Searches for Chiral Effects and Prospects for Isobaric Collisions at STAR/RHIC

> Liwen Wen (for the STAR Collaboration) University of California, Los Angeles CPOD 2017

> > 8/8/17

Outline

- Physics motivation and observables
- Correlation measurements with the so-called γ and κ_K :
 - γ , κ_K for identified particles in Au+Au
 - γ for charged hadrons in U+U, p+Au, d+Au
 - κ_K projection in BES phase II
- Isobaric collisions (Ru+Ru and Zr+Zr) projection:
 - Charge separation signal difference
 - Significance vs background level
 - Other physics opportunities

Chiral Magnetic Effect (CME)

Non-zero topological charge induces excess of right or left handed quarks. Under strong magnetic field (B), an electric current along B direction is generated and leads to electric charge separation. ^{8/8/17}

Observable: y correlator

4

Background!

A. Bzdak, V. Koch and J. Liao, Lect. Notes Phys. 871, 503 (2013).

F: Flow-related backgrounds H: Charge separation signal Δ: OS – SS

Background!

A. Bzdak, V. Koch and J. Liao, Lect. Notes Phys. 871, 503 (2013).

$$\delta \equiv \langle \cos(\phi_{1} - \phi_{2}) \rangle = F + H$$

$$\gamma \equiv \langle \cos(\phi_{1} + \phi_{2} - 2\psi_{ep}) \rangle = \kappa v_{2}F - H \Rightarrow \boxed{\kappa = \frac{\Delta\gamma + \Delta H}{v_{2}(\Delta\delta - \Delta H)}}$$

$$H = \frac{\kappa v_{2}\delta - \gamma}{1 + \kappa v_{2}}$$

$$H = \frac{\kappa v_{2}\delta - \gamma}{1 + \kappa v_{2}}$$

$$\psi_{RP}$$

$$V_{ss} = -1$$

$$\delta_{ss} = -1$$

$$H_{ss}^{\kappa=1} = 0$$

$$v_{2} = 1$$

$$\gamma_{os} = 0$$

$$H_{os}^{\kappa=1} = 0$$

$$\delta_{os} = 0$$

$$H \text{ is more robust!}$$

F: Flow-related backgrounds H: Charge separation signal Δ: OS – SS

Background!

A. Bzdak, V. Koch and J. Liao, Lect. Notes Phys. 871, 503 (2013). F: Flow-related backgrounds $\delta \equiv \langle \cos(\phi_1 - \phi_2) \rangle = F + H$ $\Delta \gamma + \overline{\Delta H}$ H: Charge separation signal $\gamma \equiv \langle \cos(\phi_1 + \phi_2 - 2\psi_{ep}) \rangle = \kappa v_2 F - H^{\Rightarrow} \kappa = \frac{1}{v_2(\Delta \delta - \Delta H)}$ Δ: OS – SS $H = \frac{\kappa v_2 \delta - \gamma}{2}$ 30 - 60% Au+Au Pb+Pb $1 + \kappa v_2$ 2 $h^{\pm} - h^{\pm}$ × **10**⁴ - Н_{оѕ}) (H_{ss} Correlators: $\gamma_{ss} = -1$ $\delta_{ss} = -1 \qquad H_{ss}^{\kappa=1} = 0$ -⊕- **κ = 1** — κ = 1.5 **BES II error projection** 10³ 10² 10 $v_2 = 1$ $\kappa_{\kappa} = 1$ √s_{NN} (GeV) \checkmark Flow Momentum Conservation \checkmark $H_{os}^{\kappa=1} = 0$ $\gamma_{os} = 0$ Local Charge Conservation STAR, Phys. Rev. Lett 113 (2014) 052302 \checkmark $\delta_{os} = 0$ Decay \checkmark κ is a parameter near unity that can be estimated by ٠ background models. Finite $H_{ss} - H_{os}$ signal is observed in Au+Au collisions at ٠ $\sqrt{s_{NN}} \ge 11.5$ GeV for $h^{\pm}h^{\pm}$. H is more robust!

κ_K : scaled background + signal

$$\begin{split} \delta &\equiv \langle \cos(\phi_1 - \phi_2) \rangle = F + H \\ \gamma &\equiv \langle \cos(\phi_1 + \phi_2 - 2\psi_{ep}) \rangle = \kappa v_2 F - H \end{split} \xrightarrow{\kappa} = \frac{\Delta \gamma + \Delta H}{v_2 (\Delta \delta - \Delta H)} \qquad \Delta H = 0 \\ H &= \frac{\kappa v_2 \delta - \gamma}{1 + \kappa v_2} \end{split}$$

