Clusters and higher moments of proton number fluctuations

Boris Tomášik

Univerzita Mateja Bela, Banská Bystrica, Slovakia and FNSPE, České vysoké učení technické, Praha, Czech Republic

boris.tomasik@umb.sk

with

Zuzana Paulínyová-Fecková, Jan Steinheimer, Marcus Bleicher

Critical Point and the Onset of Deconfinement Stony Brook

10.8.2017

Boris Tomášik (Univerzita Mateja Bela)

Proton number fluctuations

- (Net) Proton number fluctuations and the influence of deuterons
- Production mechanism of deuterons and their scaled moments

Part 1: Proton number fluctuations

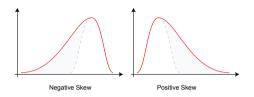
- particle number fluctuations are sensitive to the phase transition
- higher-order cumulants are sensitive to the vicinity of the critical point
- however, cumulants can be influenced:
 - conservation laws
 - final state hadronic interactions
 - acceptance effects
 - efficiency effects
 - . . .
- proton number serves as proxy for baryon number in measurements

• How well is the baryon number (multiplicity) distribution represented by proton number?

- deuterons are formed after the fireball breakup
- some of the originally produced protons are eaten up by deuterons
- deuteron numbers scales with n_p^2 non-linear coupling to proton number
- therefore, if proton number in an event is high, many protons disappear in deuterons
- this must be seen in higher moments of multiplicity distributions

The measures

 n_p is the number of protons $\langle \cdots \rangle =$ averaging over events



variance

$$\sigma^2 = \langle (n_p - \langle n_p \rangle)^2 \rangle$$

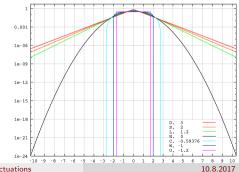
skewness

$$S = rac{\langle (n_p - \langle n_p
angle)^3
angle}{\sigma^3}$$

kurtosis

$$\kappa = \frac{\langle (n_p - \langle n_p \rangle)^4 \rangle}{\sigma^4} - 3$$

kurtosis measures the tails:



Proton number fluctuations

Underlying distributions of protons and deuterons

• initial proton number distribution Poissonian

$$P_i(n_i) = \lambda_p^{n_i} \frac{e^{-\lambda_p}}{n_i!}$$

NB: n_i is not measurable – it still includes protons which go into deuterons

• average number of deuterons is proportional to n_i^2

$$\lambda_d = Bn_i^2$$

• number of deuterons fluctuates according to Poisson distribution

$$P_d(n_d|n_i) = \lambda_d^{n_d} \frac{e^{-\lambda_d}}{n_d!} = (Bn_i^2)^{n_d} \frac{e^{-Bn_i^2}}{n_d!}$$

The observed distributions of protons and deuterons

• the observed number of deuterons is distributed as

$$P_d(n_d) = \sum_{n_i \ge n_d} P_d(n_d|n_i) P_i(n_i)$$

- the measured proton number is obtained after subtracting protons in deuterons $n_p = n_i n_d$
- observed proton number distribution

$$P(n_p) = \sum_{n_i \ge n_p} P_i(n_i) P_d(n_i - n_p | n_i)$$

Parameters fixed by observables

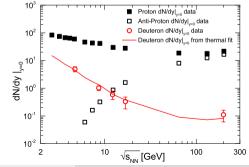
- parameters are:
 - mean initial proton number λ_p
 - coalescence factor B
- can be fixed with the help of observed multiplicities:

•
$$\langle n_p \rangle = \sum_{n_p} n_p P(n_p)$$

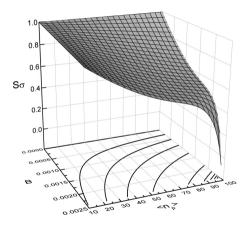
• $\langle n_d \rangle = \sum_{n_d} n_d P(n_d)$

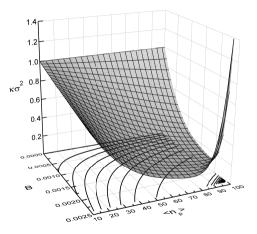
parametrisation of the mean deuteron/proton ratio

$$rac{d}{
ho} = 0.8 \left[rac{\sqrt{s_{NN}}}{1 \, {
m GeV}}
ight]^{-1.55} + 0.0036$$

