

Wire-bonding studies on LTU foils and dummy parts for module prototyping

Liam Boynton, Marielle Chartier, Tim Jones, Jian Liu

26 June 2025

UK EIC WP1 Face-to-face meeting

Brunel University of London

Foils and bonding equipment

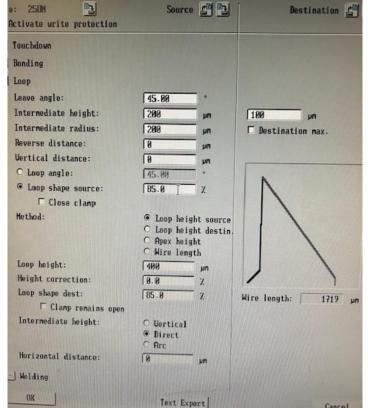
ePI

- Two types of foils received in March (details see <u>the presentation by LTU</u>)
- Equipment Used
 - Hesse BJ820 Wire Bonder
 - Dage 4000 Pull Tester

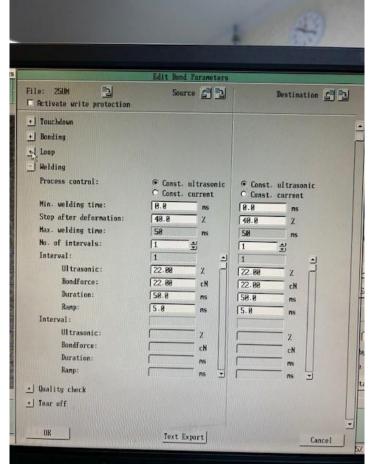
Single-layered (LTU-15-10 material)

Multilayered structure (LTU-15-10+Kapton 25um + LTU-15-10 similar to ePIC FPC and similar ultralight flexes)

Тор	Al 15um Pi 10um	LTU-15-10
Spacer	Pi 25um	Kapton
Bottom	Al 15um Pi 10um	LTU-15-10

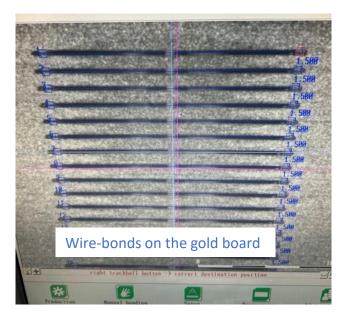

Initial trials

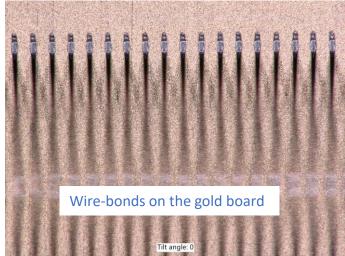
Bonding parameters

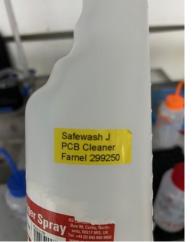

- First attempts in March
 - 1. A gold board used for pull tests after wire spool or wedge changes
 - Single-layer foil
 - 3. Multi-layer Foil
- 50 Al wires, 100 μm pitch, 25 μm diameter, 1.5 mm length
- Default setting (used for the gold board test)

