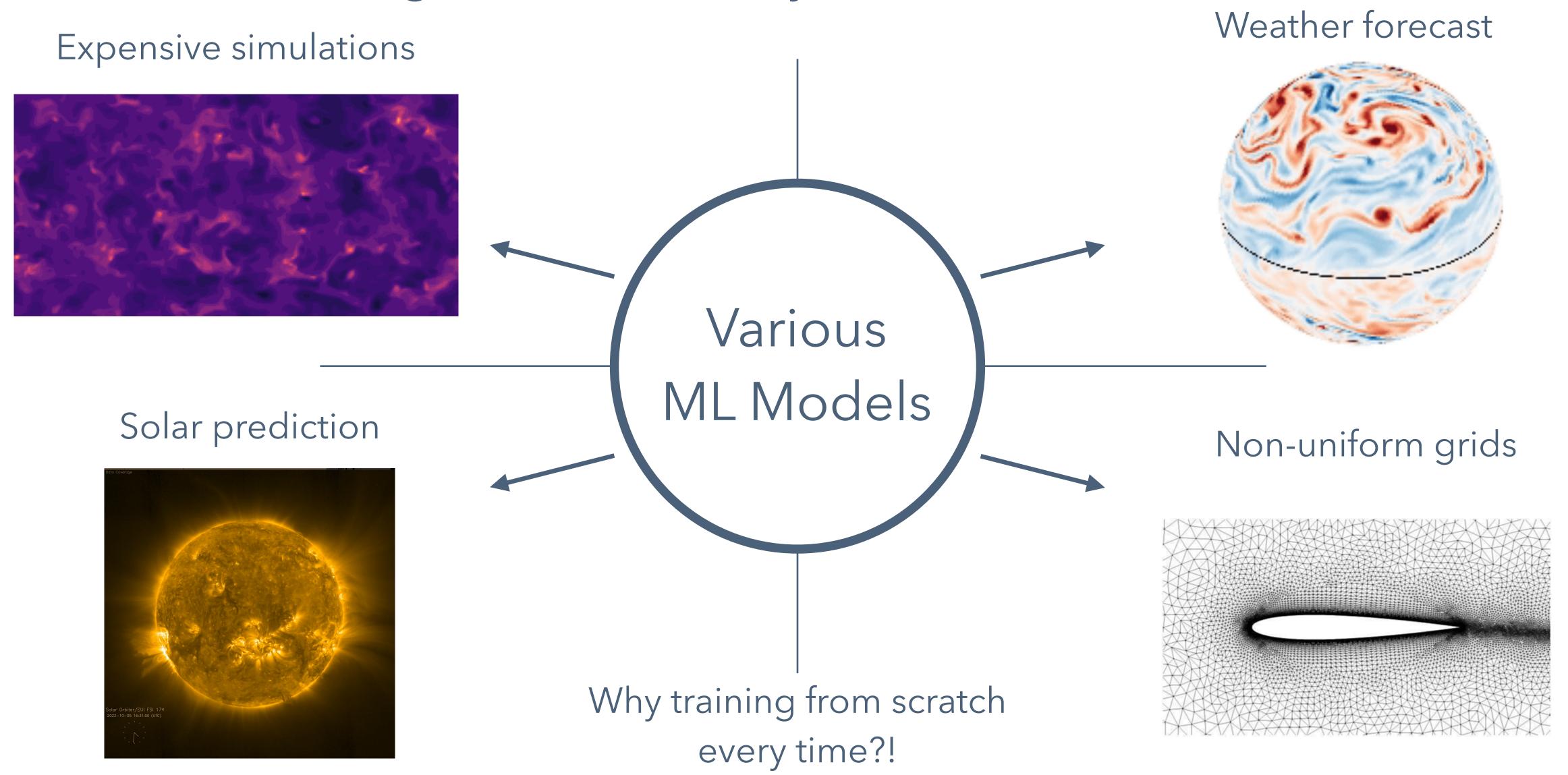
DISCO: learning to DISCover an evolution Operator for multi-physics-agnostic prediction

Jiequn Han

Machine Learning Models for Physics

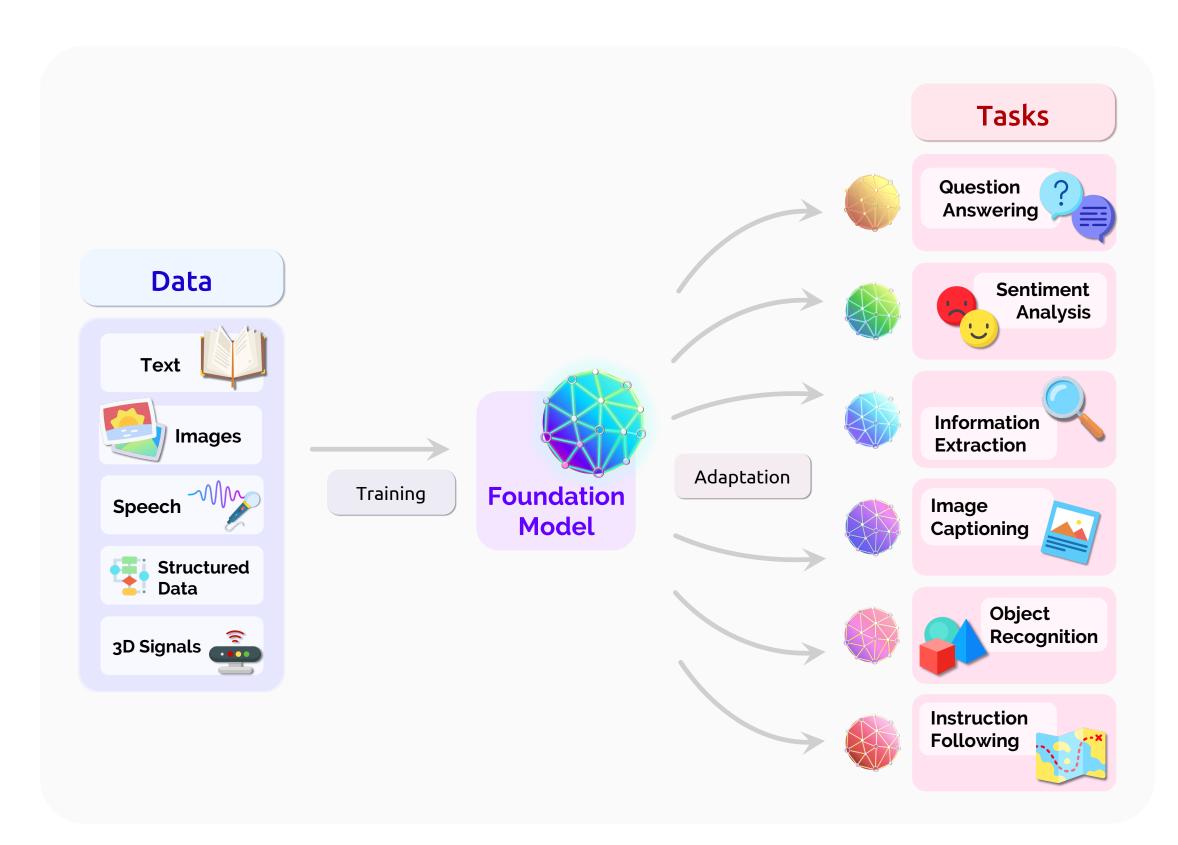


The Rise of the Foundation Model Paradigm

Foundation Model approach:

