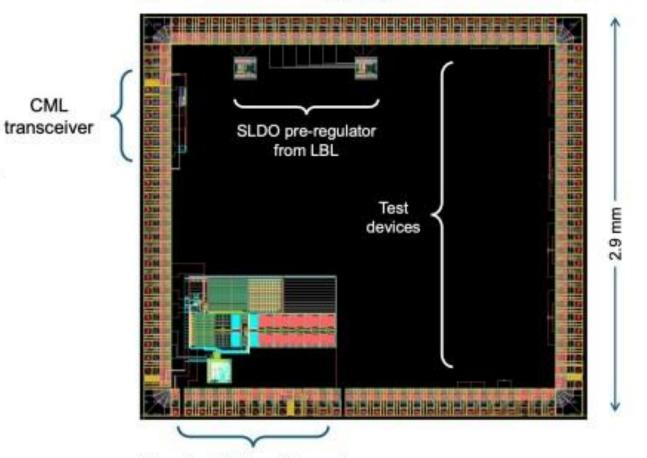
AncAsic testing & other test activities

20250626

M.Borri et al

Outline

- Latest progress from EPIC-SVT-WP2 inc. MPW2-sLDO
- Update on UK involvement on ITS3 prototype tests
- Progress on X-ray irradiations of ER1 RAL prototypes



AncAsic prototypes

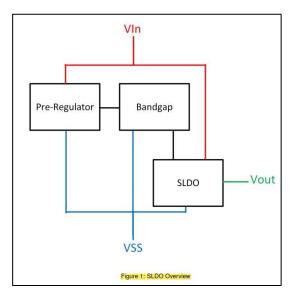
MPW1 – AncASICXT011 P1

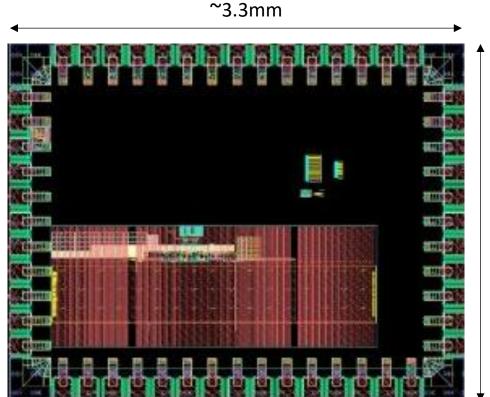
- Designed by BNL and LBNL
- It includes:
 - SLDO pre-regulator;
 - NVG;
 - CML transceiver;
 - Transistor Test structures;
- ~10 different IC blocks on the same Si die