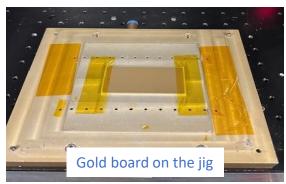
Ultrasonic: 22% Bondforce: 22 cN

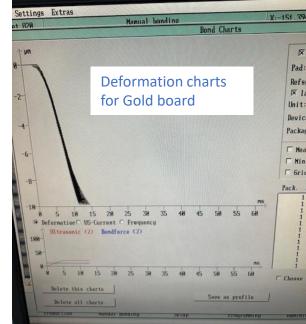
Cancel

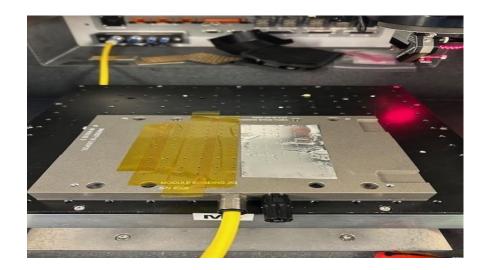

Edit Bond Parameters

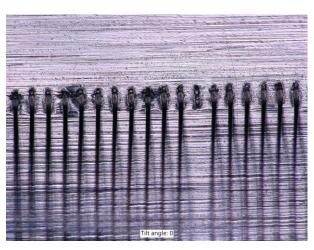


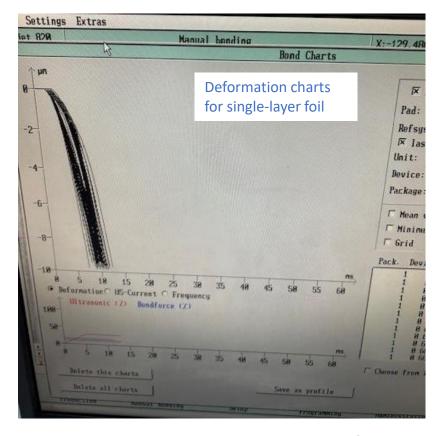

Wire-bonding on gold board


ePI

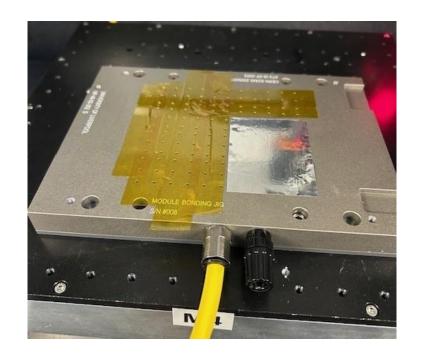

- Clean the gold board using the safewash and rinse with DI Water
- Tape the board to a jig used for wire bonding
- No failed wires

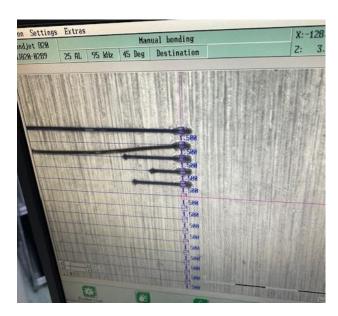


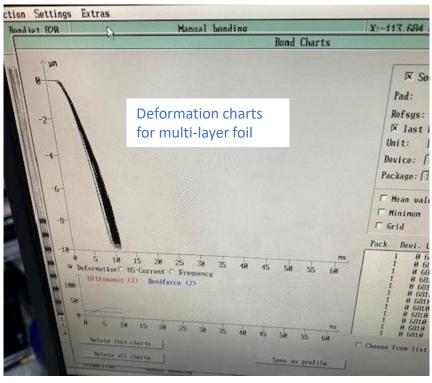



Wire-bonding – single-layer foil

- Foil was initially taped down as with the gold board → multiple wire failures occurred
- Vacuum fixing improved bonding yield, though failures persisted
- Increasing bonding parameters to 30% Ultrasonic and 30 cN Bondforce further improved results
- Final test: 1 failure out of 50






Wire-bonding – multi-layer foil

- Foil vacuumed to jig, but multiple wire failures still observed
- Switching to higher welding parameters improved bonding
- Final test: 3 failures out of 50

Pull tests

- Peel failures dominated for both foil types; none observed on gold board
- No consistent pattern in peel location (source vs. destination bonds)
- Bonds were placed between vacuum holes (not directly over)
 - Foil lifting observed during pull tests, likely due to slight vacuum leakage
- Some foil bonds achieved > 12 g
- Foil bond strength showed higher variation compared to gold board

	CART	RIDGE	50	g		20326	722	Pull (theta)		
	TESTS	SPEED		5	57	um/s					
	TEST	OAD			25	g					
	FALLE	BACK			30	%					
	TEST				1			10.62			
	TEST				2			10.713			
	TEST				3			10.604			
	TEST				4			10.549			
	TEST				5			10.647			
	TEST				6			10.915			
	TEST				7			11.161			
	TEST				8			11.078			
	TEST				9			11.033			
	TEST				10			10.742			
	TEST				11			11.447			
	TEST				12			11.397			
	TEST				13			11.296			
	TEST				14			11.298			
	TEST				15			10.931			
	TEST				16			11.171			
	TEST				17			10.668			
	TEST				18			11.326			
	TEST				19			11.312			
	TEST				20			11.111			
np	oles	Mean [g]	STDEV [g]	S	TDEV [[%]	Max [g]	Min	[g]	
	50	11	.03	0.26		2	2%	11.45		10.55	,

