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Introduction

• Transport properties of hot/dense matter are important for
heavy ion collision (HIC), cosmology and important for near
equillibrium evolution of any thermodynamic system

• The most studied transport coefficient is perhaps shear
viscosity η. In HIC spatial anisotrpy of colliding nuclei gets
converted to momentum anisotropy throgh a hydro evoln.

The equllibriation is decided by η. (
η

s
∼ 1

4π
, the KSS bound)

• The bulk viscosity ζ - thought earlier to be not important for
HIC hydro evolution. Argument: ζ ∼ (ε− 3p)/T 4 that
vanishes for ideal gas. However, lattice simulation ⇒ large
(ε− 3p)/T 4 near Tc . This,in turn, can give rise to different
physical effects (Cavitation).



Introduction -Contd. · · ·

• The temperature and chemical potential dependence of
transport coefficients may reveal the location of phase
transition
• In principle, one can estimate transport coefficients using

Kubo formulation but, QCD is strongly coupled for the
energies accessible at HIC. Lattice QCD simulation is
numerically challanging and also has problems in doing
simulations at finite baryon densities.
• We shall approach the problem here within Boltzmann kinetic

equation within relaxation time approximation
• The dynamics of chiral symmetry breaking in QCD is with

medium dependent masses are included in the formulation.
• Most earlier calculations are performed at zero baryon density
ρB . Including finite density effects are relevent for upcoming
HIC experiments, BES(Brookhaven), CBM at (GSI,
Darmstadt), (NICA at Dubna).



QCD phase diagram and HIC



Boltzmann Equation

Boltzmann equation describes the evolution of particle distribution
function

dfa

dt
=
∂f a

∂t
+

pi

Ea

∂fa

∂x i
−
∂Ea

∂x i

∂fa

∂pi
= Ca

To estimate viscosity coefficients, consider small departure from
equllibrium

fa = f 0
a + δfa

The equllibrium distribution function

f 0
a =

1

exp β(uαpα ∓ µ) + 1

The collision term C a involve scattering processes.
Relaxation time approximation⇒ in C a, particle ’a’ is out of
equllibrium while all other particles are in equllibrium.

dfa

dt
=

pµ

Ea

∂f 0
a

∂xµ
−

M

Ea

∂M

∂x i

∂f 0
a

∂pi
= −

δfa

τa



T µν, Jµ and transport coefficients

Energy dependent relaxation time

τa(Ea)−1 =

∫
dΓcdΓddΓb f

0
b W (ab, cd)

W (ab, cd) =
(2π)4δ4(pa + pb − pc − pd )

2Ea2Eb2Ec2Ed
|M|2

LHS of Boltzmann Eqn.⇒
∂µf

a
0 = −f a0 (1∓ f a0 )∂µ

(
β(Ea − µ− p · u

)
Boltzmann Eq. relates non equllibrium part of distribution

function to variation in fluid velocity, temperature and chemical
potential.
Distribution function is related to the energy momentum tensor
and the quark current

Tµν =
∑
a

∫
dΓap

µpν fa + gµνU(σ); dΓa = νa
dp

(2π)3

Jµ =
∑
a

ta

∫
dΓa

pµ

Ea
fa



ζ, η,λ contd.· · ·

Change in nonequllibrium part ⇒
δT ij =

∑
a

∫
dΓa

pi pj

TEa
τaf

0
a (1− f 0

a )qa(p, β, µ)

δJ i =
∑
a

ta

∫
dΓa

pi

Ea
τaf

0
a (1− f 0

a )

(
ta −

nEa

ε + p

)
pj∂j

(
µ

T

)

The non equllibrium contribution related to the velocity gradients
can be reorganised as

qa = Qa
∂i ui −

pi pj

2Ea
Wij

;

Wij = ∂i uj + ∂jui −
2

3
δij∂kuk

Shear and bulk viscosities are defined through the dissipative part

∆T ij = −ζδij∂kuk − ηWij

Thermal conductivity is defined through the dissipative part of the
current

∆Ji = λ

(
nT

w

)2

∂i

(
µ

T

)



ζ, η,λ contd.· · ·

η =
1

15T

∑
a

∫
dΓa

p4

Ea

(
τaf

0
a (1− f 0

a ) + τ̄a f̄
0
a (1− f̄ 0

a )
)

ζ = −
1

3T

∑
a

∫
dΓa

p2
a

Ea

(
τaf

0
a (1− f 0

a )Qa + τ̄a f̄
0
a (1− f̄ 0

a )Q̄a

)

λ =
1

3

(
w

nT

)2 ∑
a

ta

∫
dΓa

p2

E2
a

f 0
a (1− f 0

a )τa

(
ta −

nEa

w

)

In the bulk viscosity coefficient, the coefficient Qa depends upon
the equation of state

Qa = −
[

p2
a

3Ea
+

(
∂P

∂n

)
ε

(
∂E

∂µ
− 1

)
−
(
∂P

∂ε

)
n

(
Ea − T

∂Ea

∂T
− µ

∂Ea

∂µ

)
.

