Polyakov loop correlators	The vacuum-like regime	The electric screening regime	

Color screening in 2+1 flavor QCD

J. H. Weber¹ in collaboration with A. Bazavov², N. Brambilla¹, P. Petreczky³ and A. Vairo¹ (**TUMQCD** collaboration)

¹Technische Universität München ²Michigan State University ³Brookhaven National Lab

CPOD 2017: Critical Point and Onset of Deconfinement, Stony Brook University, 08/09/2017

TUM-EFT 81/16; PRD 93 114502 (2016); arXiv:1601:08001 (2016)

Overview	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	Summary
0000				
Overview				

Color screening in 2+1 flavor QCD

- Overview & Introduction
- Correlators of Polyakov loops
- Comparison to weak coupling
- Summary

What is new about the TUMQCD lattices?

- $N_{\tau} = 4 12$: ~30 ens. each, $5.9 \le \beta \le 9.67$, a = 0.0085 0.25 fm.
- **HISQ/Tree** action, errors: $\mathcal{O}(\alpha_s a^2, a^4)$; taste breaking much reduced.
- Ensembles: $\frac{N_{\sigma}}{N_{\tau}} = 4$, $m_l = \frac{m_s}{20} \Leftrightarrow m_{\pi} = 161 \text{ MeV}$; $\beta \le 7.825$, $a \ge 0.04 \text{ fm}$ most from A. Bazavov et al., PRD 85 054503 (2012), PRD 90 094503 (2014) [HotQCD]
- All N_{τ} , $m_l = \frac{m_s}{5}$: 3 5 ensembles each, 1 10 × 10⁴ TU each, 7.03 $\leq \beta \leq 8.4$, a = 0.025 - 0.083 fm; T = 0 lattices available.

• r_1 scale for $\beta > 8.4$ from non-perturbative β function PRD 90 094503 (2014)

Overview	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	
0000				
Free energies				

Polyakov loops and free energies of static quark states

- The Polyakov loop L is the gauge-invariant expectation value of the traced propagator of a static quark (P) and related to its **free energy**: $L(T) = \langle P \rangle_T = \langle \operatorname{Tr} S_Q(x, x) \rangle_T = e^{-F_Q^{\rm b}/T}.$ L needs renormalization. A. M. Polyakov, PL 72B (1978); L. McLerran, B. Svetitsky, PRD 24 (1981)
- The Polyakov loop correlator is related to singlet & octet free energies $C_P(r, T) = e^{-F_{Q\bar{Q}}^{\rm b}(r, T)} = \frac{1}{9}e^{-F_S^{\rm b}/T} + \frac{3}{9}e^{-F_A^{\rm b}/T} = \frac{1}{9}C_S(r, T) + \frac{3}{9}C_A(r, T).$ S. Nadkarni, PRD 33, 34 (1986)
- Meaning of **gauge-dependent** singlet & octet free energies is unclear. • C_P is also related to the **gauge-invariant potentials** $V_{S,A}$ of **pNRQCD** $C_P(r, T) = e^{-F_Q^b Q(r,T)} = \frac{1}{9}e^{-V_S^b/T} + \frac{8}{9}L_A^b e^{-V_A^b/T} + \mathcal{O}(g^6)$ for $rT \ll 1$. N. Brambilla et al., **PRD 82** (2010)

Overview	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	
0000				
Free energies				

Renormalization of free energies

• Singlet free energy and potential appear to be related for $rm_D \sim 1$: $F_S(r, T) = -C_F \alpha_s \left[\frac{e^{-rm_D}}{r} + m_D \right] + \mathcal{O}(g^4) = V_S(r) + \mathcal{O}(g^3).$ N. Brambilla et al., PRD 82 (2010) $\Rightarrow F_S$ and V_S share the same renormalization $2C_Q$, which depends on Tonly through the lattice spacing: $V_S = V_S^b + 2C_Q \Rightarrow F_S = F_S^b + 2C_Q.$ • Use V_S at T = 0: fix r_1 scale & determine $2C_Q$ using static energy. A. Bazavov et al., PRD 85 054503 (2012), PRD 90 094503 (2014) [HotQCD] • Cluster decomposition theorem: $F_{Q\bar{Q}} = F_S = 2F_Q$ for $r \gg 1/T$. \Rightarrow renormalize as $F_{Q\bar{Q}} = F_{Q\bar{Q}}^b + 2C_Q$ and $F_Q = F_Q^b + C_Q. \rightarrow PRD 93$ 114502 (2016)

Beyond $C_Q(\beta)$ from T = 0 lattices – use **direct renormalization** of F_Q \Rightarrow Infer unknown $C_Q(\beta)$ from known $C_Q(\beta^{\text{ref}})$ using different $N_{\tau}, N_{\tau}^{\text{ref}}$ $C_Q(\beta) = \left\{ C_Q(\beta^{\text{ref}}) + F_Q^{\text{b}}(\beta^{\text{ref}}, N_{\tau}^{\text{ref}}) - F_Q^{\text{b}}(\beta, N_{\tau}) \right\} \rightarrow \Pr_{\text{PRD T 034503 (2008)}}^{\text{S. Gupta et al.}}$