CAR	TRIDG	50 g		20326722	Pull (theta)	
TEST	SPEE		557	um/s		
TEST	LOAD		25	g		
FALL	BACK		30	%		
TEST	ī		1		11.19	
TEST			2		10.411	
TEST			3	3	12.203	
TEST	ī		4		10.002	
TEST			5		10.648	
TEST			6		9.1082	
TEST	ī		7		11.633	
TEST			8		11.227	
TEST			9		10.943	
TEST			10		4.9457	
TEST			11		11.051	
TEST			12		4.8058	
TEST			13		12.228	
TEST			14		6.0968	
TEST			15		10.435	
TEST			16		9.7686	
TEST			17		8.0488	
TEST			18		10.168	
TEST			19		10.26	
TEST			20		9.7136	
les	Mea	n [ø]	STDEV [g]	STDEV [%	lMax [ø]	M
//9	.,,_a,	d U3	2 69			

ANTINIDOL	30 g	20320722	i un (thete
ESTSPEED	557	um/s	
ESTLOAD	25	g	
ALLBACK	30	%	
EST	1		4.3809
EST	2		2.9231
EST	3		5.8723
EST	4		4.8029
EST	5		8.6724
EST	6		5.8365
EST	7		6.4746
EST	8		6.6812
EST	9		9.0281
EST	10		9.3168
EST	11		7.194
EST	12		6.4875
EST	13		6.3363
EST	14		5.1966
EST	15		5.7042
EST	16		10.054
EST	17		10.216
EST	18		9.8386
EST	19		9.4333
EST	20		12.161

20326722 Pull (theta

Summary — initial trials

- Foil type comparison
 - Multi-layer foil felt stiffer, as expected
 - No major difference in bonding behaviour; both required parameter adjustment beyond standard settings
- Some foil bonds achieved > 12 g → demonstrates potential for strong, reliable bonding
- Foil bond strength showed higher variation compared to gold board

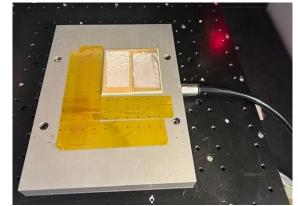
Second tests

New tests – foil onto PCB

ePI

- Foils glued onto FR4 PCB to improve vacuum contact during bonding
- Some glue spilled onto the top surface of the foil
- Cleaned with PCB cleaner (cleaning + 2 rinse cycles + drying)
- Glue residue on top side successfully removed

PCB cleaner


Single layer foil

Multi layer foil

- Ran out of the wires used for the previous tests
 - CCC: Al-1%Si, 25 um diameter, El % 1-4, TS 15-18g
- New Heraeus wire will now be used
 - Al Si-M, 25 um diameter, EL > 1%, BL 15-17 cN
 - Personal experience: this wire is not as good as the previous wire
- Foil on jig
 - Vacuum contact significantly improved
 - Foils were held firmly on the jig throughout testing 26/06 2025 J. Liu

New wire

Foils on jig

11

Standard parameter

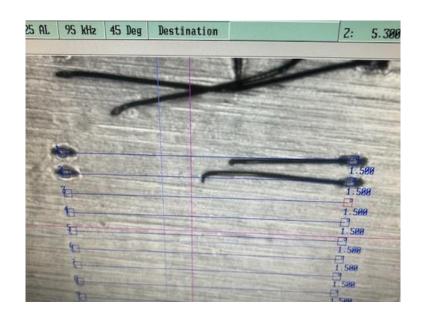
Standard settings (full details in backup slide):

