Spectral Functions from the Functional Renormalization Group

Jochen Wambach

ECT*, Trento, Italy

CPOD-2017

Stony Brook, August 7-11, 2017

in collaboration with: C. Jung, F.Rennecke, R.-A. Tripolt and L. von Smekal

Outline

- in-medium properties of parity partners
- ▶ the Functional Renormalization Group
- consistent spectral functions
- vector mesons in the FRG

Functional Renormalization Group

partition function: (scalar field $\phi(x)$)

$$Z[j] = e^{W[j]} = \int [\mathcal{D}\phi] \ e^{-S[\phi] + \int d^4x \ \phi(x)j(x)}$$

effective action: (Legendre transform of W)

$$\Gamma[\varphi] = -W[j] + \int \!\! d^4x \; \varphi(x) j(x); \quad \varphi(x) \equiv \langle \phi(x) \rangle$$

stationarity condition and thermodynamic potential:

$$\frac{\delta\Gamma[\varphi]}{\delta\varphi}\Big|_{\varphi=\varphi_0} = 0; \quad \to \quad \Omega(T;\mu_i) = \frac{T}{V}\Gamma[\varphi_0]$$

Wilsonian coarse graining:

$$\phi(x) = \phi_{q \le k}(x) + \phi_{q > k}(x)$$

$$\rightarrow \quad Z[j] = \int [\mathcal{D}\phi_{q \le k}] \underbrace{\int [\mathcal{D}\phi_{q > k}] e^{-S[\phi] + \int d^4 x \ \phi j}}_{=Z_k[j]}; \quad \lim_{k \to 0} Z_k[j] = Z[j]$$

Functional Renormalization Group

flow equation for Γ_k including bosons and fermions:

$$\partial_k \Gamma_k[\varphi, \psi] = \operatorname{Tr} \int_q \left(\frac{1}{2} G_{\varphi, k}(q) R_{\varphi, k}(q) - G_{\psi, k}(q) R_{\psi, k}(q) \right)$$

$$G_{\varphi,k}(q) = \left[\Gamma_k^{(2)}[\varphi] + R_{\varphi,k}(q)\right]^{-1}$$
$$G_{\psi,k}(q) = \left[\Gamma_k^{(2)}[\psi] + R_{\psi,k}(q)\right]^{-1}$$

$$\Gamma_k^{(2)}[\varphi] = \frac{\delta^2 \Gamma_k[\varphi, \psi]}{\delta \varphi^2}; \quad \Gamma_k^{(2)}[\psi] = \frac{\delta^2 \Gamma_k[\varphi, \psi]}{\delta \psi \delta \bar{\psi}}$$

Quark-meson model

- effective low-energy model for QCD $(N_f = 2)$
- \blacktriangleright pion and sigma fields $\phi = \sigma + i ec au ec \pi$ and quarks ar q, q
- describes spontaneous and explicit chiral symmetry breaking

Scale-dependent effective action: (gradient expansion)

$$\begin{split} \Gamma_k[q,\bar{q},\phi] &= \int_x \left\{ \bar{q} Z_{q,k} \left(\partial \!\!\!/ - \mu \gamma_0 \right) q + h_{q,k} \bar{q} \left(\sigma + i \vec{\tau} \vec{\pi} \gamma_5 \right) q \right. \\ &+ \left. \frac{1}{2} Z_{\phi,k} (\partial_\mu \phi)^2 + \frac{1}{8} Y_{\phi,k} \left(\partial_\mu \phi^2 \right)^2 + U_k(\phi^2) - c \sigma + \cdots \right\} \\ &\int_x \equiv \int_0^{1/T} dx_0 \int_V d^3 x \end{split}$$

'Local potential approximation': (only U_k flows)

$$U_{\Lambda}(\phi^2) = \vec{\pi}^2 + \sigma^2; \quad \langle \sigma \rangle = 0$$

Momentum flow of the effective action

Phase diagram of the Quark-Meson Model

- chiral order parameter σ₀
 decreases towards higher T and μ
- a crossover is observed at $T \approx 175$ MeV and $\mu = 0$
- ▶ critical endpoint (CEP) at $\mu \approx 292$ MeV and $T \approx 10$ MeV

• vacuum:
$$\sigma_0 = 93.5 \text{ MeV}$$
,
 $m_{\pi} = 138 \text{ MeV}$, $m_{\sigma} = 509 \text{ MeV}$,
 $m_q = 299 \text{ MeV}$

In-medium spectral functions from the FRG

How are in-medium modifications of hadrons related to the change of the vacuum structure of QCD? (deconfinement and chiral symmetry restoration ..)