κ_K : scaled background + signal

$$\delta \equiv \langle \cos(\phi_1 - \phi_2) \rangle = F + H$$

$$\gamma \equiv \langle \cos(\phi_1 + \phi_2 - 2\psi_{ep}) \rangle = \kappa v_2 F - H \Rightarrow \kappa = \frac{\Delta \gamma + \Delta H}{v_2(\Delta \delta - \Delta H)} \quad \Delta H = 0$$

$$K_K = \frac{\Delta \gamma}{v_2 \Delta \delta}$$

$$H = \frac{\kappa v_2 \delta - \gamma}{1 + \kappa v_2}$$

$$\frac{200 \text{ GeV Au+Au}}{\Omega: \text{ h} \text{ l} < 1.5}$$

$$\int_{0}^{\infty} \kappa^{\text{TMC}} = (2\overline{v}_{2\alpha} \cdot \overline{v}_{2\beta}) / v_{2\alpha} (\text{PHOBOS})$$

$$\int_{0}^{\infty} \kappa^{\text{TMC}} = (2\overline{v}_{2\alpha} \cdot \overline{v}_{2\beta}) / v_{2\alpha} (\text{AMPT})$$

$$\int_{0}^{\infty} \kappa^{\text{AVE}} = \Delta \gamma / (v_2 \Delta \delta) (\text{AMPT})$$

$$\int_{0}^{\infty} \kappa^{\text{AVE}} = \Delta \gamma / (v_2 \Delta \delta) (\text{AMPT})$$

$$\int_{0}^{\infty} \text{Most Central}$$
Assumption: κ from background is beam-energy, centrality and particle independent and between 1 to 2!
Charge may not be conserved in this

version of AMPT

Wen, Wen & Wang, arXiv: 1608.03205

8/8/17

κ_K : scaled background + signal

8/8/17

Wen, Wen & Wang, arXiv: 1608.03205

$\pi\pi$ correlation, Au+Au 200 GeV

- $\Delta \gamma$ for $\pi \pi$ in Au+Au 200 GeV shows similar values to charged hadrons.
- κ_K for mid-central and mid-peripheral collisions is much larger than the background level (1.0 to 2.0) estimated from AMPT.

$\pi\pi$ correlation, Au+Au 39 GeV

- Au+Au 39 GeV $\pi\pi$ pair $\Delta\gamma$ shows similar magnitude to charged hadron's at the same energy.
- κ_K is higher than 2 except in central collisions.

πK correlation

- $\Delta \gamma$ for πK pair is finite in Au+Au at both 200 GeV and 39 GeV.
- κ_K values are close to or below 2, making it hard to distinguish from background.

$p\pi$ correlation

- $\Delta\gamma$ for $p\pi$ pair is finite in Au+Au at both 200 GeV and 39 GeV.
- $\kappa_{\rm K}$ values are close to or below 2, making it hard to distinguish from background.

pp and pK correlation

- pp pairs in Au+Au 200 GeV show large $\Delta \gamma$
- $\Delta \gamma$ for *pK* has smaller values, but still finite in peripheral and mid-central collisions.
- κ_K for pp is lower than 2 or even 1 in some centrality bins.
- For pK, κ_K fluctuates between 1 and 2.

PID Summary

- $\Delta\gamma$ for all PID pairs is finite in peripheral and mid-central Au+Au collisions at 200 GeV
- κ_K for $\pi\pi$ is higher than estimated background in mid-central collisions. Other pairs are close to or within background range of 1.0 to 2.0
- pp shows large $\Delta \gamma$, but κ_K is below 1.0, which is not fully understood yet.

U+U?

8/8/17

- Why we need U+U collisions?
 - To disentangle the signal and the background by varying the background (trying to minimize flow background by selecting the most central collisions in UU)
 - Similar pattern observed in Δγ vs v₂ and projected B-field vs ε₂ suggests magnetic field may be the driven force of observed Δγ signal.

γ correlation in p+Au and d+Au

- Sizable $\Delta \gamma$ in p+Au and d+Au w.r.t 2nd –order event plane (EP) ψ_2 from TPC.
- $\Delta \gamma$ disappears in p+Au and d+Au when η gap is introduced between EP and particles of interest: $\Delta \gamma$ in TPC EP results mostly from short range correlation (this can also be seen from difference between TPC and BBC v_2).

γ correlation in p+Au and d+Au

- Δγ · N/v₂ from AMPT (hadronic scattering is turned off) does not match data in central events, but accounts for ~2/3 of the observed signal from peripheral to mid-central Au+Au w.r.t. TPC event plane.
- $\Delta \gamma \cdot N/v_2$ from AMPT accounts for ~1/3 of the observed signal in d+Au w.t.r. TPC event plane.