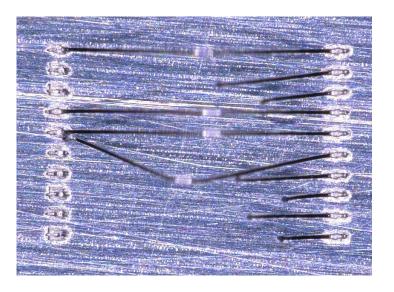
• Ultrasonic: 22%

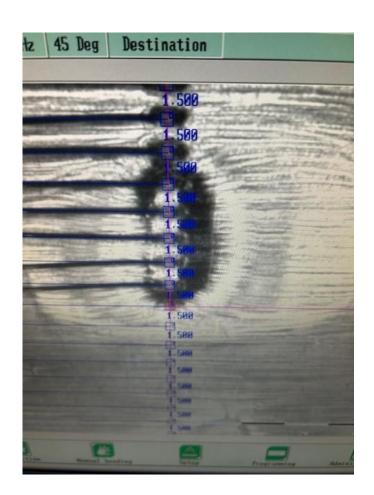
Bond force: 22 cN

• Deformation: 40%

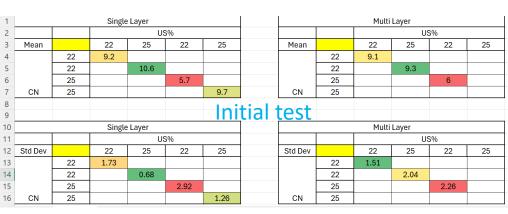
• Overtravel: 25 μm


- 100 μm wire spacing, 1500 μm bond length \rightarrow ~30° pull angle
- Increased ultrasonic relative to bond force helped bonding
- See next slide for failure observations


1			Single	Layer						Multi	Layer		
2				US	5%						US	S%	
3	Mean		22	25	22	25		Mean		22	25	22	25
4		22	9.2						22	9.1			
5		22		10.6					22		9.3		
6		25			5.7				25			6	
7	CN	25				9.7		CN	25				
8													
9													
10			Single	Layer						Multi	Layer		
11				US	5%						US	S%	
12	Std Dev		22	25	22	25	S	Std Dev		22	25	22	25
13		22	1.73						22	1.51			
14		22		0.68					22		2.04		
15		25			2.92				25			2.26	
16	CN	25				1.26		CN	25				

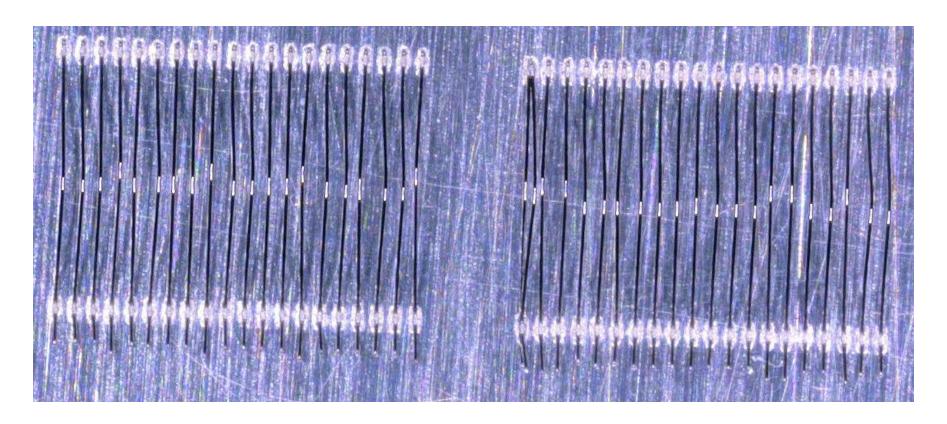

Failures

- Bond force or US <22 led to high failure rate → use parameters >22
- Failures also observed near black spots at source/destination
 - Likely due to insufficient glue support
 - Poor pull strengths in these regions
- Bonding was avoided in areas with uncleaned glue residue



