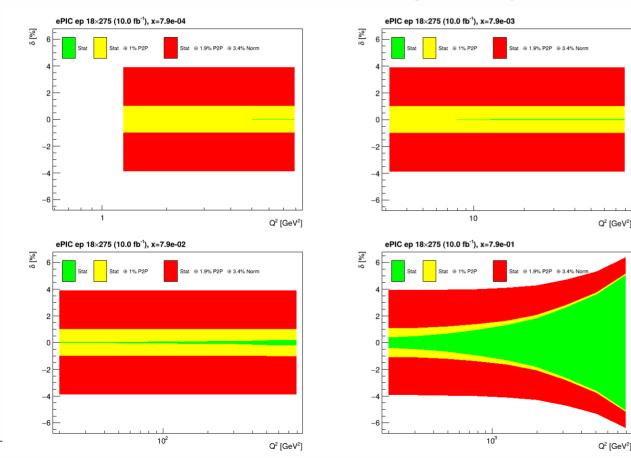

Update on systematics studies for inclusive cross section measurement

S. Maple

Overview

- Systematic errors are expected to be dominant errors in inclusive NC cross section measurements for much of the EIC phase space
- It's difficult to determine systematic uncertainties for a detector/accelerator that does not yet exist
 - Some guesswork is required based on experience of previous experiments (mostly HERA) and <u>dedicated simulation studies</u>

Possible systematic uncertainties


- There are many possible sources of systematic uncertainties → just look at H1/ZEUS papers
- Some notable ones are:
 - Electron/Hadronic Energy scale
 - Angular measurement
 - Track-cluster matching efficiency
 - Electron-finding efficiency
 - Background modelling
 - QED Radiative Corrections
- ...and of course, the luminosity measurement

https://arxiv.org/abs/1312.4821

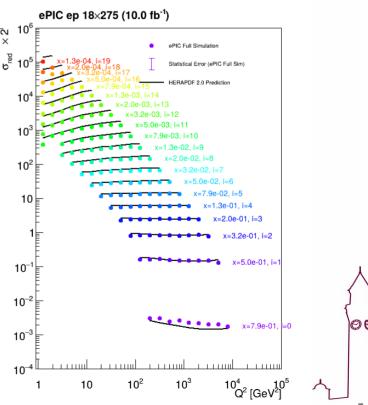
Source	Region	Uncertainty
Electron energy scale	$z_{\rm imp} \le -150{\rm cm}$	0.5% unc. \oplus 0.3% corr.
	$-150 < z_{\rm imp} \le -60 \rm cm$	0.3% unc. \oplus 0.3% corr.
	$-60 < z_{\rm imp} \le +20 {\rm cm}$	0.5% unc. \oplus 0.3% corr.
	$+20 < z_{\rm imp} \le +110 {\rm cm}$	0.5% unc. \oplus 0.3% corr.
	$z_{\rm imp} > +110{\rm cm}$	1.0% unc. \oplus 0.3% corr.
Electron scale linearity	$E_e^{\prime} < 11 \mathrm{GeV}$	0.5%
Hadronic energy scale	LAr & Tracks	1.0% unc. \oplus 0.3% corr.
	SpaCal	5.0% unc. $\oplus 0.3\%$ corr.
Polar angle	θ_e	1 mrad corr.
Noise	y < 0.19	5% energy not in jets, corr.
	y > 0.19	20% corr.
Trigger efficiency	high y	0.3 - 2%
	nominal	0.3%
Electron track and vertex efficiency	high y	1%
	nominal	0.2 - 1%
Electron charge ID efficiency	high y	0.5%
Electron ID efficiency	high y $z_{\rm imp} < 20 \ (> 20)$ cm	0.5% (1%)
	nominal $z_{\rm imp} < 20~(>20)~{\rm cm}$	0.2% (1%)
Extra background suppression	$E'_{e} < 10 \text{GeV}$	$D_{ele} > 0.80 \pm 0.04$ corr.
High y background subtraction	high y	1.03 ± 0.08 corr.
QED radiative corrections	$x < 0.1, 0.1 \le x < 0.3, x \ge 0.3$	0.3%, 1.0%, 2.0%
	high y: $y < 0.8 (y > 0.8)$	1% (1.5%)
Acceptance corrections	high y	0.5%
	nominal	0.2%
Luminosity		4% corr.

