CPOD 2017

Critical Point and Onset of Deconfinement

Charles B. Wang Center - Stony Brook University August 7-11, 2017

Production of D_s mesons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

the state of the second s

Md. Nasim (for the STAR Collaboration) University of California Los Angeles

Outline

- Motivation
- STAR experiment
- Results ——

- p_T spectra of D_S
 R_{AA} of D_S
 - ▷ D_s/D⁰ ratio
- Elliptic flow of D_S

• Summary

Motivation

- Strangeness enhancement in QGP is expected to affect the yield of D_S (if charm quarks participate in coalescence)
- D_S/D^0 (Au+Au) > D_S/D^0 (p+p) predicted

Good Probe to study the charm quark hadronization

D_s freezes out early and expected to have smaller hadronic interaction cross-sections compared to D⁰ Better measure of the partonic contribution to the charm hadron v₂

Ref: M. He et al., PRL 110, 112301 (2013)

STAR Detector in Year 2014

o Full 2π coverage
o Pseudorapidity coverage ~ ±1 unit

STAR Detector in Year 2014

Total Momentum p (GeV/c)

Analysis Details

STAR

Particle Identification

TPC PID: Energy loss dE/dx

TOF PID: Flight time (β)*

TOF PID has been applied only when β information is available.

Cut Optimization

- Topological cuts optimized using TMVA package.
- Background extracted from real data using wrong-sign method
- Signal simulated with data-driven fast simulation

Ref: A. Hoecker et. al, PoS ACAT:040,2007

D_S Meson Reconstruction

Efficiency and Acceptance Correction

 \otimes

 D_s efficiency =

TPC tracking eff.

HFT tracking eff.

topological cuts

 \otimes

The D_s p_T spectra in 0-10% and 10-40% collision centralities

 $D^+ \rightarrow \pi^+ \pi^+ K^-$ (B.R. = 9.46%)

 $D^+ \rightarrow \phi \pi^+ \rightarrow \pi^+ K^- K^+$ (B.R. = 0.27%)

Nuclear Modification Factor (R_{AA})

 D_S spectra for p+p collisions have been calculated from measured D⁰/D* crosssection by STAR. Fragmentation factor (c to D_S) = 0.079±0.004

Ref: M Lisovyi, et. al. EPJ C 76, 397 (2016) STAR: PRD 86, 72013 (2012) R_{AA} of D_{S}

D_S/D⁰ Ratio: Probe of Charm Hadronization

 Substantial enhancement in D_s/D⁰ ratio in Au+Au collisions w.r.t. the fragmentation baseline.

- Indicates that the charm quark recombination plays a crucial role in open charm meson production in central Au+Au collisions.

D_S/**D**⁰ Ratio : Comparison with Model Prediction

- Substantial enhancement in D_S/D⁰ ratio in Au+Au collisions w.r.t. the fragmentation baseline.
- D_S/D⁰ in Au+Au is higher than the PYTHIA model prediction.
- TAMU model under-predicts measured D_S/D⁰ ratio.

Ref: TAMU: H. Min et al. PRL 110, 112301 (2013)

D_S/**D**⁰ Ratio : Comparison with LHC

- Substantial enhancement in D_S/D⁰ ratio in Au+Au collisions w.r.t. the fragmentation baseline.
- Comparable to LHC data.

Ref: Pb+Pb : Quark Matter 17 (ALICE Preliminary)

D_S **v**₂ Measurement: Event Plane Method

Pressure gradient transfers initial spatial anisotropy to final state momentum space anisotropy

$$v_2 = \langle \cos 2(\varphi - \psi_2) \rangle$$

- Event plane (ψ_2) is reconstructed using TPC tracks
- Non-uniformity in acceptance is corrected by re-centering and shifting

Ref: A.M. Poskanzer and S.A. Voloshin. PRC 58 (1998) 1671

D_S yield as a function of $(\varphi - \psi_2)$ is fitted with the following function,

$$\frac{dN}{d(\phi - \psi_2)} = p_0 [1 + 2v_2^{obs} \cos\{2(\phi - \psi_2)\}]$$

where p_0 and v_2^{obs} are fit parameters.

$$v_n \{EP\} = v_n^{obs} \{EP\} \times \left\langle \frac{1}{EP \text{ Resolution}} \right\rangle$$

Ref: A.M. Poskanzer and S.A. Voloshin. PRC 58 (1998) 1671 STAR

Elliptic Flow vs Transverse Momentum

Ref: D⁰ v₂: PRL **118** (2017) 212301 [STAR]

- Finite positive D_S v₂ observed

 D_S v₂ is comparable to nonstrange D⁰ meson within large uncertainties.

More precise measurements of $D_S v_2$ are underway including 2016 data.

D_S **v**₂: NCQ Scaling and Comparison with LHC

Ref: STAR: PRL **118** (2017) 212301 ALICE: arXiv:1707.01005[nucl-ex]

D_S **v**₂ : Model Comparison

TAMU:

Charm-quark coupling to the QGP and subsequent recombination with equilibrated strange quarks.

AMPT:

Partonic interaction generates v₂. Hadronization via Dynamic Coalescence Model.

Model predictions are consistent with data within 1σ confidence level.

Ref: TAMU: H. Min et al. PRL 110, 112301 (2013) AMPT: R. Esha et al. JPG 44, 045107 (2017)

Summary

- STAR
- \diamond Nuclear modification factor of $\rm D_{S}$ is measured in 0-40% Au+Au collisions at 200 GeV:
 - Production of high p_T (> 5 GeV/c) D_s seems to be suppressed w.r.t. the p+p reference
 - R_{AA} (K⁰_S) $\leq R_{AA}$ (D_S) : light strange mesons seem to be more suppressed than heavy D_S
- \diamond The production ratio D_s/D⁰ is measured in 0-40% Au+Au collisions at 200 GeV:
 - Enhancement in D_S/D⁰ ratio w.r.t. the fragmentation baseline is observed
 - This indicates that coalescence plays an important role for charm quark hadronization in the QGP
- ♦ Elliptic flow of D_s meson is measured in Au+Au collisions (10-40%) at 200 GeV:
 - Observed $D_{s} v_{2}$ is comparable to non-strange $D^{0} v_{2}$ within large uncertainties

Back-Up

Heavy Flavor Tracker

The Pixel detector: First MAPS technology in a collider experiment

Pointing resolution: ~20 μ m at high *p*T (exceeds the requirement of 55 μ m for 750 MeV/*c* kaons)