Repeat standard test

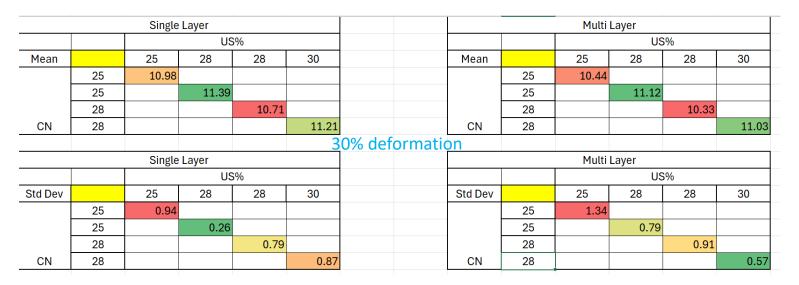
1			Single	Layer						Multi	Layer		
2				US	5%						US	5 %	
3	Mean		22	25	22	25		Mean		22	25	22	25
4		22	7.33						22	9.7			
5		22		10.11					22		7.17		
6		25							25				
7	CN	25				9.32		CN	25				10.32
8						D	noatoo	tost					
9						T C	peated	test					
10			Single	Layer						Multi	Layer		
11				US	5%						US	5 %	
12	Std Dev		22	25	22	25		Std Dev		22	25	22	25
13		22	2.12						22	2.12			
14		22		1.31					22		2.07		
15		25							25				
16	CN	25				1.42		CN	25				2


- Standard bonding test repeated on a different foil area
- Aimed to verify reproducibility of bond quality

Longer tails

- Tail length was increased in later tests
- Result: fewer failed wires, stronger and more consistent pull results
- All tests after this point used longer tails

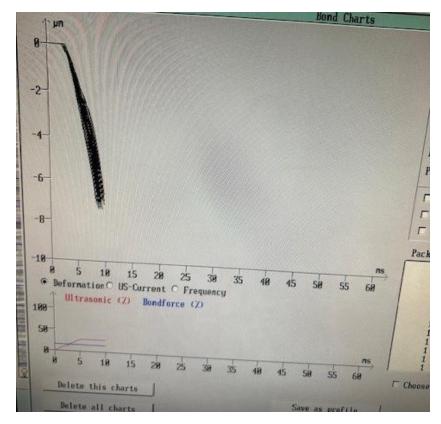
Pull test matrix

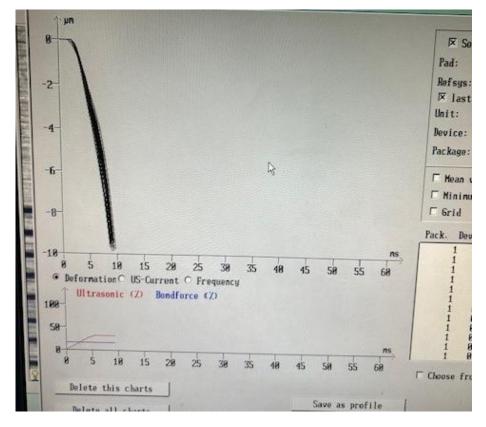


														-							
					Single Laye											Multi Layer					
					US % Ut											US % UI					
Mean		22	25	25	28	28	30	30	32	32	Mean		22	25	25	28	28	30	30	32	3
	22	11.18										22	10.73								1
	22		11.46									22		10.45							ı
	25			11.26								25			11.04						1
	25				11.21							25				11.03					
Ge	28					11.33					eg S	28					11.04				
Ifor	28						11.04				for	28						11.06			
ouc	30							10.49			ouc	30							11.03		
(CN) Bondforce	30								10.99		(CN) Bondforce	30								10.8	
C)	32									10.66	C S	32									Ç
					Single Laye	r										Multi Layer					
					US % UI											US % UI					
Std Dev		22	25	25	28	28	30	30	32	32	Std Dev		22	25	25	28	28	30	30	32	32
	22	0.69										22	1.77								
	22	0.00	0.18									22	2.,,,	1.32							
	25		0.10	0.59								25		1.02	0.67						
	25			0.00	0.62							25			0.07	0.25					
e e	28				0.02	0.36					υ	28				0.20	0.88				
orc	28					0.50	0.8				orc	28					0.00	0.69			
(CN) Bondforce	30						0.8	0.82			(CN) Bondforce	30						0.09	0.49		
Bo								0.82	0.05		B0								0.49	0.00	
N.	30								0.65	0.77	$ \widehat{\mathbf{z}}$	30								0.82	
υ)	32									0.77	<u> </u>	32									

- Best results (mean and standard deviation) achieved with settings between 25–30
- Foil bondability improved significantly under these conditions