3.2 mm

Negative Voltage Generator

MPW1 – AncASICXT011 P1


AncASIC testing task list MPW1 AncASICXT011 P1			- 3				
Task	Start date	End dat	Quantity	Testing details, conditions	Comments	Equipment	Responsible group/person (interested persor
MPW1 tapeout/submission (WP1 task)		09/25					WP1
MPW1 testing		03/26 ?					
Test specs definition		09/25			\$		WP1, WP2
Carrier board PCB design + manufact(06/25	09/25	~45			4	LBL - Zhengwei Xue (BNL schematics by e
Chip+PCB assembly, wirebonding	10/25	10/25	~45				LBL production might need funding suppo
Test system HW (control)		10/25	?				? - not sure if needed (LANL I2C control for NV
SLDO Pre-Regulator characterization	10/25	03/26 ?				Standard lab equipment(power sup	pply, IV mete LBL - (UK? - maybe later)
Output Ripple/Noise	- 8	- 8		Load Capacitance - 1pF, 10pF, 100pf, 1	Number in red is the expected value.C	thers are for exploring the parameter space	
Transient Response (overshoot and settling ti	me)			ESR - 3.5k	00.07.00.405.0	T-2000000000000000000000000000000000000	
PSRR and line regulation		-		Standard Temperature Range	-20, 27, 60, 105 C	Temperature chamber	
Start-up			-	Standard Radiation Range Ramp rate - 10u, 100u, 1m, 10m, 100m	0 - 1MRad in 100kRad steps		
NVG characterization	10/25	03/26 ?		Ramp rate - 100, 1000, 1m, 10m, 10m	, 15	Standard lab aquinment/newer s	supply. IV m LBL - (CTU)(LANL I2C) - Joellen Renc
Output Ripple/Noise	10/25	03/20 !		Load Capacitance - RANGE?		Standard lab edulpmentibower s	SUDDIV. IV III LBL - IC IOILANL 12C7 - JUEIEII KEIIC
Transient Response (overshoot and settling ti	ime)	- 2	3	Frequency - RANGE?			
PSRR and line regulation	11107	8		Standard Temperature Range	-20, 27, 60, 105 C	Temperature chamber	
Start-up				Standard Radiation Range	0 - 1MRad in 100kRad steps		
				Standard Supply Variation Ramp Rate - RANGE?	Plus and Minus 20%		
				Ramp Rate - RANGE?	Bellia Medicalia		
Test in combination with APTS/DPTS/ER1					Use NVG to generate back bias for alr	eadyexisting APTS and DPTS chips	
CML transciever	10/25	03/26 ?					LBL -
Transistor Test Structures characterizati	10/25	03/26 ?	?			Standard lab equipment(power s	supply, IV, L BNL -(LBL)(CTU)
ds vs Vqs		1 5	- 3			TTS characterization IV setup	
Vt extraction				0	00.07.00.405.0	T-000000000000000000000000000000000000	
		-		Standard Temperature Range	-20, 27, 60, 105 C	Temperature chamber	
-		+	-	Standard Radiation Range Standard Supply Variation	0 - 1MRad in 100kRad steps Plus and Minus 20%		
	7	1	- 3	Standard Supply Variation	Tida dila Militaa 2070		(A) (1)
rradiation	10/25	03/26 ?	?			111	BNL (Cobalt60, X-ray ?) -(LBL) (X-ray) - (C
	- 1	8		X-raysCobalt60	Chips powered during the irradiatio	n, temperature monitoring	17.18.1
	8	8		Standard Radiation Range	0 - 1MRad in 100kRad steps	3	c
SEE/SEU Tests in a proton beam	10/25	03/26 ?	?			Proton beam with XY table	BNLLBLCTU


Note: ~10 IC blocks per DUT; total DUTs: 45 units; equates to 4-5 DUTs per block; Not many DUTs to test...

No UK involvement to date.

- Designed by UK institutes and LBNL
- It includes SLDO with 3 main block:
 - **SLDO**: The Shunt LDO circuit itself.
 - Bandgap: A bandgap used to generate biases for the SLDO circuit
 - Pre-regulator: An LDO and bandgap sitting in front of the other blocks which power them and help with their start-up