- $\blacktriangleright\,$ need to calculate equilibrium properties and spectral function on the same footing $\rightarrow\,$ FRG
 - equilibrium FRG formulated and solved in Euclidean space-time
 - flow equations for Euclidan two-point functions:

$$\partial_k \Gamma_k^{(2)} = \frac{1}{2} \frac{\delta^2}{\delta \varphi^2} \operatorname{Tr}_q \left\{ G_{\varphi,k} R_{\varphi,k} \right\} - \frac{\delta^2}{\delta \psi \overline{\psi}} \operatorname{Tr}_q \left\{ G_{\psi,k} R_{\psi,k} \right\}$$
$$= \operatorname{Tr}_q \left\{ \partial_k R_{\varphi,k} \left(G_{\varphi,k} \Gamma_k^{(3)} G_{\varphi,k} \Gamma_k^{(3)} G_{\varphi,k} \right) \right\} - \frac{1}{2} \operatorname{Tr}_q \left\{ \partial_k R_{\varphi,k} \left(G_{\varphi,k} \Gamma_k^{(4)} G_{\varphi,k} \right) \right\} + \cdots$$

Flow equations for two-point functions

- ▶ mesonic vertices from scale-dependent effective potential, $U_k^{(3)}$, $U_k^{(4)}$
- ▶ quark-meson vertices are givn by $\Gamma^{(3)}_{\bar\psi\psi\sigma} = h, \quad \Gamma^{(3)}_{\bar\psi\psi\pi} = ih\gamma^5 ec{ au}$
- one-loop structure preserved
- thermodynamically consistent and symmetry preserving

In-medium spectral functions from the FRG

How are in-medium modifications of hadrons related to the change of the vacuum structure of QCD? (deconfinement and chiral symmetry restoration ..)

- $\blacktriangleright\,$ need to calculate equilibrium properties and spectral function on the same footing $\rightarrow\,$ FRG
 - equilibrium FRG formulated and solved in Euclidean space-time
 - flow equations for Euclidan two-point functions:

$$\partial_k \Gamma_k^{(2)} = \frac{1}{2} \frac{\delta^2}{\delta \varphi^2} \operatorname{Tr}_q \left\{ G_{\varphi,k} R_{\varphi,k} \right\} - \frac{\delta^2}{\delta \psi \overline{\psi}} \operatorname{Tr}_q \left\{ G_{\psi,k} R_{\psi,k} \right\}$$
$$= \operatorname{Tr}_q \left\{ \partial_k R_{\varphi,k} \left(G_{\varphi,k} \Gamma_k^{(3)} G_{\varphi,k} \Gamma_k^{(3)} G_{\varphi,k} \right) \right\} - \frac{1}{2} \operatorname{Tr}_q \left\{ \partial_k R_{\varphi,k} \left(G_{\varphi,k} \Gamma_k^{(4)} G_{\varphi,k} \right) \right\} + \cdots$$

- spectral functions are real-time quantities!
- analytic continuation procedure is needed

Analytic continuation

• use periodicity of occupation numbers with discrete Euclidean energy $ip_0 = i2n\pi T$

 $n_{B,F}(E+ip_0) \to n_{B,F}(E)$

 \blacktriangleright substitute p_0 by continuous real frequency ω

$$\Gamma_{k,j}^{(2),R}(\omega,\vec{p}) = -\lim_{\epsilon \to 0} \Gamma_{k,j}^{(2),E}(p_0 = -i(\omega + i\epsilon), \vec{p}); \quad \text{for} \quad j = \pi, \sigma$$

- ▶ solve flow equations $\operatorname{Re} \partial_k \Gamma_{k,j}^{(2),R}$, $\operatorname{Im} \partial_k \Gamma_{k,j}^{(2),R}$ at global minimum of $U_{k\to 0}$
- finally obtain spectral functions as

$$\rho_j(\omega, \vec{p}) = \frac{1}{\pi} \frac{\operatorname{Im} \Gamma_{k \to 0, j}^{(2), R}(\omega, \vec{p})}{\left(\operatorname{Re} \Gamma_{k \to 0, j}^{(2), R}(\omega, \vec{p})\right)^2 + \left(\operatorname{Im} \Gamma_{k \to 0, j}^{(2), R}(\omega, \vec{p})\right)^2}$$

