Recent Flow Results in d+Au Collisions from Beam Energy Scan at RHIC-PHENIX

PH ENIX

1

dAu flow in BES, CPOD 2017, Stony Brook Univ., 7-11/Aug/2017

2

PHENIX detector acceptance

$v_2(p_T)$ ($|\eta|$ <0.35) in pAu, dAu and ³HeAu collisions central (0-5%) at 200GeV

Phys. Rev. C95 (2017) 034910 Phys. Rev. Lett. 114 (2015) 192301 Phys. Rev. Lett. 115 (2015) 142301

Hydro-models and parton–cascade can generally describe the measurements.

Comparison among pAu, dAu and ³HeAu collisions with and without $\varepsilon_2^{Glauber}$ scaling

Higher initial density in pAu?

 v_2 and v_3 in dAu and ³HeAu collisions

sizable v_3 seen in ³HeAu

mass splitting + Baryon/Meson difference are seen

Comparison among pAu, dAu and ³HeAu collisions

mostly reduction of v_2 or increasing $p_T (v_2/\epsilon$ was larger in pA)

- simultaneous comparison of p_T distribution
- comparison of v_2/ϵ ($/n_{CQ}$) at a fixed multiplicity

N-quark scaling between π and (anti-)protons

mostly scaled with n_{cQ} for all systems some scaling breaks more in smaller system towards pp?

Comparison with (hydro- or cascade-) models

dAu flow in BES, CPOD 2017, Stony Brook Univ., 7-11/Aug/2017

Beam energy dependence of 2-particle correlations in dAu collisions

2-particle correlations FVTXS-FVTXN

Beam energy dependence of $v_2(p_T)$ ($|\eta| < 0.35$) in central (0-5, -10, -20%) collisions

dAu flow in BES, CPOD 2017, Stony Brook Univ., 7-11/Aug/2017

dAu flow in BES, CPOD 2017, Stony Brook Univ., 7-11/Aug/2017

AMPT simulation : $dN_{ch}/d\eta$ and $v_2(\eta)$ at 20, 39, 62 and 200GeV dAu collisions

- v₂ with multi-particle correlations among 200, 62, 39, 20GeV dAu collisions at similar multiplicity
 - real values of v₂{4} in dAu (as pPb at LHC)
 - complex values $v_2{4}$ in pAu $v_2{4} = (-c_2{4})^{1/4}$, where $c_2{4}>0$

arXiv:1707.06108 (v₂{6} : new)

AMPT simulation with pp at 500GeV --- test of reference fitting ---

ATLAS, CMS v2 extraction in pp contradicts with each other, just because of the different definition of v2, both with un-modified jet assumption.

- RHIC beam energy at 200, 500 GeV
- string melting on with $\sigma = 0$, 3 mb
- mult. class mul1:(|η|<3) , mul2:(3<|η|<4)
- particles pairs in $|\eta|{<}3$, $|\eta|{<}1$ & 3< $|\eta|{<}4$
- η-gap cut : 2.5<|Δη|<5.0
- single pT cut : $p_T > 0.2 \text{ GeV/c}$

correlation shape changes with mult. (by jet-modification or flow-evolution)

dAu flow in BES, CPOD 2017, Stony Brook Univ., 7-11/Aug/2017

Summary

- Charged particle and identified particle v₂ (and v₃) are measured in central pA, dA and ³HeA at 200GeV
- Beam energy (p_T, η) dependence of v₂ is measure in dA collisions at 20 – 200GeV
- Sizable flow in small systems at RHIC, which is driven by initial density with its geometry
- Centrality (multiplicity) and η dependence to come
- Simulation studies --- how we see flow in small system