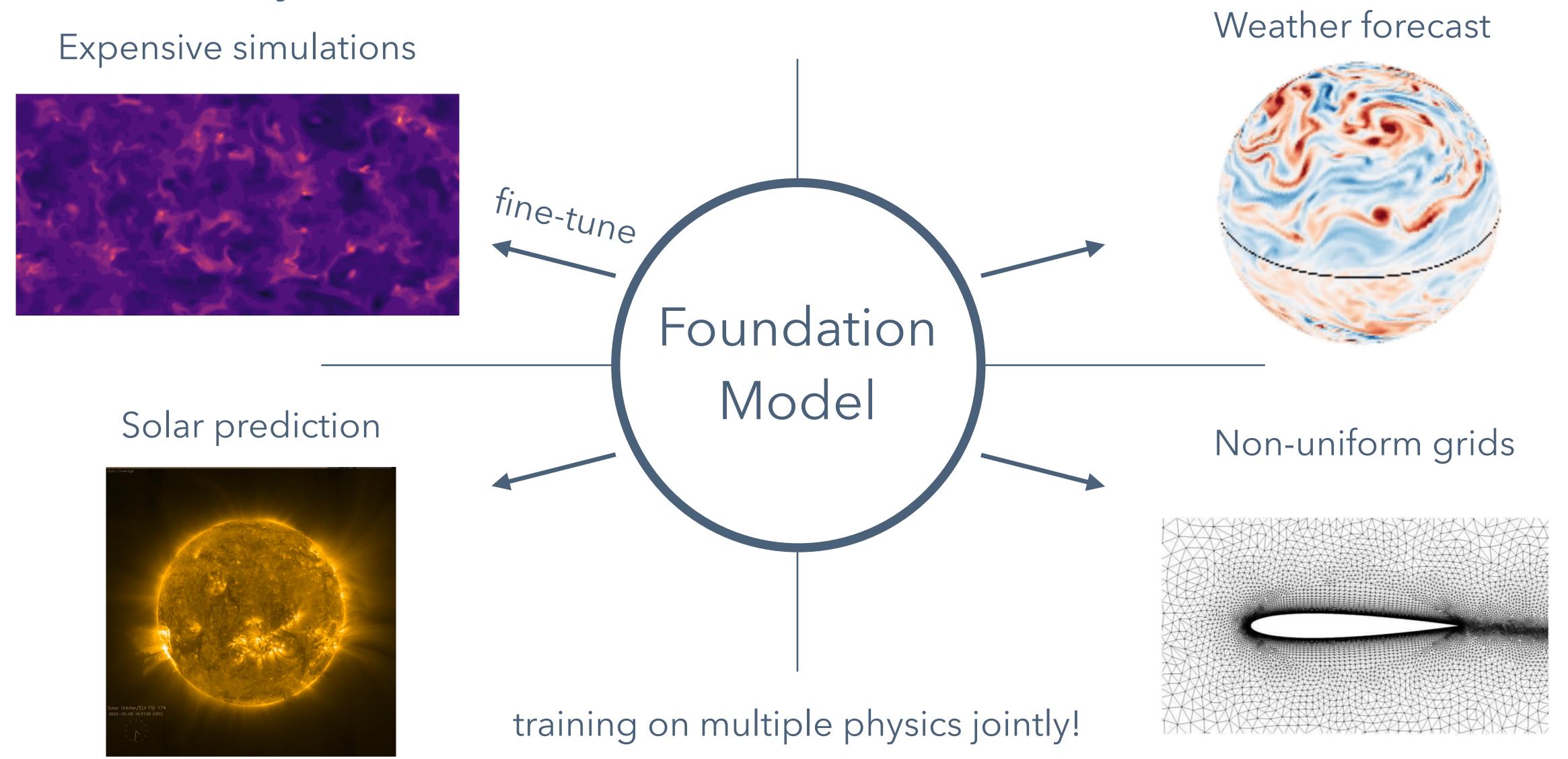
• Pretrain models on unlabeled massive datasets

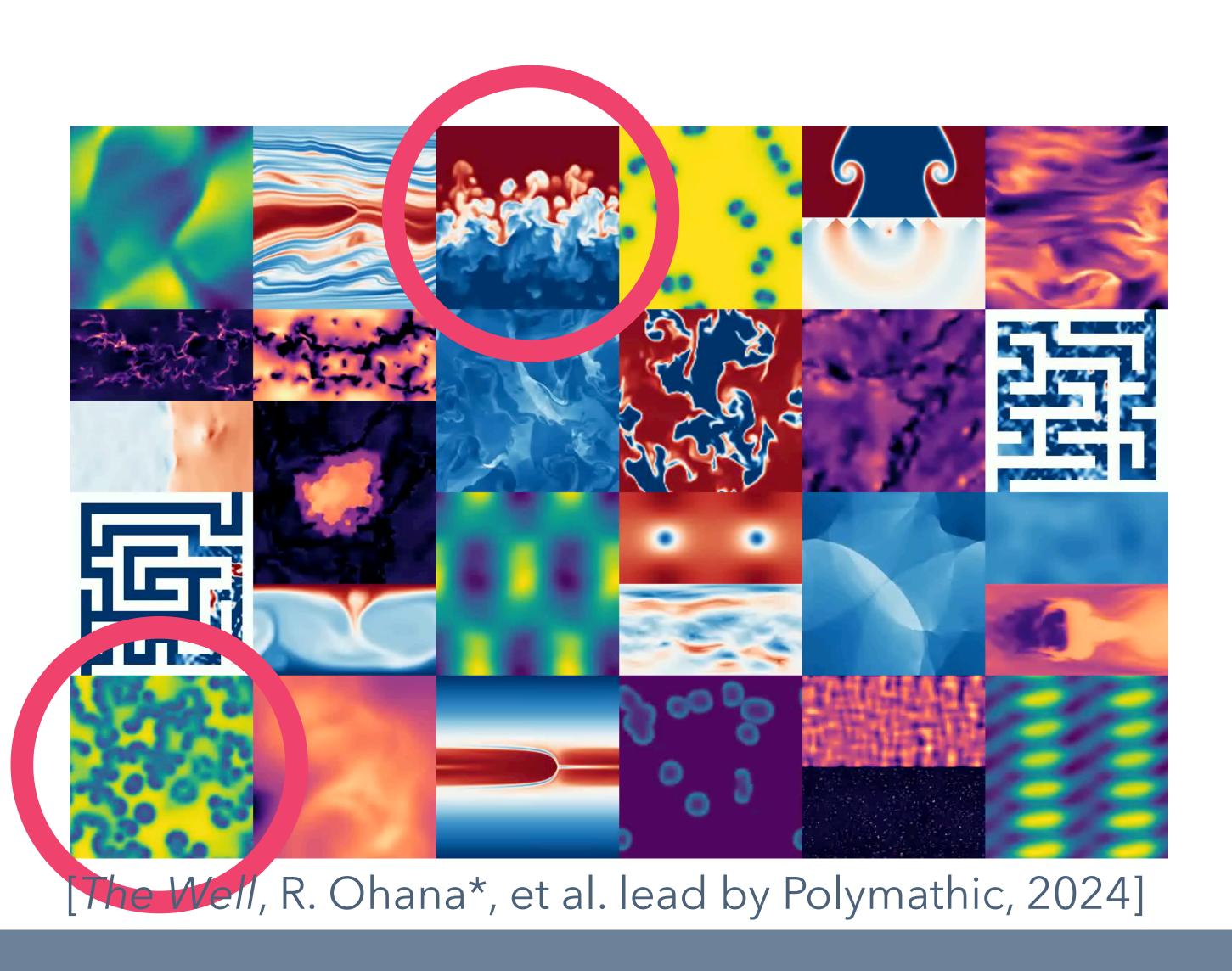
Adapt pretrained models to downstream tasks