σ - and π spectral function for finite T at $\mu=0$

σ spectral function with increasing T at $\mu=0$

π spectral function with increasing T at $\mu=0$

- ► Sakurai (1960): vector mesons as gauge bosons of local gauge symmetry SU(2)
 - $\rightarrow\,$ Electromagnetic-hadronic interaction via exchange of vector mesons
 - $\rightarrow\,$ Current field identity (CFI):

$$j^{\mu}_{\rm em} = \frac{m^2_{\rho}}{g_{\rho}} \rho^{\mu} + \frac{m^2_{\omega}}{g_{\omega}} \omega^{\mu} + \frac{m^2_{\phi}}{g_{\phi}} \phi^{\mu}$$

 \Rightarrow Vector Meson Dominance (VMD)

[Berghaeuser, www.staff.uni-giessen.de (2016)]

▶ Lee and Nieh (1960s): Gauged linear sigma model, local gauge symmetry $SU(2)_L \times SU(2)_R$

 $\Rightarrow
ho$ meson and chiral partner a_1 meson as gauge bosons

Gauged Liner Sigma Model with Quarks

- \blacktriangleright Local gauge symmetry $SU(2)_L \times SU(2)_R$: Low-energy model of two-flavor QCD
- Ansatz for the effective average action $\Gamma_k \equiv \Gamma_k[\sigma, \pi, \rho, a_1, \psi, \bar{\psi}]$ (LPA):

$$\begin{split} \Gamma_{k} &= \int d^{4}x \Big\{ \bar{\psi} \left(\not{\partial} - \mu \gamma_{0} + h_{S} \left(\sigma + \mathrm{i} \vec{\tau} \vec{\pi} \gamma_{5} \right) + \mathrm{i} h_{V} \left(\gamma_{\mu} \vec{\tau} \vec{\rho}^{\mu} + \gamma_{\mu} \gamma_{5} \vec{\tau} \vec{a}_{1}^{\mu} \right) \right) \psi + U_{k} (\phi^{2}) - c \sigma \\ &+ \frac{1}{2} (\partial_{\mu} \Phi)^{2} + \frac{1}{8} \mathrm{Tr} \left(\partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu} \right)^{2} + \frac{1}{4} m_{V,k}^{2} \mathrm{Tr} V_{\mu} V_{\mu} - \mathrm{i} g V_{\mu} \Phi \partial_{\mu} \Phi \\ &- \frac{1}{2} g^{2} \left(V_{\mu} \Phi \right)^{2} - \frac{\mathrm{i}}{2} g \mathrm{Tr} \partial_{\mu} V_{\mu} [V_{\mu}, V_{\nu}] - \frac{1}{4} g^{2} \mathrm{Tr} V_{\mu} V_{\nu} [V_{\mu}, V_{\nu}] \Big\} \end{split}$$

• Mesonic fields: $\phi \equiv (\vec{\pi}, \sigma)$ and $V_{\mu} \equiv \vec{\rho}_{\mu} \vec{T} + \vec{a}_{1,\mu} \vec{T}^5$

▶ Scale dependent quantities: $U_k, m_{k,V}^2$

Flow equations for two-point functions

Neglect vector mesons inside the loops

- ▶ Vertices extracted from ansatz of the effective average action Γ_k
- > Tadpole diagrams give ω -independent contributions

ho- and a_1 spectral function for finite T at $\mu=0$

T-dependence of V-A spectral functions

[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]

T-dependent pole masses

- Degeneration of ρ and a₁ spectral functions in chirally symmetric phase
- Broadening of spectral functions with increasing T
- Pole masses do not vary much, no dropping ρ mass

 $\Rightarrow {\sf Consistent with} \\ {\sf broadening/melting-} \rho {\sf -scenario}$

[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]

ρ spectral function with increasing T at $\mu=0$

Summary and Outlook

- analytically continued flow equations for scalar- and vector-meson two-point functions including parity partners within the FRG
- chiral order parameter and in-medium spectral functions obtained within the same theoretical framework
- \blacktriangleright complete degeneration of the $(\omega,\vec{p})\text{-dependent}$ spectral functions of parity partners in the chirally restored phase
- \blacktriangleright degeneracy of ρ and a_1 spectral functions consistent with broading $\rho\text{-scenario}$

work in progress:

- ▶ improve truncation (e.g. include wave function renormalization
- ▶ improve phenomenology (e.g. include vetor mesons in side loops

aim: provide spectral functions for coarse-grained transport simulations to compute dilepton spectra