MPW2 sLDO

Task MPW2 tapeout/submission (MPW2 testing 1 Test specs definition 2 Carrier board PCB design + 3 Chip+PCB assembly, wirebond 4 Test system HW (control) 5 SLDO characterization Output Ripple/Noise Transient Response (overshoot an PSRR and line regulation Start-up	manufa (06/28) ling 10/28	09/25 03/26 09/25 09/25 10/25 10/25	~50 ~50 5?	Testing details, conditions	PCB and test system design inc. micro- Wirebonding of DUTs onto carrierboards Three institutes involved in sLDO testing:Unive	er Standard lab equipment(power supply, IV n	Daresbury Lab - M.Born,
MPW2 testing 1 Test specs definition 2 Carrier board PCB design + 3 Chip+PCB assembly, wirebond 4 Test system HW (control) 5 SLDO characterization Output Ripple/Noise Transient Response (overshoot an PSRR and line regulation	manufa (06/25) ling (10/25) (06/25)	03/26 09/25 09/25 10/25 10/25	~50 ~50 5?		Wirebonding of DUTs onto carrierboards	er Standard lab equipment(power supply, IV n	WP1, WP2 Daresbury - Andrew Hill University of Birmingham (UK) - James Glover, C.S. Tse Daresbury - Andrew Hill University Of Birmingham - J.Glover; L.Li; Brunel Univeristy - L.Teodorescu; Daresbury Lab - M.Borri;
1 Test specs definition 2 Carrier board PCB design + 3 Chip+PCB assembly, wirebond 4 Test system HW (control) 5 SLDO characterization Output Ripple/Noise Transient Response (overshoot an PSRR and line regulation	10/25 10/25	09/25 09/25 10/25 10/25	~50 ~50 5?		Wirebonding of DUTs onto carrierboards	er Standard lab equipment(power supply, IV n	Daresbury - Andrew Hill University of Birmingham (UK) - James Glover, C.S. Tse Daresbury - Andrew Hill University Of Birmingham - J.Glover; L.Li; Brunel University - L.Teodorescu; Daresbury Lab - M.Borri;
2 Carrier board PCB design + 3 Chip+PCB assembly, wirebond 4 Test system HW (control) 5 SLDO characterization Output Ripple/Noise Transient Response (overshoot an PSRR and line regulation	10/25 10/25	09/25 10/25 10/25	~50 5?		Wirebonding of DUTs onto carrierboards	er Standard lab equipment(power supply, IV n	Daresbury - Andrew Hill University of Birmingham (UK) - James Glover, C.S. Tse Daresbury - Andrew Hill University Of Birmingham - J.Glover; L.Li; Brunel University - L.Teodorescu; Daresbury Lab - M.Borri;
Chip+PCB assembly, wirebond Test system HW (control) SLDO characterization Output Ripple/Noise Transient Response (overshoot an PSRR and line regulation	10/25 10/25	10/25	~50 5?		Wirebonding of DUTs onto carrierboards	er Standard lab equipment(power supply, IV n	University of Birmingham (UK) - James Glover, C.S. Tse Daresbury - Andrew Hill University Of Birmingham - J.Glover; L.Li; Brunel Univeristy - L.Teodorescu; Daresbury Lab - M.Borri;
Test system HW (control) SLDO characterization Output Ripple/Noise Transient Response (overshoot an PSRR and line regulation	10/25	10/25	5?			er Standard lab equipment(power supply, IV n	University Of Birmingham - J.Glover; L.Li; Brunel Univeristy - L.Teodorescu; Daresbury Lab - M.Borri;
5 SLDO characterization Output Ripple/Noise Transient Response (overshoot an PSRR and line regulation	10/25				Three institutes involved in sLDO testing:Unive	er Standard lab equipment(power supply, IV n	University Of Birmingham - J.Glover; L.Li; Brunel Univeristy - L.Teodorescu; Daresbury Lab - M.Borri;
Output Ripple/Noise Transient Response (overshoot an PSRR and line regulation		03/26	?		Three institutes involved in sLDO testing:Unive	er Standard lab equipment(power supply, IV n	Brunel Univeristy - L.Teodorescu; Daresbury Lab - M.Borri;
Transient Response (overshoot an PSRR and line regulation				The state of the s			(LBL)
Transient Response (overshoot an PSRR and line regulation Start-up				Load Capacitance - 1pF, 10pF, 100p	pf, Number in red is the expected value. Others are	re for exploring the parameter space	
PSRR and line regulation Start-up	nd settling time		0 1	ESR - 3.5k		5 N. C. W.	
Start-up		4		Standard Temperature Range Standard Radiation Range Ramp rate - 10u, 100u, 1m, 10m, 10	-20, 27, 60, 105 C	Temperature chamber	V
			1	Standard Radiation Range	0 - 1MRad in 100kRad steps		X-rays at Daresbury; Protons at Birmingham cyclotron (TBC);
		-		Ramp rate - 10u, 100u, 1m, 10m, 10	00m, 1s		
6 Irradiation	10/25	03/26	? ?				Daresbury Lab - X-rays - M.Borri Univerisity of Birmingham (UK) - (TBC) Protons (Cyclotron) - J.Glover; L.Li; (BNL) (Cobalt60, X-ray?) - (CTU) (X-ray, Cobalt60) - (LBL) (X-ray) -
[3 3	X-raysCobalt60	Chips powered during the irradiation, temp 0 - 1MRad in 100kRad steps	perature monitoring	X-rays at STFC Daresbury Lab; Protons at Birmingham cyclotron (TBC)
				Standard Radiation Range	0 - 1MRad in 100kRad steps		

Note: 1 IC block per DUT; Total DUTs: ~50 units;

Generous number of DUTs to test...