Studying systematic uncertainties

 To date we've estimated systematic uncertainties based on what was achieved at HERA, and how much we believe this might be improved at the EIC

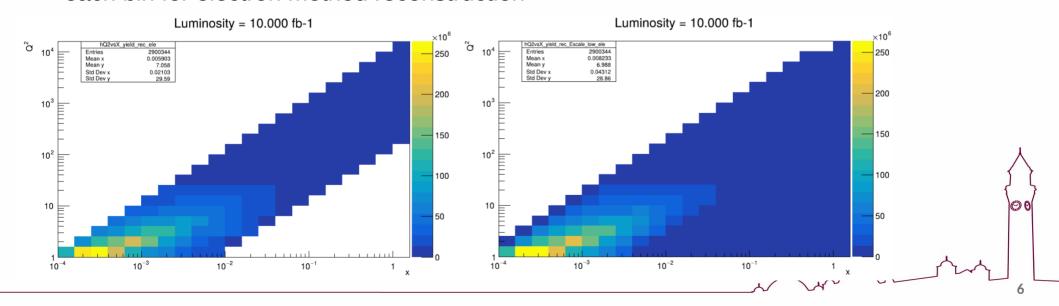
Red: HERA inspired + stat Yellow: Optimistic EIC + stat

Green: Statistical only



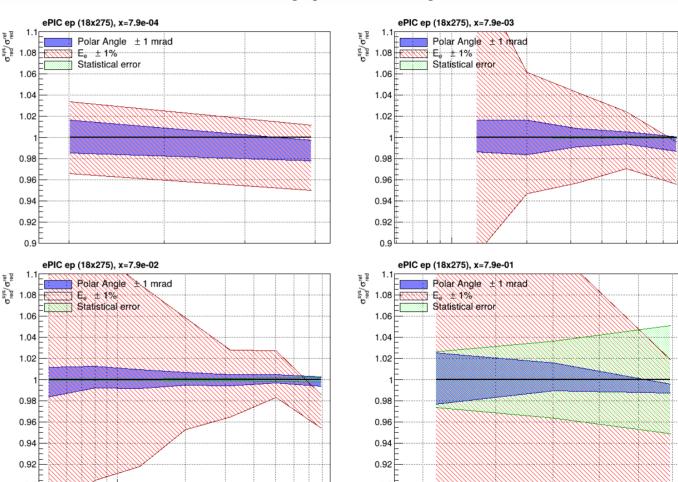
Studying systematic uncertainties

 In reality, systematic uncertainties are typically informed by estimating the level of fluctuation in a quantity (e.g. electron energy scale) and repeating the same analysis with this fluctuation


My approach

- I'm going to go through an example using my NC cross section code
 - The starting point is yields in different x-Q2 bins (electron method only for now)
 - Correct for acceptance → apply bin centre correction → cross section in bin

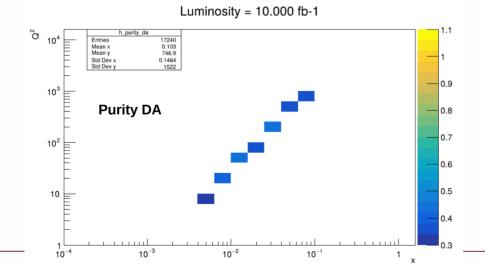
My approach

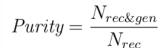

- I've chosen two systematics to look at initially:
 - Electron energy scale: 1% (HERA did better in the end)
 - Electron polar angle: 1mrad (HERA did about this well)
- I separately applied these errors to the scattered electron and extracted the new yields in each bin for electron method reconstruction

Results

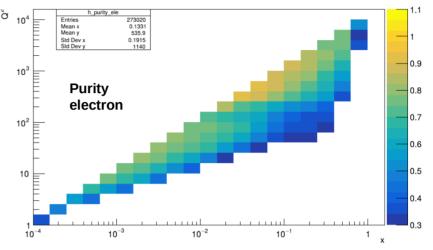
- After repeating the same analysis procedure (same acceptance and BCC), compare result to original analysis
- Note: at fixed x, lower Q² = lower y
- Systematics can be addressed in different ways
 - E scale uncertainty? DA method
 - Extend/merge bins in x/Q²

Very preliminary

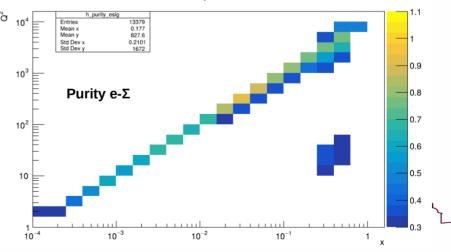



Q2 [GeV2]

Q2 [GeV2]


Current state of reconstruction

- Only looking at electron method currently
 - Methods using hadronic information aren't giving great results for me in 25.04.1 campaign
- Need to look into this further, and perform systematic studies for different recon methods



Luminosity = 10.000 fb-1

Summary

- Estimated impact of two (pessimistic) systematic uncertainties on NC σ_{red} measurement
- It's clear that in order to extract the best performance with "realistic" systematic uncertainties, consideration will need to be given to
 - Which reconstruction method is used and in which part of the x-Q² plane
 - How we choose to bin in x and Q2
- Can continue with such studies, once issue with mixed methods has been sorted (for me at least, others may not see this issue!)