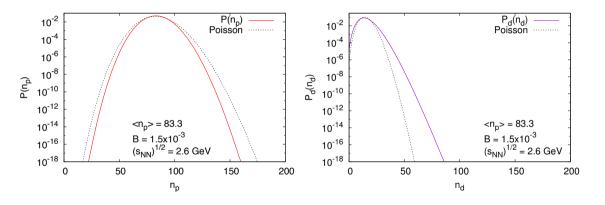


Skewness and kurtosis after subtraction of deuterons

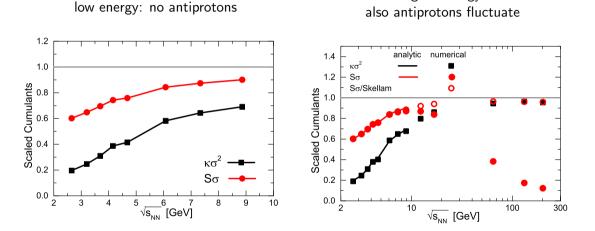




Example: distributions of p and d for $\langle n_p \rangle = 83.3$ and $B = 1.5 \times 10^{-3}$



Results for scaled cumulants as functions of $\sqrt{s_{NN}}$



higher energy:

Formation of deuterons has an important impact on proton number fluctuations.

Proton number fluctuations

- due to their fragility, deuterons can hardly exist in the dense hadronic system
- mean production numbers are well described by coalescence
- good description of data is also obtained with the help of Statistical model

Such models could be distinguished by fluctuations

- in Statistical model fluctuations of all species are Poissonian
- coalescence leads to non-Poissonian fluctuations of clusters (deuterons)

Deuteron number distribution

Model A: fully correlated proton and neutron numbers (as previously)

$$\lambda_d = Bn_i^2$$

$$P_d(n_d|n_i) = \lambda_d^{n_d} \frac{e^{-\lambda_d}}{n_d!} = (Bn_i^2)^{n_d} \frac{e^{-Bn_i^2}}{n_d!}$$

$$P_d(n_d) = \sum_{n_i \ge n_d} P_d(n_d|n_i) P_i(n_i)$$

Model B: independent proton number n_i and neutron number n_j

$$\lambda_d = Bn_i n_j$$

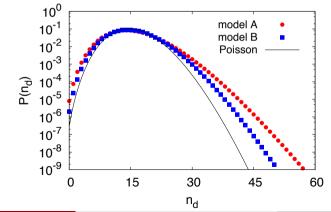
$$P_d(n_d|n_i, n_j) = \lambda_d^{n_d} \frac{e^{-\lambda_d}}{n_d!} = (Bn_i n_j)^{n_d} \frac{e^{-Bn_i n_j}}{n_d!}$$

$$P_d(n_d) = \sum_{n_i, n_j \ge n_d} P_d(n_d|n_i, n_j) P_i(n_i) P(n_j)$$

1

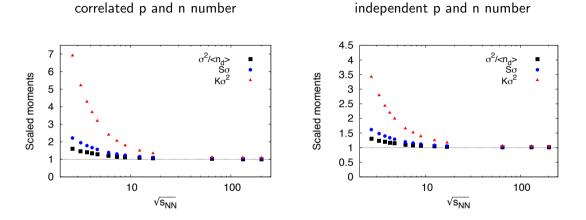
An example of deuteron number distribution

calculated for $\sqrt{s_{NN}} = 2.6 \text{ GeV}$ correlated p and n: $\sigma^2/\langle n_d \rangle = 1.609$, $S\sigma = 2.218$, $\kappa\sigma^2 = 6.915$ independent p and n: $\sigma^2/\langle n_d \rangle = 1.308$, $S\sigma = 1.616$, $\kappa\sigma^2 = 3.422$ Poissonian values are 1.



Boris Tomášik (Univerzita Mateja Bela)

Predictions for the deuteron scaled moments



Poissonian values (Statistical model) would be 1! Higher moments in particular can clearly distinguish production by coalescence!

Boris Tomášik (Univerzita Mateja Bela)

Proton number fluctuations

10.8.2017 15 / 16

Deuteron formation has large influence on proton number fluctuations, especially at NICA/FAIR energies.

Z. Fecková, J. Steinheimer, B. Tomášik, M. Bleicher, Phys. Rev. C 92, 064908 (2015)

Higher moments of deuteron number distribution can help to distinguish between statistical production and coalescence.

Z. Fecková, J. Steinheimer, B. Tomášik, M. Bleicher, Phys. Rev. C 93, 054906 (2016)