, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 796, 2015, Pages 13-18, ISSN 0168-9002, https://doi.org/10.1016/j.nima.2015.02.066.