30% and 50% deformations

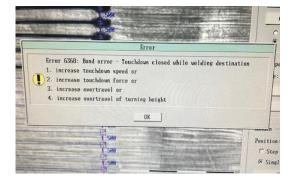



		Single	Layer						Multi	Layer		
			US	5%						US	%	
Mean		25	28	28	30	Me	4ean		25	28	28	30
	25	11.14						25	11.39			
	25		11.24					25		11.42		
	28			10.77				28			11.07	
CN	28				10.58	(CN	28				11.05
					5	% deformation						
		Single	Layer						Multi	Layer		
			US	5%						US	%	
Std Dev		25	28	28	30	Std	td Dev		25	28	28	30
	25	0.76						25	0.4			
	25		0.86					25		0.28		
	28			1.01				28			0.66	
CN	28				1.04	(CN	28				0.63

- Bond foot width estimation
 - 30% \rightarrow ~32.5 µm
 - $40\% \rightarrow ^{\sim}35 \,\mu m$
 - 50% \rightarrow ~37.5 µm
- 30% deformation
 - Appears comparable to bestcase pull matrix results
- 50% deformation
 - Mean pull force similar to 30%, but improved standard deviation for multilayer foil

Deformations

30% deformation 50% deformation


- Deformation charts for 30% and 50% cases (US 30%, BF 30 cN)
- All wires reached maximum deformation within 10 ms → good bondability

15 μm overtravel

						US%									US%			
Me	ean		25	25	28	28	30	30	32	Mean		25	25	28	28	30	30	32
		22	11.21								22	11.48						
		25		10.89							25		10.96					
		25			11.34						25			11.34				
		28				10.79					28				11.09			
		28					11.06				28					11.09		
		30						11.3			30						10.82	
С	N	30							11.25	CN	30				<u> </u>			11.06
				5	Single Layer	r							l	Multi Layer	_			
						US%									US%			
Std	Dev		25	25	28	28	30	30	32	Std Dev		25	25	28	28	30	30	32
		22	0.47								22	0.44						
		25		0.88							25		1.09					
		25			0.39						25			0.65				
•		28				0.94					28				0.43			
		28					0.82				28					0.64		
		30						0.65			30						0.76	
С	N	30							0.38	CN	30							0.66

- Inspired by positive results from James @ Birmingham: reduced overtravel to 15 μm
- Good bonding results achieved: strong mean force, low std deviation
- But: touchdown errors appeared at US or BF >30%

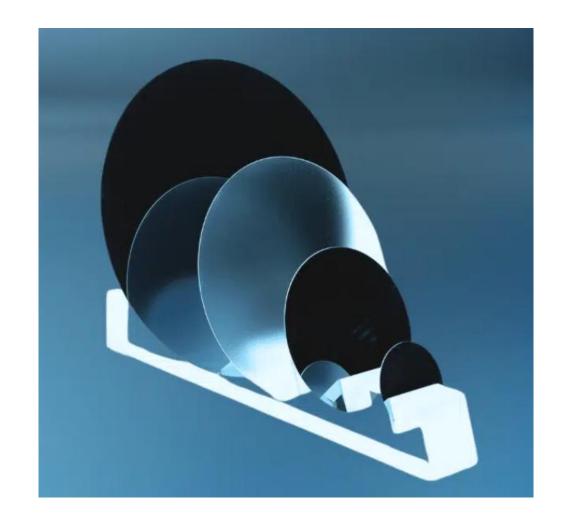
Wire comparison

- Used in the initial tests
 - CCC: Al-1%Si, 25 μm, El % 1-4, TS 15-18g
- Currently using
 - Heraeus: AlSi-M, 25 μ m, EL > 1%, BL 15-17 cN
- Planned (not provided by Accelonix)
 - Tanaka TABN Type aluminium wire (Al–1%Si with nickel doping, 25 μm)
- Alternative (Accelonix in stock)
 - Heraeus H74-41 (around £400): Aluminum Wire 25μm, 100m, AlSi-S, EL 1,0-4,0%, BL 14-16g, 2x1" spool

