

New studies of CME using chargedependent azimuthal correlations at the LHC

Submitted to PRC and arXiv:1708.01602

Zhoudunming (Kong) Tu Rice University On behalf of CMS collaboration CPOD, Stony Brook University, US 2017

Chiral magnetic effect (CME) in HIC

Deconfinement + Chiral symmetry restoration

Fluctuations of topological charge in QCD vacuum \rightarrow P and CP odd domains

Derek Leinweber, University of Adelaide

Chirality imbalance inside of the QGP phase with a strong magnetic field can generate charge separation, known as the CME

Chiral magnetic effect (CME) in HIC

Deconfinement + Chiral symmetry restoration

B=10¹⁸ Gauss +

Strong magnetic field

Chirality imbalance inside of the QGP phase with a strong magnetic field can generate charge separation, known as the CME

If CME is observed, evidence for chiral symmetry restoration!

Charged-dependent correlation observed

γ_{os-ss} drops at low energy (?)
 Important for BES program

Charged-dependent correlation observed

γ_{os-ss} drops at low energy (?)
 Charged-dependent
 Important for BES program
 Correlation observed

Agree with CME expectation

Why is pPb and PbPb so similar? Background dominated

The fact that γ(pPb) ≈ γ(PbPb) not only challenges the CME but also the background mechanism (e.g., ~v2/N)

• Two major questions to be answered:

- i. What is the background exactly?
- ii. Is there any real CME signal, if BKG is removed?

• Two major questions to be answered:

- i. What is the background exactly?
- ii. Is there any real CME signal, if BKG is removed?

$\odot \mbox{Two major questions to be answered:}$

- i. What is the background exactly?
- ii. Is there any real CME signal, if BKG is removed?

• Two major questions to be answered:

- i. What is the background exactly?
- ii. Is there any real CME signal, if BKG is removed?

- i. κ parameter is hard to constrain
- ii. BKG is hard to control, need an independent handle on v₂ without changing the B field

• Two major questions to be answered:

- i. What is the background exactly?
- ii. Is there any real CME signal, if BKG is removed?

i.e., local charge conservation + v2

New experimental strategy is needed!

Analysis strategy

1: Higher-harmonic correlator

$$\gamma_{123} \equiv \left\langle \cos\left(\phi_{\alpha} + 2\phi_{\beta} - 3\Psi_{3}\right) \right\rangle$$

 \circ CME free as no charge separation w.r.t. Ψ_3

• For BKG-only source,

$$\gamma_{123} = \kappa \cdot v_3 \cdot \delta$$

An independent constraint to κ !

Analysis strategy

1: Higher-harmonic correlator

$$\gamma_{123} \equiv \left\langle \cos\left(\phi_{\alpha} + 2\phi_{\beta} - 3\Psi_{3}\right) \right\rangle$$

- \circ CME free as no charge separation w.r.t. Ψ_3
- For BKG-only source,

$$\gamma_{123} = \kappa \cdot v_3 \cdot \delta$$

An independent constraint to κ !

2: Event Shape Engineering (ESE) <u>arXiv:1608.03205v2</u>

To directly observe the relation between γ and v_2 (Is it consistent with a v_2 -linear BKG-only scenario?)

Measurement with CMS detectors

Large gap between particle α,β and c, to reduce short range correlation. Valid for factorization.

 $N_{tracks}^{|\eta| < 2.4}$

Results: (OS-SS)

arXiv:1708.01602

Results: (OS-SS)

arXiv:1708.01602

This can explain γ (pPb) $\approx \gamma$ (PbPb), if $\gamma = \kappa \cdot v_2 \cdot \delta$ 21

Results: (OS-SS)

arXiv:1708.01602

Results: higher-order correlator

CME free correlator

$$\left| \gamma_{123} \equiv \left\langle \cos \left(\phi_{\alpha} + 2\phi_{\beta} - 3\Psi_{3} \right) \right\rangle \right|$$

Charge-dependent signal has to be BKG

Results: higher-order correlator

CME free correlator

$$\gamma_{123} \equiv \left\langle \cos\left(\phi_{\alpha} + 2\phi_{\beta} - 3\Psi_{3}\right) \right\rangle$$

Charge-dependent signal has to be BKG arXiv:1708.01602

Correlation is still short-range and charge-dependent.
 Can this be compatible with the suspected BKG?