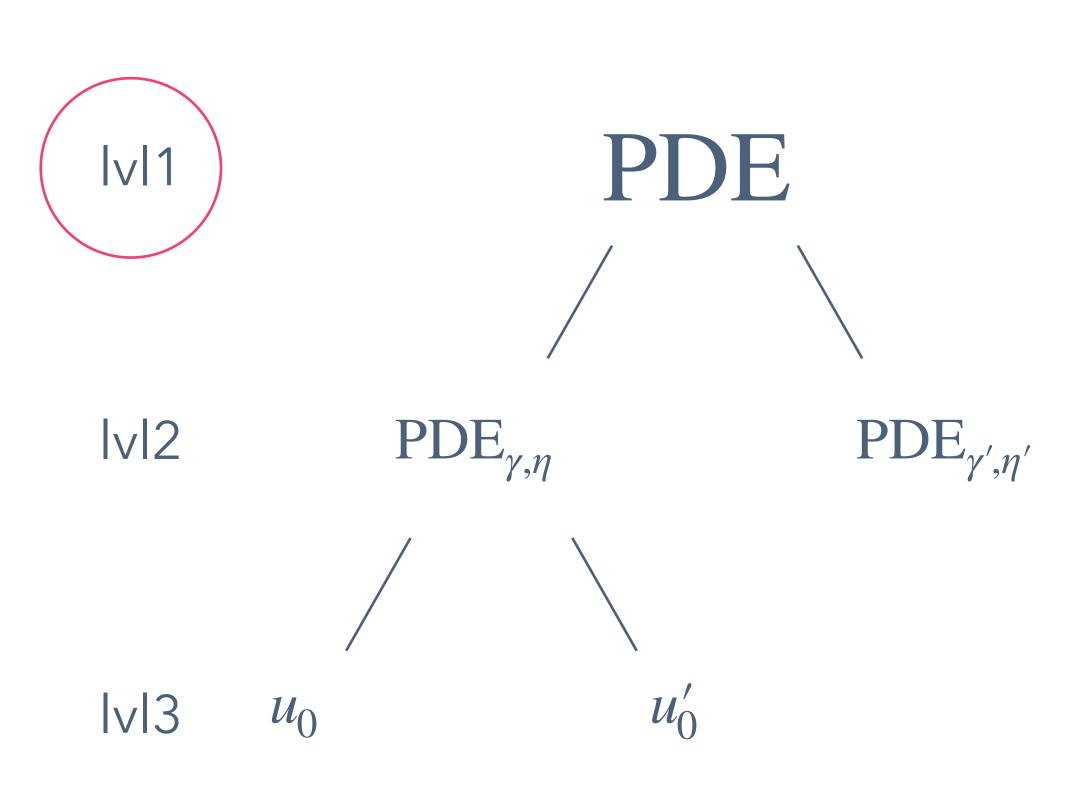


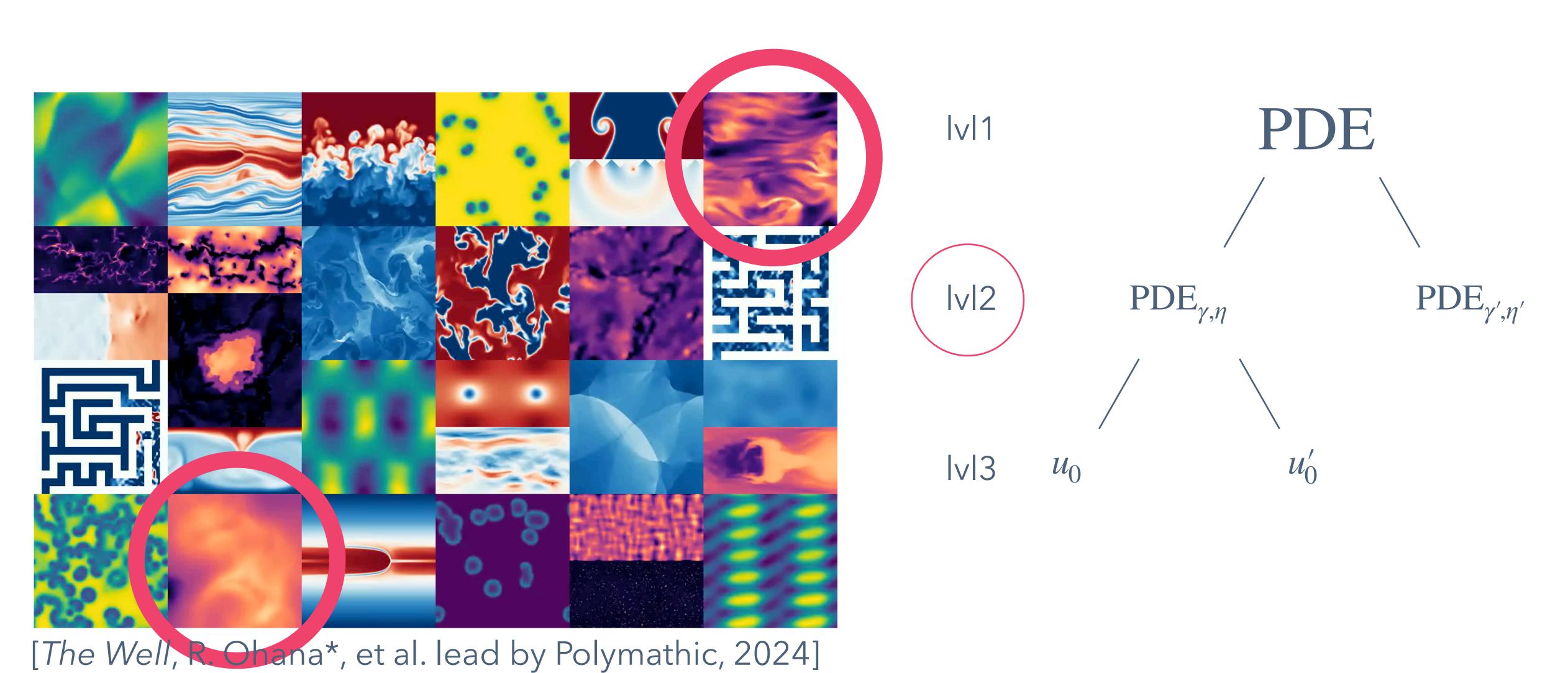
Bommasani et al. 2021

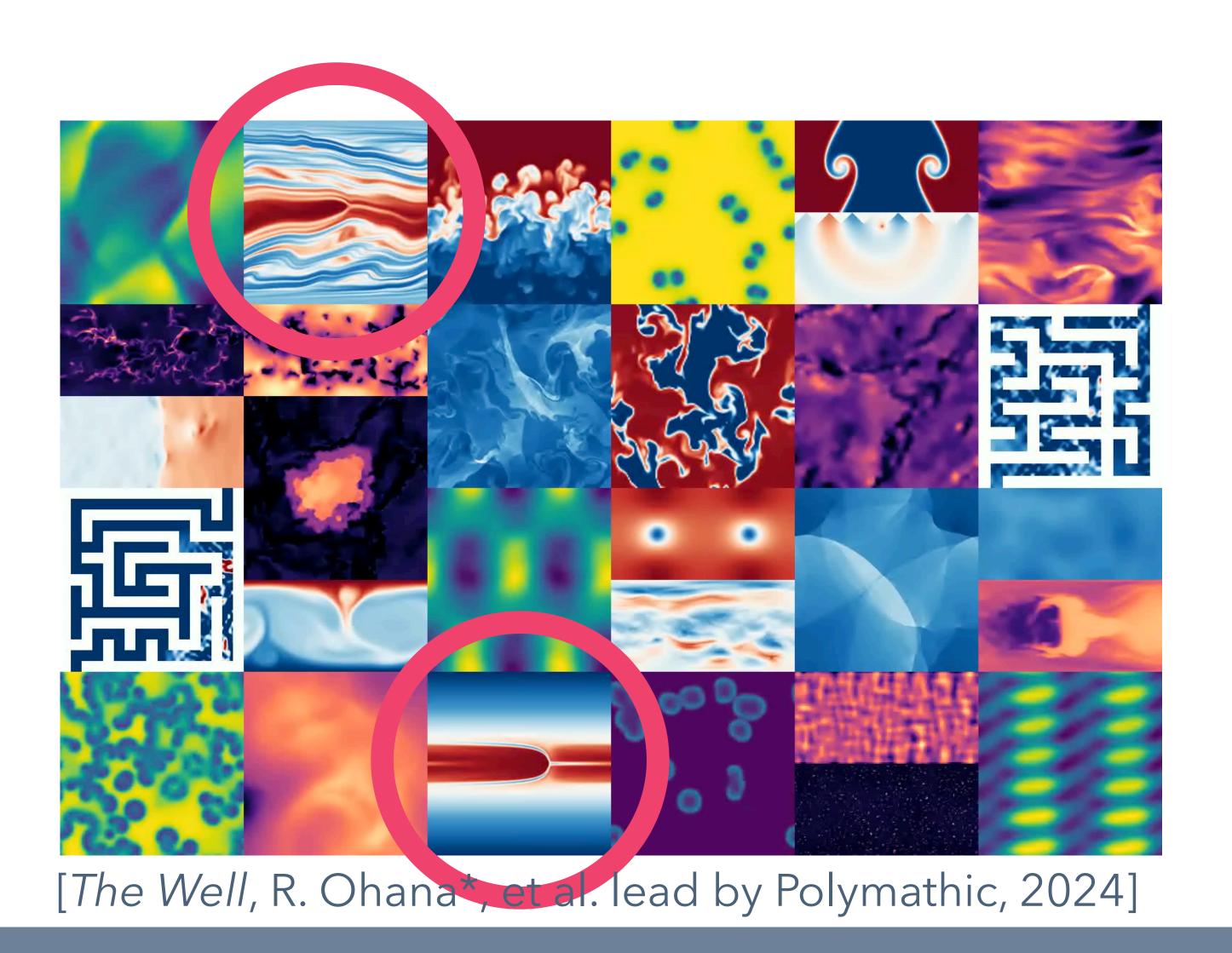