Plan to use this soft wire for performance comparison

Summary

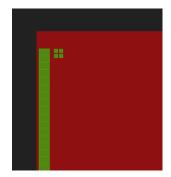
- Bonding on FR4 PCB with longer tails
 - Significantly improved foil stability
 - Parameter optimisation led to stronger bonds and fewer failures
 - Single-layer foils outperformed multilayer ones likely due to their stiffer mechanical response, allowing more consistent bonding
 - While the FR4 substrate does not replicate the final detector environment, it demonstrates that reliable bonding is achievable under controlled conditions
- Detailed test results can be found here: https://cernbox.cern.ch/s/jCSqHk7Fm7xzpqr
- Next step
 - Repeat tests with vacuum + diffuser setup (Birmingham method)
 - Perform comparative tests with alternative wire type



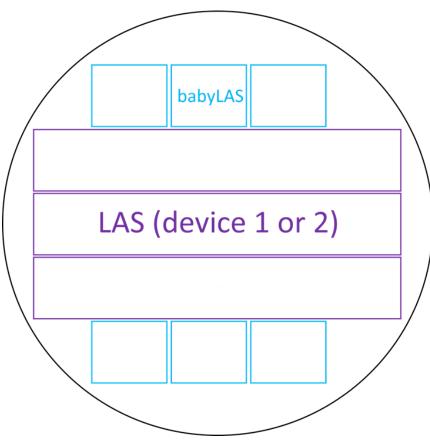
Dummy parts for module prototyping

50 μm thick glass or silicon?

- Inquired suppliers
 - PI-KEM
 - PLANOPTIK AG
 - Valleydesign
 - Silicon Valley Microelectronics
 - Nanosystems JP
- General feedback
- Moving on with silicon
 - Nanosystems JP is the only supplier can provide the dummy parts we requested


Dummy parts – 5RSU/6RSU LAS

Device Dimensions


- Thickness: 50 μm
- Dicing Requirements
 - Device 1 (optional)
 - Length: ~136 mm
 - Width: ~19.6 mm
 - Device 2 (baseline):
 - Length: ~115 mm
 - Width: ~19.6 mm
 - babyLAS
 - Length: ~27.7 mm
 - Width: ~19.6 mm

Metalization

- Material: Aluminum (Al) or Copper (Cu) with Ni/Au plating is acceptable
- Thickness: around 1 μm (at least > 500 nm)
- Design complexity
 - Only bondable pads are required, with the following specifications
 - Pad size: 91 μm × 144 μm
 - Pad pitch: 100 μm
 - We can compromise on the pad size/shape
 - In addition to the pads, need a couple of alignment markers on each dummy LAS

Dummy parts – AncASIC

Device Dimensions

• Thickness: 300 μm

Dicing Requirements:

• Length: ~15 mm

Width: ~1.5 mm

Metalization

The same requirement as the dummy LAS with similar pad size and pitch

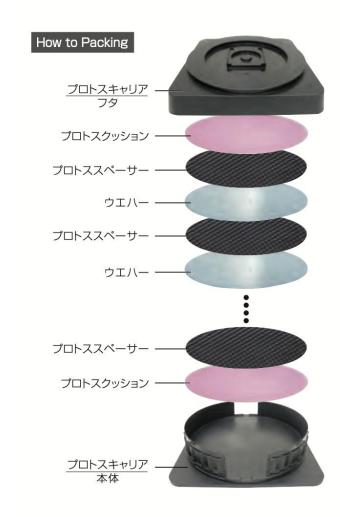
```
Pad: 144 x 91 um, pitch: 100 um Device: 15000 x 1500 um

Marker: 50 x 50 um, gap: 20 um
```

Quotes from Nanosystems JP

- Proposed processes
 - Procure Silicon wafer 625um
 - Photomask fabrication
 - 600nm Al patterning and etching
 - Backgrinding to 50um
 - Dicing & Chip tray packing
 - Shipping

- **Option 1**: 50 5RSU LAS + 500 AncASIC = 19900 + 11900 = 31800 USD
 - 20 5RSU LAS: 12900 USD
 - 50 5RSU LAS: 19900 USD
 - 20 5RSU LAS + 20 6RSU LAS: 19900 USD
 - 50 5RSU LAS + 50 6RSU LAS: 27900 USD
 - 500 800 AncASIC: 11900 USD
- Option 2: 41400 USD \rightarrow 41400 31800 = 9600 USD for additional 50 babyLAS
 - ~50 5RSU LAS + ~50 1RSU babyLAS
 - 500 600 AncASIC
- Option 3: 46390 USD
 - ~50 6RSU LAS + ~50 5RSU LAS + ~30 1RSU babyLAS (possibly a few more)
 - 500 600 AncASIC