Test activity to be distributed mainly to 3 UK institutes.

Possibility to include further institutes, especially for irradiations (LBNL or CTU).

MPW2 sLDO – more on tests requirements

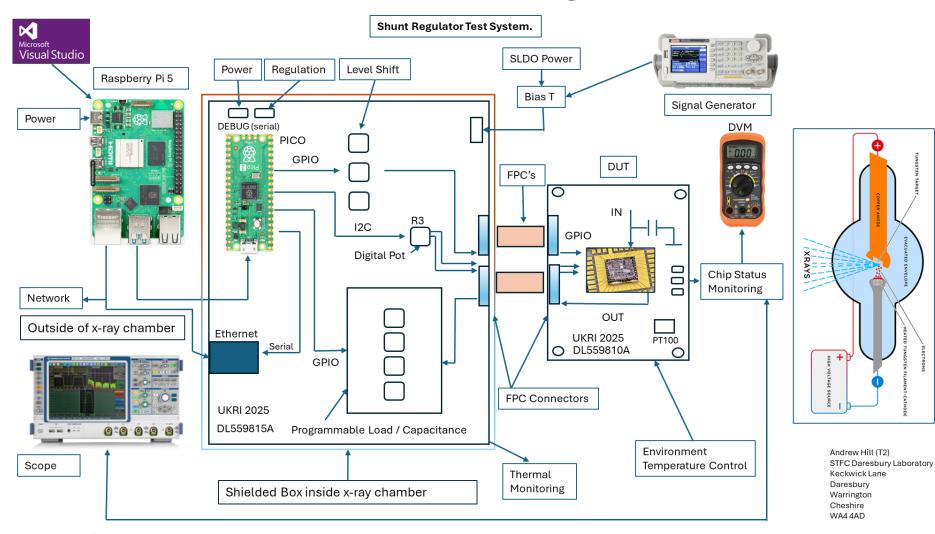
Mode1:

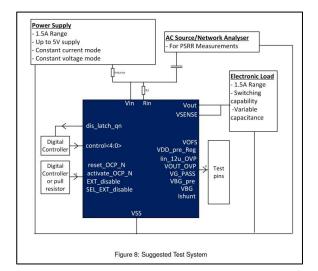
- **PwrUp**: ramp up the supply voltage to the target level, measure and record the output trace from Vout; (Bham, Brun, DL)
- PSRR: measure and record the Power Supply Rejection Ratio (PSRR) at the Vout pin; (Brun, DL)
- RampRate: set 100us,1ms,10ms,100ms ramp-rates and measure Vout vs time; (Brun, Bham)
- **DAC Scan**: Scan DAC codes. Record the value of Vout and plot against the code; (Bham, Brun, DL)
- Irradiations: monitor Vout, lout, li; (DL X-rays)

Mode0:

 Powerup and overcurrent test: Apply a excess current to the output and check that it returns to tri-state: Vout, Iout, Iin.(Brun)

3.5.2 Required Tests


Bham


This section details the tests that need to be performed on MPW2_SLDO. All the tests below need to be performed in the conditions outlined in Table 2. The only exceptions to this are the DAC Scans and irradation tests. To simplify these, we will select a single condition. To ease early testing, a first pass of the tests can be carried out at room temperature. Temperature stability can be re-visited later.