Suspected BKG should also describe other differential variables

Results: Test BKG $(\Delta = OS-SS)$ To test this background only
scenario, we compare κ_2 and κ_3 $\Delta \gamma_{112} = \begin{pmatrix} \kappa_2 \\ \kappa_2 \end{pmatrix} \cdot \nu_2 \cdot \Delta \delta$
 $\Delta \gamma_{123} = \begin{pmatrix} \kappa_2 \\ \kappa_3 \end{pmatrix} \cdot \nu_3 \cdot \Delta \delta$

If $\kappa_2 = \kappa_3$, the data is compatible with ~100% background

$(\Delta = OS-SS)$ **Results: Test BKG** $\begin{array}{c} \kappa_{2} \cdot \nu_{2} \cdot \Delta \delta \\ \kappa_{3} \cdot \nu_{3} \cdot \Delta \delta \end{array}$ $\Delta \gamma_{112} = \\ \Delta \gamma_{123} =$ To test this background only scenario, we compare κ_2 and κ_3 $\checkmark \kappa_2 = \kappa_3$, the data is compatible with ~100% background pPb 8.16 TeV ĊMS $n = 2, \phi_c(Pb-going)$ $185 \le N_{trk}^{offline} < 250$ $n = 2, \phi(p-going)$ $\Delta \gamma_{1,n-1;n} / v_n \Delta \delta$ \Diamond n = 3, ϕ (Pb-going) pPb **K**_n ጶथे≌ੋಥ∞≚ੋ⊒¢ ⊽ PbPb 5.02 TeV $185 \le N_{trk}^{offline} < 250$ $\Delta \gamma_{1,n-1,n} V_n \Delta \delta_{n}$ PbPb **K**_n ★ n = 2

arXiv:1708.01602

l∆p_{_}I (GeV)

2

0

수 n = 3

2 0

1

lΔηl

0

2

 \overline{p}_{τ} (GeV)

Results: Test BKG

arXiv:1708.01602

 $\checkmark \kappa_2 = \kappa_3$, the data is compatible with ~100% background scenario throughout the entire multiplicity or centrality range

Results: Test BKG

arXiv:1708.01602

 $\checkmark \kappa_2 = \kappa_3$, the data is compatible with ~100% background scenario throughout the entire multiplicity or centrality range

Now, can we observe the linear dependence on v2 and see if there is any room for CME?

ESE with CMS detectors

- The ESE uses q₂, magnitude of q vector, in one side of the HF (3-5 units) to select events with very different v2
- In pPb collision, q₂ is calculated from the Pb-going side. Particle c from both p- and Pb-going side are studied.

• Particle c in γ_{112} is from the other side of the q₂ region in PbPb.

ESE with CMS detectors

arXiv:1708.01602

- q₂ is monotonically correlated with v2, expected from the initial-state geometry;
- * γ_{112} can be studied as a function of v2 within a single multiplicity or centrality class.

- Nontrivial to interpret the data, due to mixture of charge-(in)dependent correlations.
- How about the difference OS-SS?

♦ OS-SS vs v2, when v2 = 0 \rightarrow finite intercept?

Some nonlinear trend at high v2. Anything else other than CME?

♦ OS-SS vs v2, when v2 = 0 \rightarrow finite intercept?

Some nonlinear trend at high v2. Anything else other than CME?

 δ -correlator? Is δ independent of v2?

- Indeed, the Δδ is not flat vs v2, esp at low multiplicity.
- Two effects:
 - 1. Multiplicity dilution, multiplicity bias from q₂ selection
 - 2. Nonflow, η-gap is not optimal.