- Comments from the supplier
 - First order requires mask fabrication and other startup engineering costs, subsequent ordered chips will be comparatively cheaper
 - Manufacturing larger quantities in a single batch is more cost-effective than producing them separately
- Lead time
 - Approximately 2 to 2.5 months
 - Their production schedule is filling up, so early confirmation would help secure a favorable slot
 - They propose moving the order to July or August to enable a faster turnaround

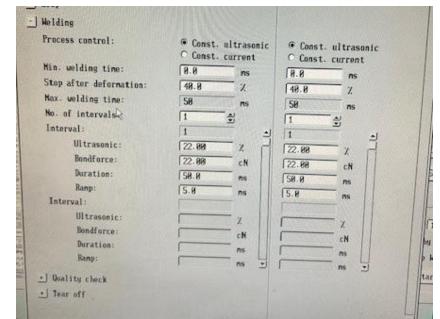
- Is it possible to place the order for AncASIC in July/August?
- Is it possible to place the order for LAS in September?

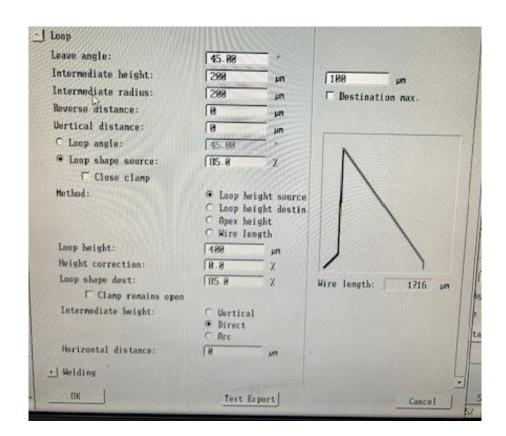
Packaging

- Nanosystems JP packaging details
 - Dummy LAS: "given the three different chip sizes, instead of fabricating a
 custom case from scratch, we propose a standard method where we will
 remove the chips from the dicing ring and pack them using a cushioning
 system as shown below. The pink layer will serve as a cushion, and a black
 spacer will secure the chips between the layers. This is a standard
 packaging method we frequently use."
 - Dummy AncASIC: "a similar-sized chip tray (15 × 1.5 mm) is available, which we will use for packaging."
- Provide the Gel-Pak trays for LAS packaging and shipment? To be seen based on our test outcomes

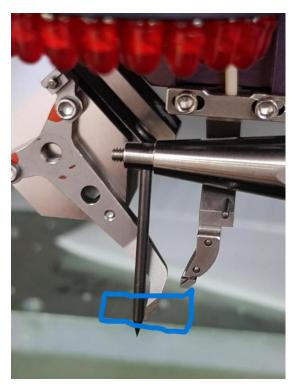
Summary

- Based on current requirements, dummy silicon wafers with metal pads are more cost-effective than glass
- Estimated cost: ~30k USD (+ VAT) for 50 5RSU-LAS and 500 AncASIC
- Lead time is about 2.5 months
- Place the order as early as possible, ideally in July/August
- Dummy LAS packaging is still under review




Backup

-11334	nu	-11331	μn
1000	nu	Same.	
288	nn	288	μn
288	pm mu	200	yn nu
2500	un/s	2500	un/s
22.00	CN CN	22.88	- cN
[8	pn		
79.00		□ [98.88	
25	_ un		- un
Paranet	018	M RELEASED	- (6)
19	ns		ns
		1000	
		8	hu
	288 288 2588 22.88 8 98.88 25 Parano	1800 µn 200 µn 200 µn 200 µn 2500 µn/s 2500 cN 0 µn 0 µn 0 µn 0 µn	1898



spTAB

- spTAB wedge issue
 - The waffle wedge touches the clamp
 - Wedge diameters
 - Waffle Wedge 1.449 mm
 - Standard Wedge in Liverpool 1.170 mm → narrower than the ones used in Birmingham of 1/16" diameter (~1.5mm)
 - Contacting Accelonix and asking about getting SPT to make a set of these tool with the narrower shaft diameter