Towards Physical Foundation Models

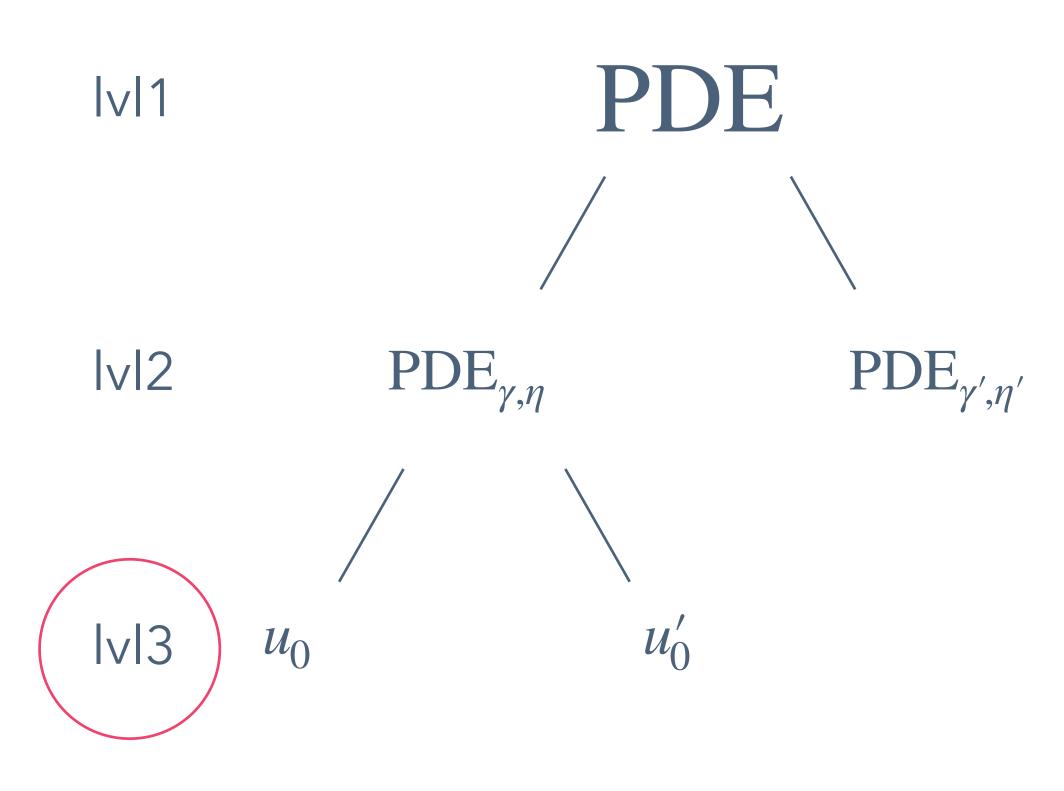


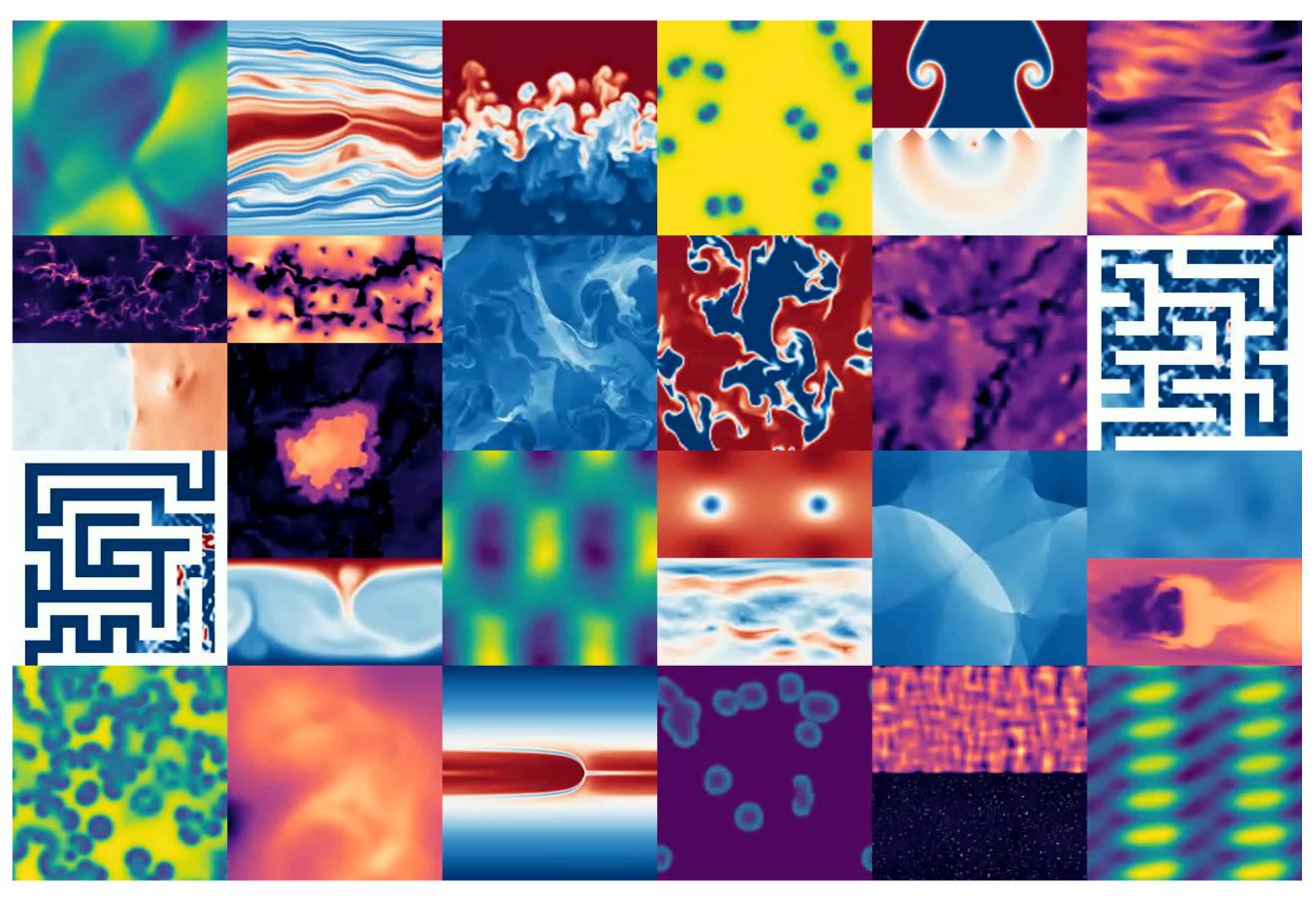




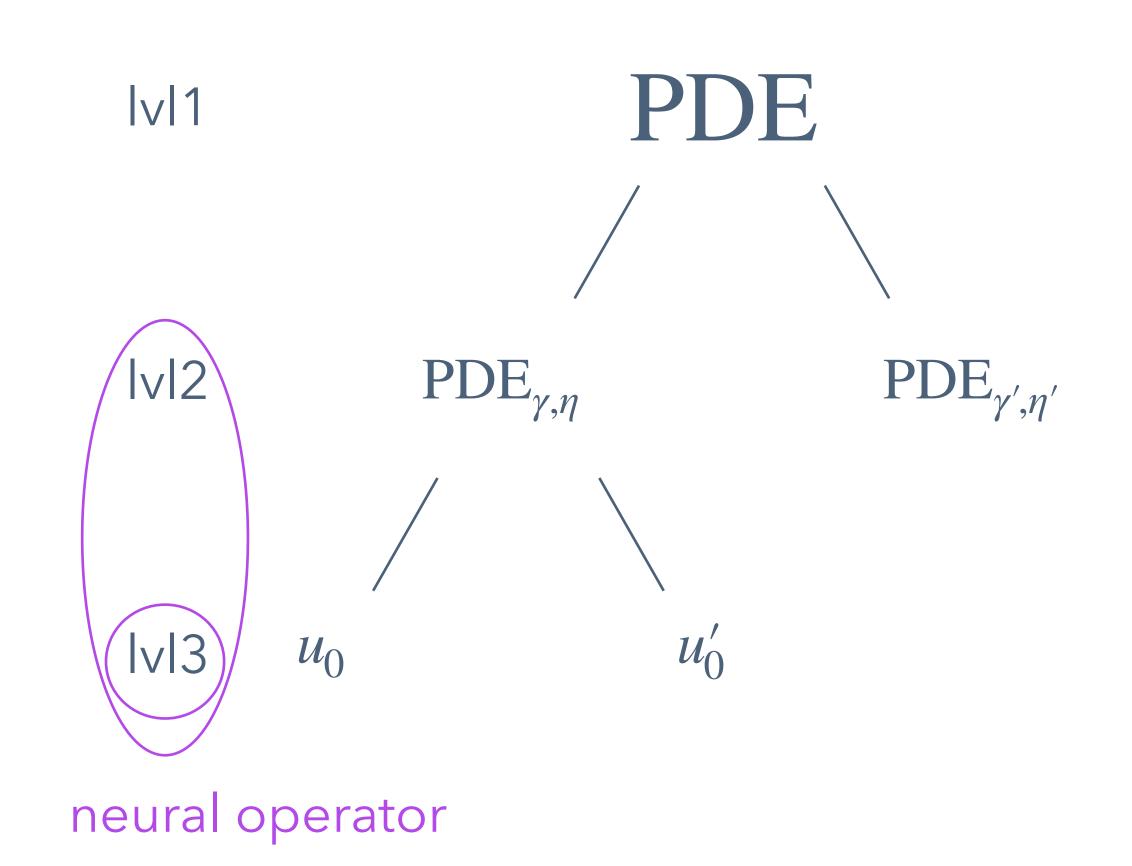