Results: ESE

• Background-only scenario: $\Delta \gamma_{112} = \kappa_2 \cdot \nu_2 \cdot \Delta \delta$

 $\Delta \gamma_{112} / \Delta \delta = \kappa_2 \cdot v_2$ $\rightarrow \text{Goes thru ZERO!}$

Results: ESE

Background-only scenario: $\Delta \gamma_{112} = \kappa_2 \cdot \nu_2 \cdot \Delta \delta$

 $\Delta \gamma_{112} / \Delta \delta = \kappa_2 \cdot \nu_2$ $\rightarrow \text{Goes thru ZERO!}$

Background + signal scenario:
 $\Delta \gamma_{112} = \kappa_2 \cdot v_2 \cdot \Delta \delta - b$

 $\Delta \gamma_{112} / \Delta \delta = \kappa_2 \cdot \nu_2 - b / \Delta \delta$ $\rightarrow \text{Finite intercept!}$

arXiv:1708.01602

Results: ESE

Normalized intercept vs multiplicity:

Results: ESE

 $f_{norm} = b_{norm} / (\Delta \gamma_{112} / \Delta \delta) \approx b / \Delta \gamma_{112}$

(v2-indep-comp)

42

Upper limit @ 95% Confidence level 6.6% and 3.8% for pPb and PbPb, if combined all multiplicities

Summary and outlook

Experimental achievements:

- First time measurement of γ_{123} , and δ in pA collisions
- ✓ First time Event-Shape-Engineering in pA collisions

Major conclusions and implications:

- ✓ γ dominated by background, i.e., $γ = κ ⋅ v_n ⋅ δ$
- Possible CME signal (at LHC energies) is less than 6.6% for pPb and 3.8% for PbPb collisions @95% CL.

✓ Significant improvement on constraining the CME signal.

Provide more insights for lower energy CME search

Thank you!

arXiv:1708.01602

Backup

arXiv:1708.01602

Figure 19: The average multiplicity $N_{\text{trk}}^{\text{offline}}$ as a function of v_2 evaluated in each q_2 class, for different multiplicity ranges in PPb collisions at $\sqrt{s_{_{NN}}} = 8.16$ TeV (upper), and for different centrality classes in PbPb collisions at 5.02 TeV (lower). Statistical uncertainties are invisible on the current scale.

arXiv:1708.01602

Backup

Backup

arXiv:1708.01602

Backup

arXiv:1708.01602

ĊMS

(b)

(d)

1 I∆p_TI (GeV)

★★(f)

3

CMS

(b)

(d)

 $1 \frac{1}{1\Delta p_T} (GeV)$

(f)

З

<u><10</u>⁻³

(a)

3 0

(a)

(e)

3 0

<u>×10</u>⁻³

PbPb 5.02 TeV

 $250 \le N_{trk}^{offline} < 300$

PbPb 5.02 TeV

 $150 \leq N_{trk}^{offline} < 185$

Backup

arXiv:1708.01602

arXiv:1708.01602

- ★ First time measurement of γ_{123} as function of $|\Delta p_T| \equiv |p_{T,\alpha} - p_{T,\beta}|$
- Similar trend and magnitude observed between pPb and PbPb
- Not only in |Δη|, the similarity extends to |Δp_T|
- Observation: δ and γ₁₂₃ are different between pPb and PbPb collisions.

arXiv:1708.01602

★ First time measurement of γ_{123} as function of $\bar{p}_T \equiv (p_{T,\alpha} + p_{T,\beta})/2$

- Similar trend and magnitude observed between pPb and PbPb
- δ correlator shows more positive value towards high p_T, indicating jet-like correlation starts to be dominant.

FIG. 6: (Color online) The centrality dependence of eight two-plane correlators, $\langle \cos(\Sigma\Phi) \rangle$ with $\Sigma\Phi = jk(\Phi_n - \Phi_m)$ obtained via the SP method (solid symbols) and the EP method (open symbols). The middle two panels in the top row have j = 2 and j = 3, respectively, while all other panels have j = 1. The error bars and shaded bands indicate the statistical uncertainties and total systematic uncertainties, respectively. The expected correlations among participant-plane angles Φ_n^* from a Glauber model are indicated by the solid curves for weighted case (Eq. (11)) and dashed lines for the unweighted case.