]



ζ contd.

However, Qa has to be supplemented by the conditions uµδJ
µ = 0

and uµδT
µνuν = 0 corresponding to baryon number and energy

momentum conservation. Within the relaxation time
approximation, these Landau-Lifshitz conditions reduce to∑

a

ta〈τaQa〉 = 0,
∑
a

〈τaEaQa〉 = 0

〈φa(p)〉 =

∫
dΓa[φa(p)f 0

a (1− f 0
a )]

If Landau Lifshitz conditions are not satisfied, replace
τaQa → τaQa + αta + βEa

The unknown coefficients to be determined from the baryon
number and energy momentum conservation equation. The
expression for bulk viscosity consistent with the Landau Lifshitz
condition is then given as

ζ = −
1

T

∑
a

〈(τaQa + αta + βEa)
p2

3Ea
〉

Albright,Kapusta, Phys Rev C93,014903, 2016; Deb etal,Phys. Rev D,
2016



η,ζ,λ contd.

The expressions for the transport coefficients become simpler when
one realises that for ideal hydrodynamics the entropy per baryon
(σ) is constant.

η =
1

15

∑
a

∫
dΓa

p4

E2
a

τaf
0
a (1− f 0

a )

ζ =
1

9T

∑
a

∫
dΓa

τaf
0
a (1− f 0

a )

E2
a

[
p2 + 3v2

nT
2Ea

∂

∂T

(
Ea − µa

T

)
σ

]2

λ =
1

3

(
w

nT

)2 ∑
a

∫
dΓa

p2

E2
a

τafa(1− fa)

(
ta −

nEa

w

)2

Transport coefficients are nonnegative as they must be.

It is important to include the Landau-Liftshitz conditions to
obtain the above results.

Note- Transport coefficients of the system is sum of the
contributions of each species to the same. On the otherhand,
relaxation time of a given species is added inversely arising from
scatterring of the given species with all other speciies with which it
scatters.



η,ζ,λ contd.

Knowing the equation of state and other thermodynamic
quantities like velocity of sound etc. and the relaxation time
one can estimate the viscosity coefficient.

This thermodynamics and estimation of relaxation time is
done within the Polyakov loop extended quark meson coupling
(PQM) model.



Polyakovloop quark meson model

PQM model : captures features of chiral symmetry breaking and
confinement properties of strong interaction.

L = ψ̄(iγµD
µ − m0)ψ +

(
∂µσ∂

µ
σ + ∂µπ∂

µ
π
)
− Uχ − Uφ

Uχ =
λ

4

(
σ

2 + π
2 − v2

)
− Cσ

φ =
1

Nc
〈TrcPe i

∫ β
0 dx0A0(x0,x)〉

Polyakov gauge : A0- time independent
Functional form of U: Choose the form so as to reproduce pure
gauge lattice simulation results for thermodynamics

U(φ, φ̄) = T 4
[
−

b2(T )

2
φ̄φ−

b3

2
(φ3

φ̄
3) +

b4

4
(φ̄φ)2

]



Thermodynamics:PQM model

Thermodynamic potential (negative of pressure)
Ω(T , µ) = −2Nf T

∫
dp

[
ln
(

1 + 3(φ + φ̄e
−βω− )e

−βω− + e
−3βω−

)
+ ln

(
1 + 3(φ + φ̄e−βω+ )e−βω+ + e−3βω+

) ]
+ Uχ + UP

The quark

excitation energies are ω∓ =
√

p2 + m2
q ∓ µ and the constituent

quark masses are dependent on the mean fields as
m2

q = g2(σ2 + π2).
The mean fields are obtained by extremization of Ω with respect to
σ,φ,φ̄ and π.
Meson masses are determined by the curvature of Ω at the global
minimum:

M2
σ =

∂2Ω

∂σ2
M2
π =

∂2Ω

∂π2

Scavanius,Mocsy,Mishustin,Rischke Phys Rev C64,045202, 2001



Meson masses ; Order parameters· · ·
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Figure: Temperature dependence of the masses of constituent quark (M), and pions (Mπ) and sigma mesons

(Mσ) for µ = 0 (Fig1-a) and the order parameters σ and φ as a function of temperature for µ = 0 MeV.
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Figure: Temperature derivative of the chiral order parameter (fig 2 a) and Polyakov loop order parameter.

Tc ' 176 MeV (µ = 0); critical point (Tc , µc) = (165, 163)
MeV
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Figure: Temperature dependence of the scaled trace anomaly
ε− 3p

T 4
(Fig 3a) and square of velocity of sound.