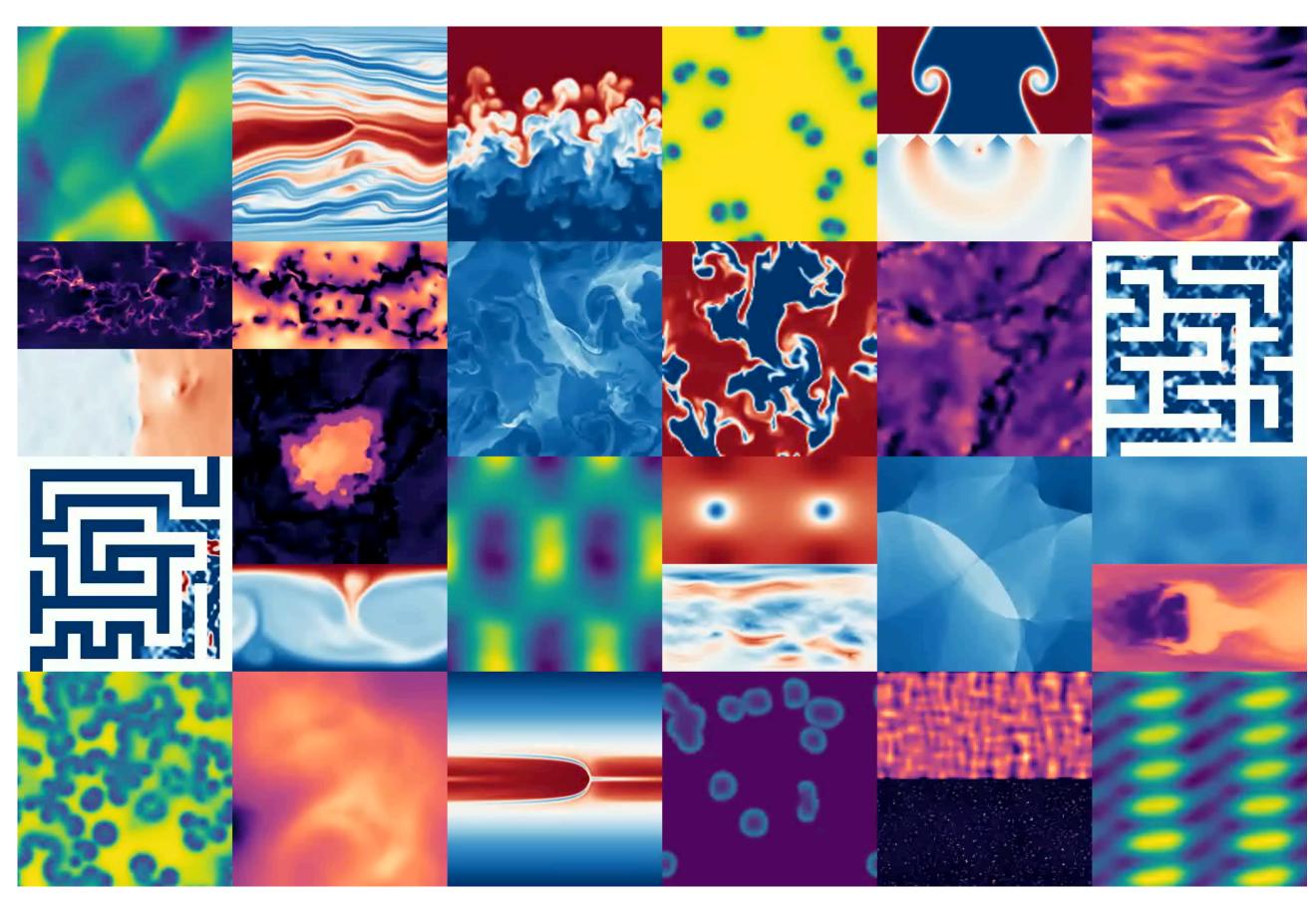




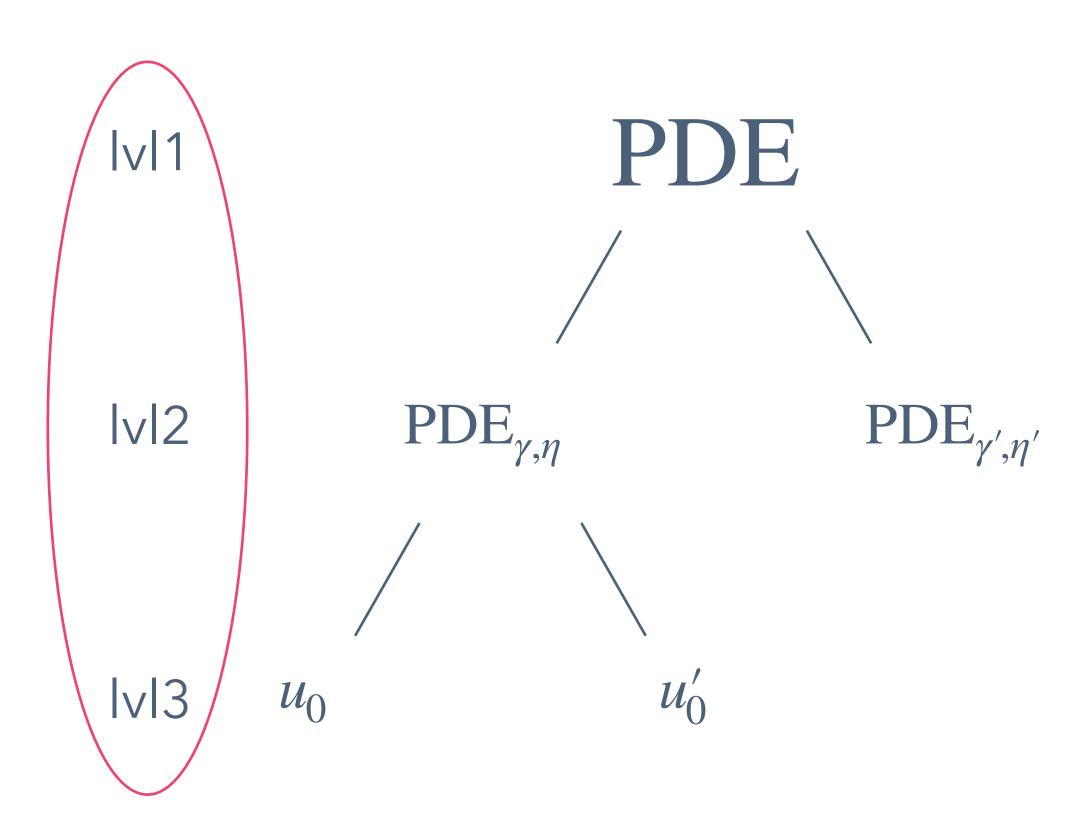


[The Well, R. Ohana*, et al. lead by Polymathic, 2024]