Condition	Values	
Load Capacitance	10nF, 100nF, 1uf, 10uF	
Load Current	40mA, 500mA, 900mA	~
Temperature Range	-20°, 27°, 60°, 105°	
	Table 2: Test Conditions	

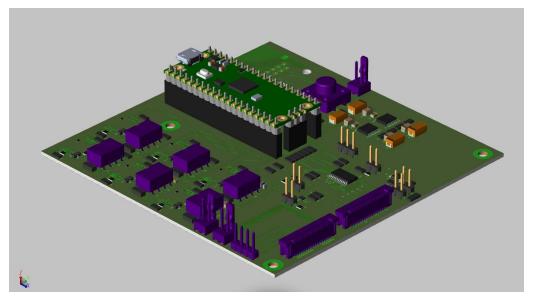
MPW2 sLDO – test system

DUT carrier PCB:

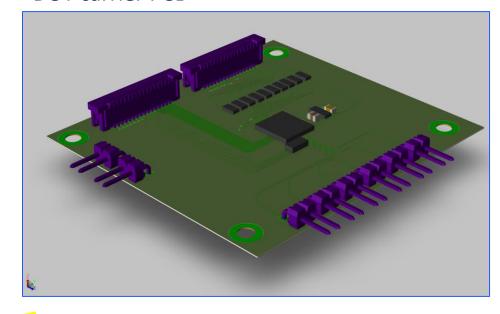
- Schematics complete:
- Layout complete;
- To be reviewed;

DAQ PCB:

- Schematics complete;
- Layout in advanced stage;


Pico2 programming: Aug./Sept.

Unclear how to procure PCBs due funds uncertainty



MPW2 sLDO – test system

DAQ PCB

DUT carrier PCB

In progress – to be reviewed

MPW2 sLDO - Conclusion

- UK-EPIC-SVT is taking part in EPIC-SVT-WP2;
- Datasheet for MPW2 SLDO available inc. test requirements;
- Test plan being developed with EPIC-SVT-WP2;
- Test system design in advanced stage;
- EPIC-SVT-WP2 asks questions about time-scales:
 - Hard to give an answer until UKRI Infrastructure fund is confirmed;
 - Assuming Business As Usual (BAU);

ITS3 prototypes

UK involvement on ITS3 prototype tests

- Three institutes involved to date:
 - University of Birmingham;
 - •University of Liverpool;
 - Daresbury Laboratory;

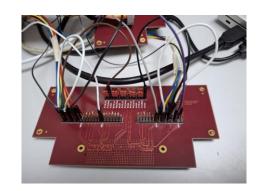
Sensor testing @ Birmingham

- Previously: strong contribution to APTS tests.
- Minimal involvement on ER1 due to not being ITS3 member.
- Now revamping effort under ITS3 umbrella:
 - Help to build the power ramping and impedence measurement system in Liverpool and get basic training in babyMOSS test.
 - Working on the compliance letter with ITS3 group and preparing the test setup for babyMOSS.
 - Joining the test beam of babyMOSS at CERN PS. Analysis of April data in progress.
 - Participated in the ITS3 in person meeting in Chamonix for ER2 testing plan, Expressed the desire of UOB for more in depth cooperation in ER2 stage.

Sensor testing @ Liverpool

ER1

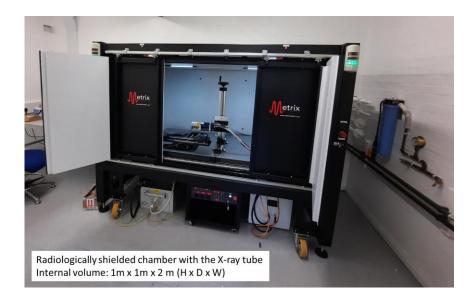
- Test system based on MLR1 DAQ and raiser board in operation since July 2024
 - babyMOSS tests focusing on fake-hit rate as a function of strobe clock length
- babyMOSS impedance and power ramp test system full functional since March 2025
 - Approximately 40 newly assembled babyMOSS prototypes (from BNL and Bonn) to be tested in the coming months
- Hands-on babyMOSS session for Long (Birmingham) and Lochana (Brunel)