Conformal symmetry is broken maximally at the critical
temperature



Estimating the relaxation time: meson
scatterring

Energy depenedent relaxation time τa(Ea) for a scatterring process

a, b → c , d (dΓi =
dp

(2π)3
)

τ
−1
a (Ea) = ω(Ea) =

∑
b

∫
dΓb f

0
b Wab(s)

Wab(s) =
1

1 + δab

∫
dΓcdΓd (2π)4

δ
4(pa + pb − pc − pd )|M|2(1± fc ) + (1± fd )

Meson scatterrings:

Mσ,σ→σ,σ = −6λ− 36λ2fπ
2
(

1

s − mσ2
+

1

t − mπ2
+

1

u − mπ2

)

Mπ,σ→π,σ = −2λ− 4λ2fπ
2
(

3

t − mσ2
+

1

u − mπ2
+

1

s − mπ2

)

Mπ,π→π,π = −2λ

(
s − mπ

2

s − mσ2
δabδcd +

t − mπ
2

t − mσ2
δacδbd +

u − mπ
2

u − mσ2
δadδbc

)

Mπ,π→σ,σ = −6λ− 4λ2fπ
2
(

3

s − mσ2
+

1

t − mπ2
+

1

u − mπ2

)
Poles in s and u channels in the propagators– approximate by
taking s, t, u →∞ limit.



Estimating viscosities: meson scatterrings

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

η s

T
Tc

Present calculation
Kapusta etal (mσ=600MeV)
Kapusta etal (mσ=900MeV)

0.0

0.05

0.1

0.15

0.2

0.25

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

ζ s

T
Tc

Our result
Kapusta etal(mσ = 600MeV)
Kapusta etal (mσ=900 MeV)

Fig. 4-a Fig. b-b

Figure: Shear viscosity to entropy ratio (Fig4-a) and bulkviscosity to entropy ratio (Fig4 b)

Chakrabarti and Kapusta Phys Rev C83, 014906 (2011)



Estimating viscosity coefficients-quark
scatterrings

For two flavors we consider the following possible scatterings
through meson exchanges.

uū → uū, ud̄ → ud̄, uū → dd̄,

uu → uu, ud → ud, ūū → ūū,

ūd̄ → ūd̄, dd̄ → dd̄, dd̄ → uū,

dū → dū, dd → dd, d̄ d̄ → d̄ d̄,

Using i-spin symmetry, charge conjugation symmetry as well
as the crossing symmetry to relate the matrix element square
for the above 12 processes reduce to evaluating only two
independent matrix elements uū → uū and ud̄ → ud̄

Dominant contribution comes from propagation of pion and
sigma mode in the s-channel.

The temperature dependence of π and σ modes play an
important role in these cross section evaluation.

Zhuang etal Phys Rev D51,3728, 1995



η/s,ζ/s: quark scattering

η =
1

15

∑
a

∫
dΓa

p4

E 2
a

τaf
0
a (1− f 0

a )

With Polyakov loop dependent quark distribution functions,

f 0
a (1− f 0

a )→
[

φe−βω + 4φ̄e−2βω + 3e−3βω

1 + 3φe−βω + 3φ̄e−2βω + 3e−3βω
− 3f 0

a
2

]
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Figure: η

s
(fig 5 -a) and

ζ

s
as a function of temperature . (µ = 0).



Estimating the viscosities-quark meson
scatterings

Quark pion scattring: (q, π → q, π) Matrix element:

Tba ∼
g2

2
(γµq1µ + γ

µq2µ)
[
B+
δab + B(−) iεabcτ

c
]

B(+) =

[
1

u − m2
q

−
1

s − m2
q

]
, B(−) = −

[
1

u − m2
q

+
1

s − m2
q

]

Poles can arise in the u-channel
Include in medium quark width

Σ = mΣ0 + γ · pΣ3 − γ0p0Σ4

Relevant imganinary part is included in the propagator.



η/s,ζ/s: quark meson scattering
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Figure: Different contributions as well as the total contribution to
η

s
(Fig 6 -a) and

ζ

s
(Fig. (6-b) as a

function of temperature . (µ = 0).



η/s,ζ/s: contd.· · ·
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Summary,conclusions and outlook

We tried to derive the viscosity coefficients using Boltzmann kinetic equation with relaxation time
approximation with mean field and medium dpendent masses.

While η depends only on the behaviour of relaxation time and the medium dependent masses, ζ depends
on other thermodynamic quantities and the equation of state.

The deviation from equllibrium should be consistent the Landau Lifshitz conditions.

The thermodynamics of hot and dense matter is estimated within PQM model.

The transport coefficients are non negative in the relaxation time approximation which is a consequence of
Landau-Liftshitz conditions of fit.

Relaxation times are estimated using meson meson scattering, quark scatterring through meson exchange
as well as quark meson scattering.

Medium dependence of meson masses and widths affect the relaxation time and hence the transport
coefficients.