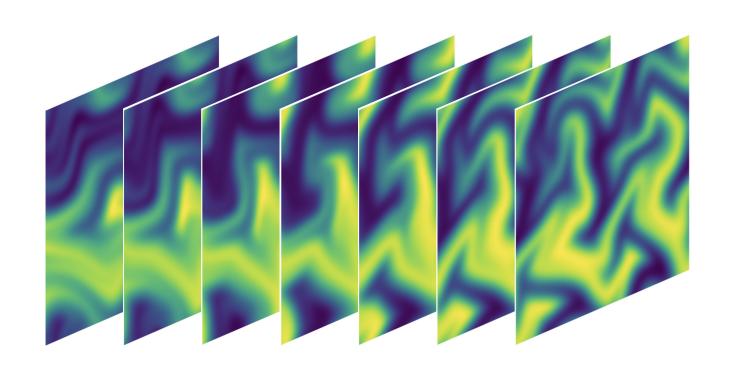
[The Well, R. Ohana*, et al. lead by Polymathic, 2024]

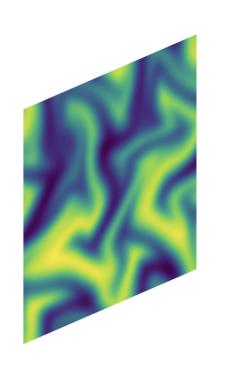


multi-physics-agnostic prediction

Multi-physics-agnostic prediction

Task: From a context of T states $(u_{t-T+1}, ..., u_t)$ predict the next state u_{t+1}





Task introduced in [Multiple Physics Pretraining, McCabe et al., Polymathic, 2024]

Transformer Neural Network

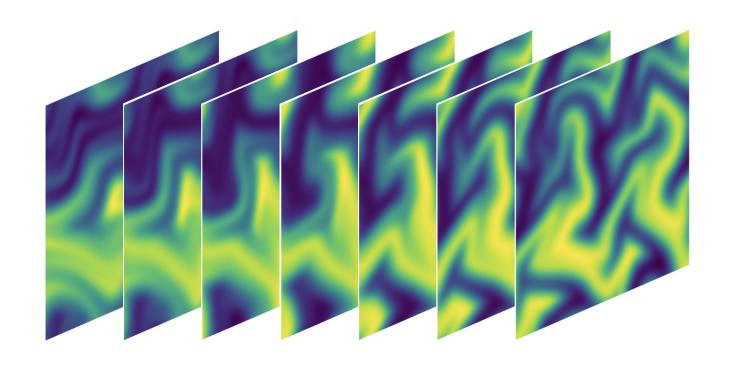
Binge drinking ... is | and | had | in | was
Binge drinking may ... be | also | have | not | increase
Binge drinking may not ... be | have | cause | always | help
Binge drinking may not necessarily ... be | lead | cause | results | have
Binge drinking may not necessarily kill ... you | the | a | people | your
Binge drinking may not necessarily kill or ... even | injure | kill | cause | prevent
Binge drinking may not necessarily kill or even ... kill | prevent | cause | reduce | injure
Binge drinking may not necessarily kill or even damage ... your | the | a | you | someone
Binge drinking may not necessarily kill or even damage brain ... cells | functions | tissue | neurons
Binge drinking may not necessarily kill or even damage brain cells, ... some | it | the | is | long

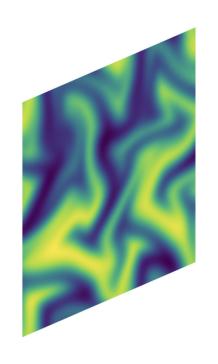
surprisal

just like next token prediction

Difference between Language and Physics

Task: From a context of T states $(u_{t-T+1}, ..., u_t)$ predict the next state u_{t+1}





inherently continuous in time

Binge drinking ... is | and | had | in | was
Binge drinking may ... be | also | have | not | increase
Binge drinking may not ... be | have | cause | always | help
Binge drinking may not necessarily ... be | lead | cause | results | have
Binge drinking may not necessarily kill ... you | the | a | people | your
Binge drinking may not necessarily kill or ... even | injure | kill | cause | prevent
Binge drinking may not necessarily kill or even ... kill | prevent | cause | reduce | injure
Binge drinking may not necessarily kill or even damage ... your | the | a | you | someone
Binge drinking may not necessarily kill or even damage brain ... cells | functions | tissue | neurons
Binge drinking may not necessarily kill or even damage brain cells, ... some | it | the | is | long

surprisal

inherently discrete in time

How to solve the continuous-time Physics?

Learn the evolution operator, i.e. the "update rule"

$$\partial_t u_t(x) = f(u_t(x), \nabla u_t(x), \nabla^2 u_t(x))$$

Numerical solver

time discretization

$$u_{t+\Delta t} \approx u_t + f(u_t, \nabla u_t, \nabla^2 u_t) \Delta t$$

Neural solver -> learn θ from data

space discretization

$$u_{t+\Delta t} \approx u_t + f_{\theta}(u_t) \Delta t \quad \left(e \cdot g \cdot u'(x) \approx \frac{u(x + \Delta x) - u(x - \Delta x)}{2\Delta x}\right)$$

[Neural ODE, Chen et al., 2018] [Bar-Sinai, Hoyer et al. 2019]

[Brandstetter, Worrall, Welling, 2022]

Task: From a context of T states $(u_{t-T+1}, ..., u_t)$ predict the next state u_{t+1}

 \longrightarrow How to obtain an operator f_{θ} for each context $(u_{t-T+1}, ..., u_t)$?

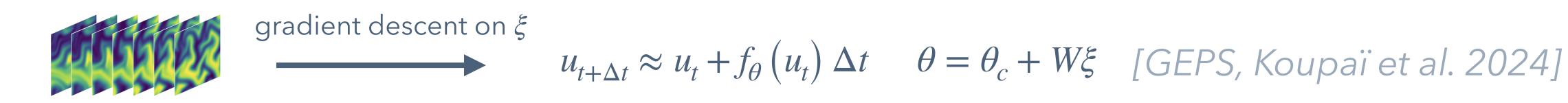
How to obtain an operator f_{θ} for each context $(u_{t-T+1}, ..., u_t)$?

1. Gradient adaptation. Learn an operator network f_{θ} every new context

Very costly

How to obtain an operator f_{θ} for each context $(u_{t-T+1}, ..., u_t)$?