ER2

- Testing plans for ER2 MOSAIX agreed with ITS3 project leaders; details under discussion
 - babyMOSAIX wire-bonding (TBC)
 - babyMOSAIX powering and functional tests
 - X-ray irradiation campaign in collaboration with Daresbury
 - ER2 software development
 - Test beams at CERN
- Procurement of ER2 test system underway

Team Expansion

- Hiring of a postdoc (application deadline: June 24th)
- PhD student based at CERN from October for one year (expected 0.5 FTE ALICE service work on ITS3, TBC)
- Sensor characterisation projects for MPhys/BSc students submitted for September start



Sensor Testing @ DL

- ER1:
 - babyMOSS test system at DL since Nov 2024
 - Measured the fake-hit rate vs strobe length for different chip biases
 - Training session for L.Ranatunge (Brunel)
- ER2:
 - Requested a MOSAIX test system
 - Two DAQ boards, one for readout, one for chip emulation
 - Can turn into two separate test systems once MOSAIX chips arrive
 - Testing plans under discussion:
 - babyMOSAIX powering, impedance and functional
 - TID irradiation at DL with a Tungsten X-ray tube delivering X-rays up to 60 keV of energy, with Liverpool

ER1 RAL DUT — X-ray irrads

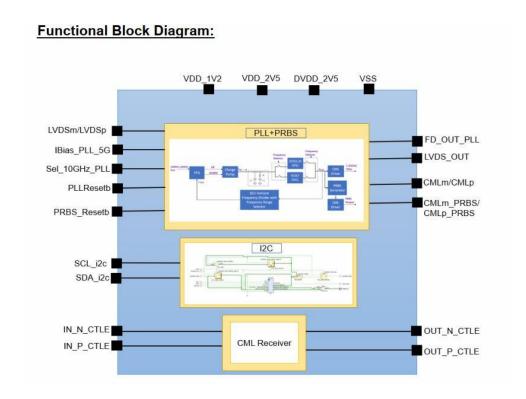
Overview of DUT

DUT designed by RAL CMOS group as part of ER1

The DUT contains 3 blocks:

- Dual-Mode Phase Locked Loop (PLL)
- 12C
- Continuous Time Linear Equaliser (CTLE) (Tested HERE)

For CTLE, we measured:


- Supply currents Vs TID;
- Eye amplitude Vs TID;

Irradiations went beyond the EPIC SVT TID requirements (~100's krad);

Irradiations explored the robustness of the 65nm process beyond the EPIC SVT requirements.

Improve and develop in-house irradiation capabilities

Previously reported on irradiations of DUT2, Now updating collaboration with DUT5 results

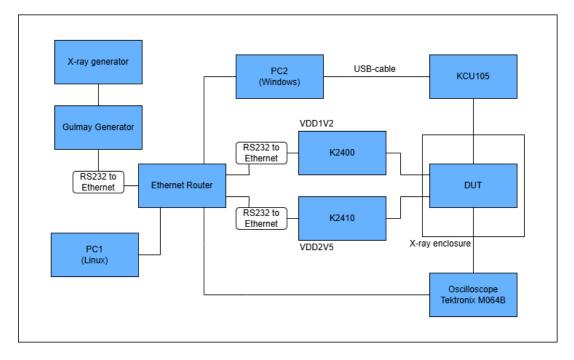
X-ray irradiations setup

CTLE input: 4GBits/s 2GHz signal via KCU105 and SMA cables.

CLTE output: measured with oscilloscope.

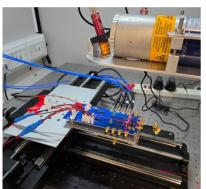
DUT (inc. CTLE): supply current and voltage monitored.