8/8/17 This version of AMPT turned off hadronic scattering

Projection for BES II

Isobars

- What are Isobars?
 - Isobars are nuclides of different chemical elements that have the same number of nucleons.
 - Examples: ${}^{96}_{44}Ru$ and ${}^{96}_{40}Zr$
- Why isobaric collisions?
 - Up to 10% variation in B field
 - Flow (major source of background) magnitude will stay almost the same

	${}^{96}_{44}Ru + {}^{96}_{44}Ru$ vs. ${}^{96}_{40}Zr + {}^{96}_{40}Zr$				
Flow	Similar				
CME	Greater than				
CMW	Greater than				
CVE	Similar				

Woods-Saxon in MC Glauber

$$\rho(r,\theta) = \frac{\rho_0}{1 + \exp[(r - R_0 - \beta_2 R_0 Y_2^0(\theta)/a]}$$

 $\rho_0: 0.16 fm^{-3}$, normal nuclear density $R_0:$ "radius" of the nucleus a: surface diffuseness parameter $\beta_2:$ deformity of the nucleus

- Case 1: e-A scattering experiment. Atom. Data Nucl. Data Tabl. **78**, 1 (2001); **107**, 1 (2016)
- Case 2: comprehensive model deduction. Atom. Data Nucl. Data Tabl. **59**, 185 (1995).
- Uncertainty in β_2 presents an opportunity or a by-product of the planned study.

		R_0	a(d)	β_2	
Zr96	Case 1	5.07	0.48	0.06	
	Case 2	5.05	0.45	0.18	
Ru96	Case 1	5.14	0.46	0.13	Zr
	Case 2	5.13	0.45	0.03	

Charge Separation: γ (2/3 background)

- Projection with 1.2B events from each collision type
- If it's v_2 -driven, relative difference follow eccentricity (~0 for 20-60%)
- If it's 1/3 CME-driven, the difference in $\Delta\gamma$ is 8σ above ϵ_2

8/8/17 W. -T. Deng, X. -G. Huang, G.-L. Ma and G. Wang, Phys. Rev. C 94, 041901 (2016).

Charge Separation: γ (80% background)

- Projection with 1.2B events from each collision type
- If it's v_2 -driven, relative difference follow eccentricity (~0 for 20-60%)
- If it's 20% CME-driven, the difference in $\Delta\gamma$ is 5σ above ϵ_2

Significance vs. Background

- Projection with 1.2B events from each collision type
- Significance of the difference in $\Delta \gamma$ depends on background level
- Case 2 is slightly better than case 1
- New EPD detector may help achieve 7.8 σ significance with 1B events and 80% background level

Zr and Ru, which is more deformed?

	R₀ [fm]	a(d) [fm]	β ₂	02
⁹⁶ Zr	5.06	0.46	0.06	Ca
⁹⁶ Ru	5.13	0.46	0.13	
	D Ifeel		0	
	R ₀ [IIII]		P2	
⁹⁶ Zr	5.06	0.46	0.18	ca
⁹⁶ Ru	5 13	0.46	0.03	

v₂ measurements in central collisions will tell us which is more deformed.

W. -T. Deng, X. -G. Huang, G.-L. Ma and G. Wang, Phys. Rev. C 94, 041901 (2016).

2

Zr and Ru: di-lepton production mechanisms at very low p_T

Summary

- Search for Chiral Magnetic Effect in Au+Au:
 - κ_K for $h^{\pm}h^{\pm}$ and $\pi\pi$ in mid-central Au+Au 200 GeV is larger than those from AMPT background.
 - κ_K of other identified pairs, πK , $p\pi$, pK, is hard to distinguish from the background.
 - κ_K for pp needs further investigation.
 - BESII will significantly reduce statistical uncertainties.
- Search for Chiral Magnetic Effect in p+Au/d+Au:
 - $\Delta \gamma$ for $h^{\pm}h^{\pm}$ in p+Au and d+Au 200 GeV is significant when using TPC event plane.
 - $\Delta \gamma$ disappears when introducing η gap (>2) between particles of interest and event plane in p+Au and d+Au 200 GeV.
- Isobaric Collisions:
 - With 1.2B MB events, significance of the difference in Δγ between Ru+Ru and Zr+Zr can reach at least 5σ if background level is as high as 80%. EPD may improve this to 7.8σ with 1B events.

Back up slides

B Field

- B calculated at t=0, at one point (center of mass of participants)
- B field slightly affected by β_2
- Relative difference in B^2 is 15-18% for peripheral events
- Reduces to 13% for central collisions

8/8/17 W. -T. Deng, X. -G. Huang, G.-L. Ma and G. Wang, Phys. Rev. C 94, 041901 (2016).

Collectivity vs. non-flow

What is collectivity? A working definition: multiple particles correlated across rapidity due to a common source

STAR, PRC 72 (2005) 14904

Note 1: collectivity does not imply a specific physical interpretation (i.e. collectivity ≠ hydro)

p_t (GeV/c)

Note 2: correlations between particles which do not have a "collective" origin (jets, resonance decays, momentum conservation) are commonly called "non-flow"...