1. Gradient adaptation. Learn an operator network $f_{ heta}$ every new context

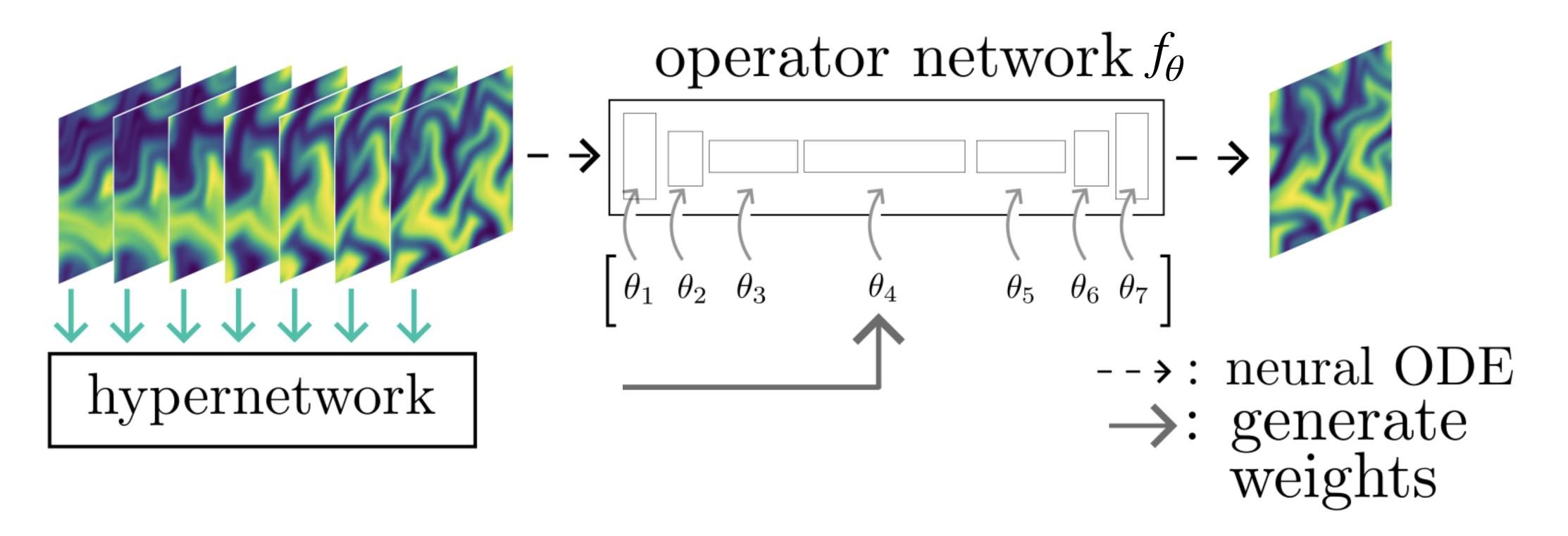


Very costly

2. DISCO: output the operator itself

Edouard Oyallon

DISCO: learning to DISCover an evolution Operator from data



DISCO (ICML, 2025):

- decouple parameter estimation from state evolution
- enforce an "information bottleneck" in the operator: intrinsic $\dim \theta = 384$

DataSets

PDEBench + The Well: 1D, 2D, 3D, different resolution/quantities/boundary conditions

|v|1 |v|2 |v|3

Table 1. The datasets from PDEBench (Takamoto et al., 2022) and The Well (Ohana et al., 2024) used in this paper.

DATASET NAME	PHYSICAL DIMENSION	# of FIELDS	RESOLUTION (TIME)	RESOLUTION (SPACE)	BOUNDARY CONDITIONS
Burgers	1D	1	200	1024	PERIODIC
SHALLOW WATER EQUATION	2D	1	100	128×128	OPEN
DIFFUSION-REACTION	2D	2	100	128×128	NEUMANN
INCOMP. NAVIER-STOKES (INS)	2D	3	1000	512×512	DIRICHLET
COMP. NAVIER-STOKES (CNS)	2D	4	21	512×512	PERIODIC
ACTIVE MATTER	2D	11	81	256×256	PERIODIC
EULER MULTI-QUADRANTS	2D	5	100	512×512	PERIODIC / OPEN
GRAY-SCOTT REACTION-DIFFUSION	2D	2	1001	128×128	PERIODIC
Rayleigh-Bénard	2D	4	200	512×128	PERIODIC × DIRICHLET
SHEAR FLOW	2D	4	200	256×512	PERIODIC
TURBULENCE GRAVITY COOLING	3D	6	50	$64 \times 64 \times 64$	OPEN
MHD	3D	7	100	$64 \times 64 \times 64$	PERIODIC
RAYLEIGH-TAYLOR INSTABILITY	3D	4	120	$64 \times 64 \times 64$	PERIODIC \times PERIODIC \times SLIP
SUPERNOVA EXPLOSION	3D	6	59	$64 \times 64 \times 64$	OPEN

State-of-the-art prediction on PDEBench

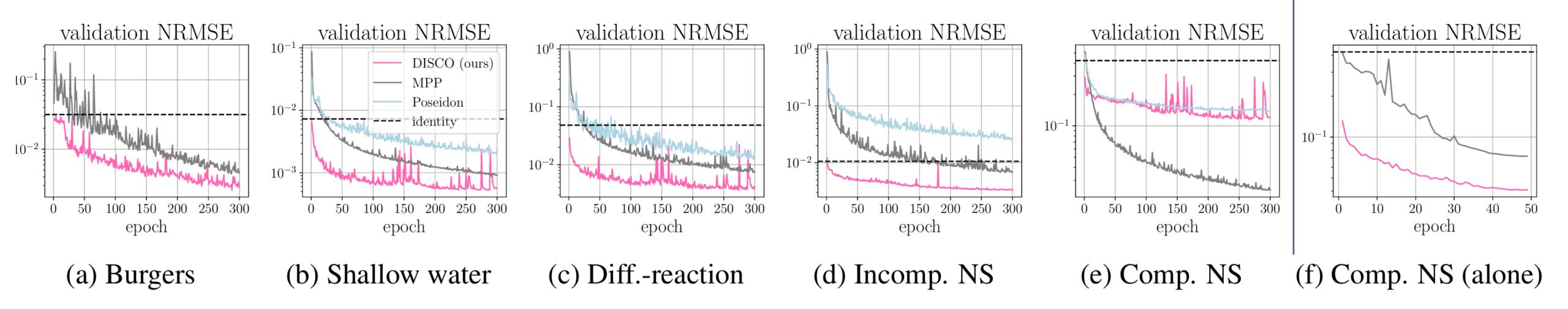
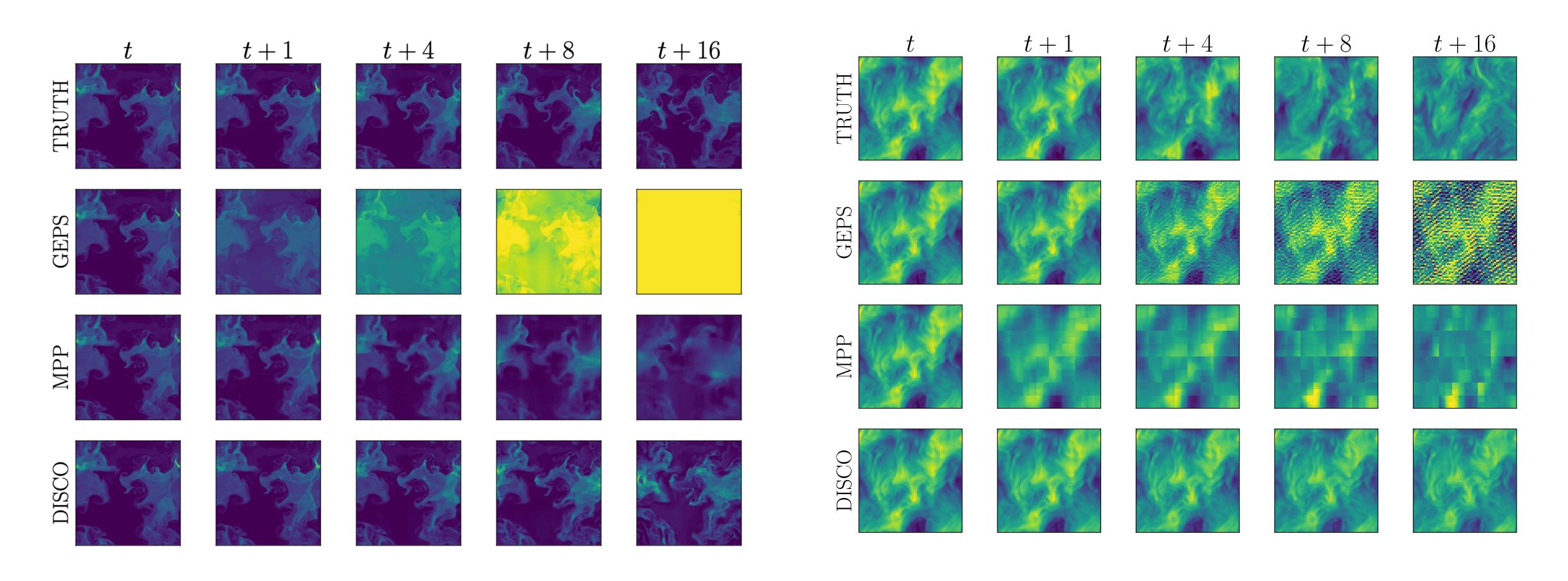


Table 5. Number of epochs to reach SOTA performance on PDEBench datasets.