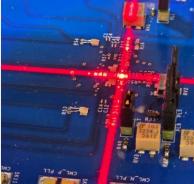
Automated irradiation:

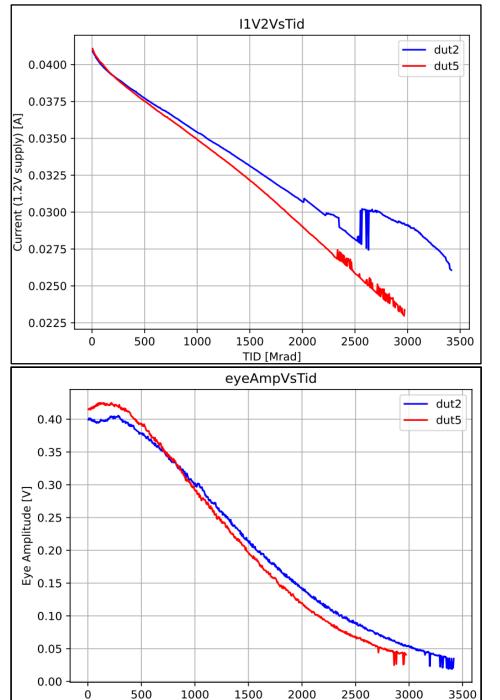

Dose Rate = 104 krad/min;

Irradiation step lasts 48.6 minutes;

(i.e. TID ~5.0544 Mrad)

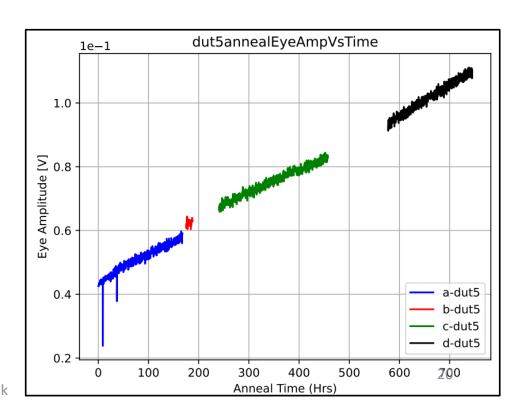

Irradiation performed until the eye amplitude of the CTLE output reaches 1/10 of initial amplitude





TID [Mrad]

DUT5 – key results

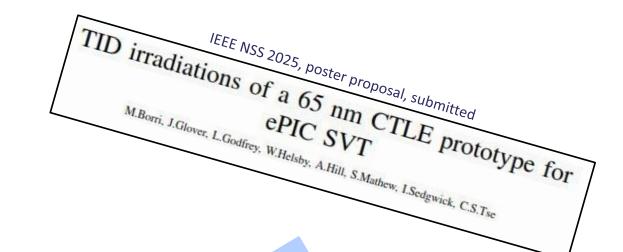

Irradiation period 02/05/2025 - 23/05/2025 (i.e. ~21 days)

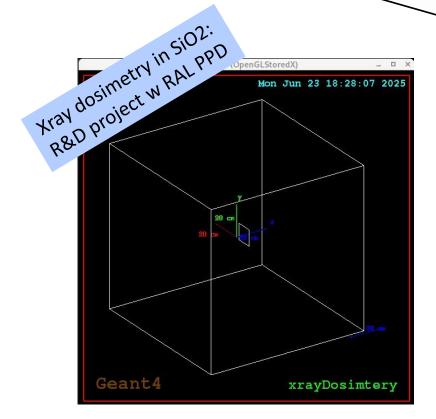
CLTE eye amplitude of DUT5 reached ~1/10 at ~2.972 Grad.

Results compared to DUT2, macroscopic trends comparable.

Part to part variation observed.

DUT5 annealing monitored after irradiation (ongoing)




Liam.Godfrey@stfc.ac.uk

ER1 RAL DUT - Conclusion

- Completed irradiation of DUT5;
- Ambition to irradiate one more DUT in time for IEEE NSS in Nov. 2025;
- Developing skills on TID irradiations synergetic to MPW2-SLDO and MOSAIX;
- In parallel, started to work on a dosimetry project to improve dose estimate to SiO2. [w RAL PPD]
- All this work is free-of-charge to the project
 - L.Godfrey, apprentice

Overall conclusion

 MPW2 SLDO will be received in Sept and electrical tests will follow.

• Involvement in MOSAIX testing via ITS3 work is being arranged.

X-ray irradiations at DL are being carried on ER1 RAL DUTs.