Model	# parameters	Burgers	SWE	DiffRe2D	INS	CNS	CNS (alone)
MPP (retrained)	160m	500	500	500	500	500	50
DISCO (ours)	119m	277	70	55	35	-	7

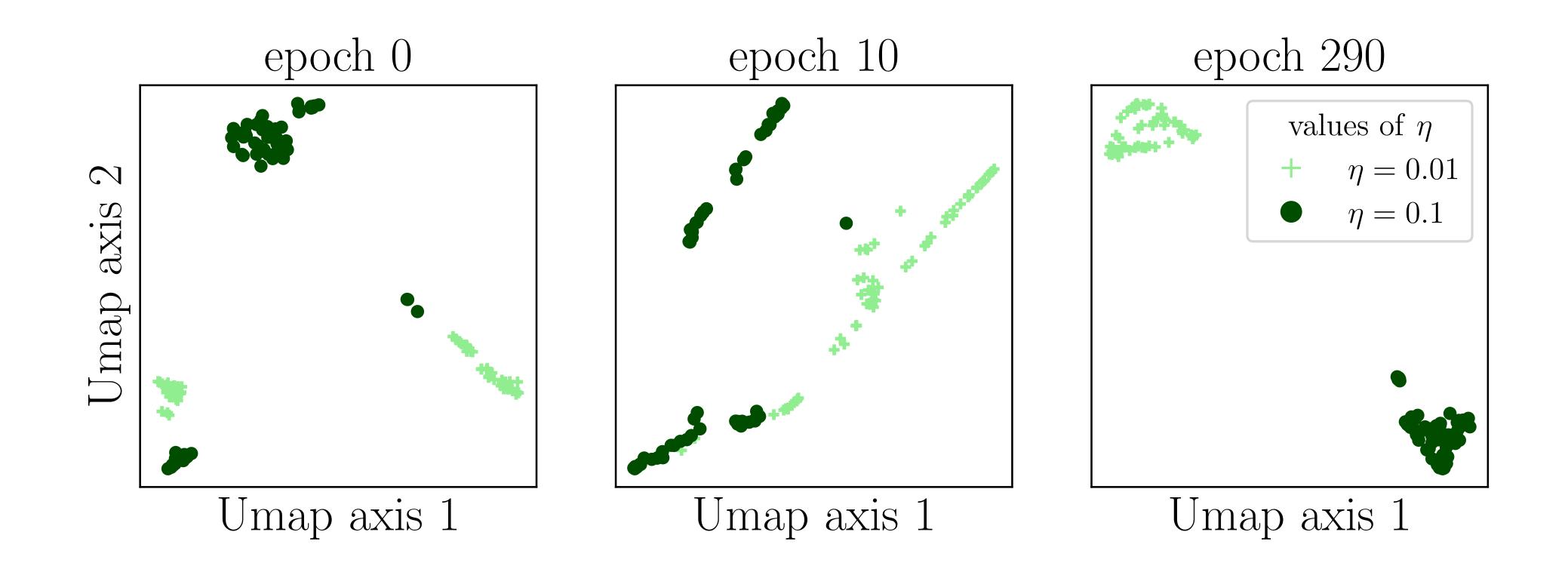
requires far fewer epochs on most datasets

Rollout trajectories on the Well dataset



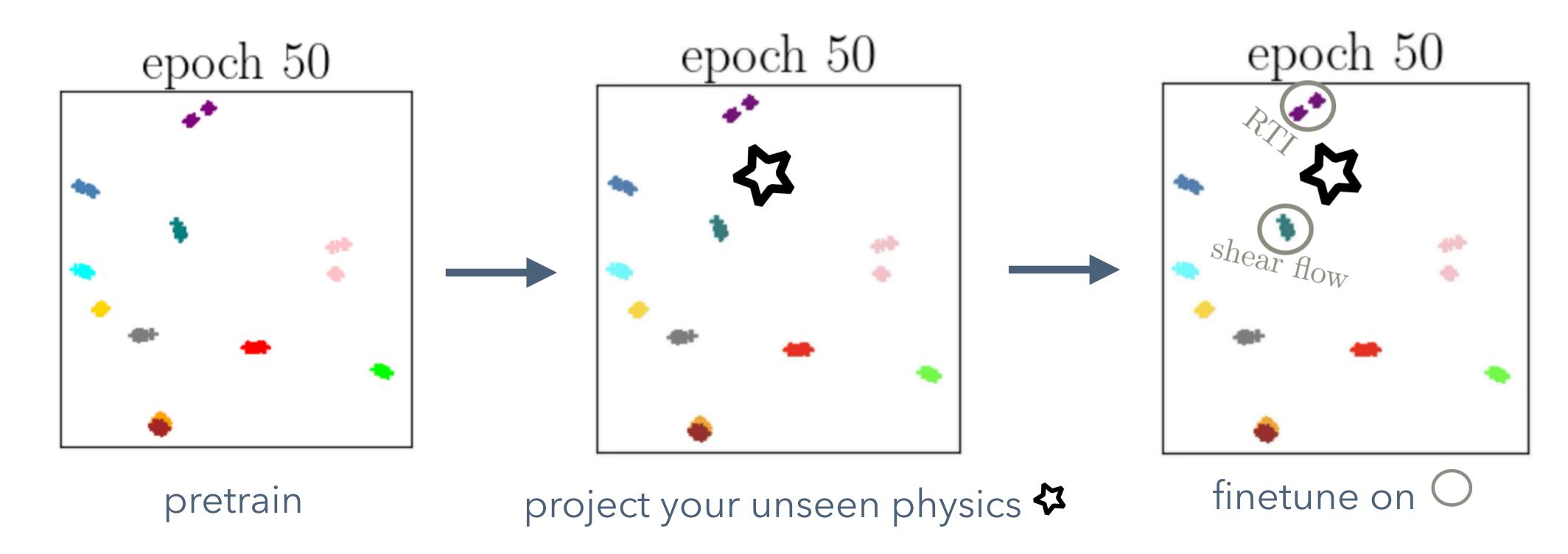
Euler 2d slices of 3d MHD

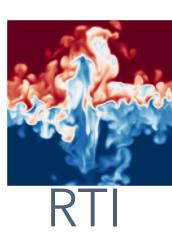
A shared latent space for Physics



Space of the evolution operators

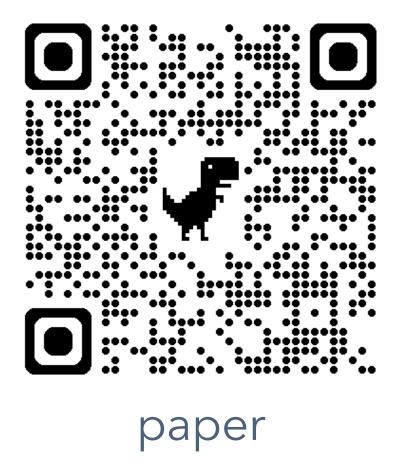
A shared latent space for Physics

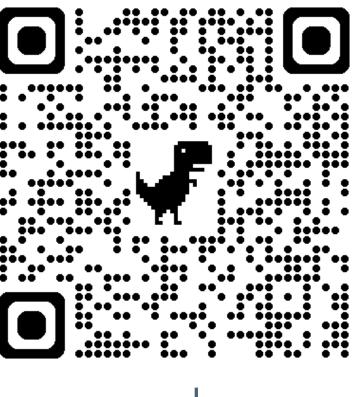




Takeaway

- 1. Multi-physics-agnostic prediction with multi-level variability is essential for generalization
- 2. Physical evolution is inherently continuous in time
- 3. DISCO exploits this inductive bias while harnessing the power of transformers
- 4. The latent space in DISCO offers interpretability





code