Overview	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	
0000				
Free energies				

Renormalization of free energies

• Singlet free energy and potential appear to be related for $rm_D \sim 1$: $F_S(r, T) = -C_F \alpha_s \left[\frac{e^{-rm_D}}{r} + m_D \right] + \mathcal{O}(g^4) = V_S(r) + \mathcal{O}(g^3).$ N. Brambilla et al., PRD 82 (2010) $\Rightarrow F_S$ and V_S share the same renormalization $2C_Q$, which depends on Tonly through the lattice spacing: $V_S = V_S^b + 2C_Q \Rightarrow F_S = F_S^b + 2C_Q.$ • Use V_S at T = 0: fix r_1 scale & determine $2C_Q$ using static energy. A. Bazavov et al., PRD 85 054503 (2012), PRD 90 094503 (2014) [HotQCD] • Cluster decomposition theorem: $F_{Q\bar{Q}} = F_S = 2F_Q$ for $r \gg 1/T$. \Rightarrow renormalize as $F_{Q\bar{Q}} = F_{Q\bar{Q}}^b + 2C_Q$ and $F_Q = F_Q^b + C_Q. \rightarrow PRD 93$ 114502 (2016)

Beyond $C_Q(\beta)$ from T = 0 lattices – use **direct renormalization** of F_Q \Rightarrow Infer unknown $C_Q(\beta)$ from known $C_Q(\beta^{\text{ref}})$ using different $N_{\tau}, N_{\tau}^{\text{ref}}$ $C_Q(\beta) = \left\{ C_Q(\beta^{\text{ref}}) + F_Q^{\text{b}}(\beta^{\text{ref}}, N_{\tau}^{\text{ref}}) - F_Q^{\text{b}}(\beta, N_{\tau}) + \Delta_{N_{\tau}, N_{\tau}^{\text{ref}}} \right\} \rightarrow \text{PRD 93 114502 (2016)}$

	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	Summary
0000	0000	0000	00	

Color screening for a static quark-antiquark pair

 Free energy of a QQ̄ pair, F_{QQ̄}, is also called *color-averaged potential*: C_P^{ren}(r, T) = ⟨P(0)P[†](r)⟩^{ren}_T = e^{-^F_{QQ̄}(r,T)}/_T = ¹/₉e^{-^F_S(r,T)}/_T + ⁸/₉e^{-^F_A(r,T)}/_T.

 F_{QQ̄} - T log 9 is close to the T = 0 static energy V_S for very small rT.

0.1

0.2 0.3

0.6

1.0

0.06

0.02 0.03

Singlet free energy in Coulomb gauge

- Singlet free energy: $C_{S}^{\text{ren}}(r,T) = \frac{1}{3} \left\langle \sum_{a=1}^{3} W_{a}(0) W_{a}^{\dagger}(r) \right\rangle_{\tau}^{\text{ren}} = e^{-F_{S}(r,T)/T}$
- Wilson line correlator requires explicit gauge fixing (Coulomb gauge)
- F_S is numerically close to the T = 0 static energy V_S for $rT \lesssim 0.3$.

Effective coupling: vacuum-like and screening regimes

• Effective coupling $\alpha_{Q\bar{Q}}(r, T)$ is a proxy for the force between Q and \bar{Q} . $\alpha_{Q\bar{Q}}(r, T) = \frac{r^2}{C_F} \frac{\partial E(r, T)}{\partial r}, \ E = \{F_S(r, T), V_S(r)\}$

• $\alpha_{Q\bar{Q}}$ clearly distinguishes different regimes at small and large r.

• For $T \lesssim 300 \,\mathrm{MeV}$: max $(\alpha_{Q\bar{Q}})(T) \gtrsim 0.5$ – strongly-coupled QGP.

- $\bullet\,$ The entropy peaks at $\,T_S=153^{+6.5}_{-5}\,{\rm MeV}$ in the continuum limit.
- $T_{5}(N_{\tau}) \simeq T_{\chi}(N_{\tau})$ for any N_{τ} Bazavov et al., PRD 93 114502 (2016) [TUMQCD], suggests a **tight link between chiral symmetry and deconfinement**. e.g. as in glueball-sigma mixing scenarios, Y. Hatta, K. Fukushima PRD 69 097502 (2004). N.b. T_{χ} defined via O(2) scaling of $\chi_{m,l}$ (O(4): 1-3.5 MeV lower T_{χ})

A. Bazavov et al., PRD 85 054503 (2012) [HotQCD]

Bazavov et al. [TUMQCD] PRD 93 114502 (2016)

• Hadron resonance gas (HRG) is limited to only below $T \sim 125$ MeV. static HRG results from: A. Bazavov, P. Petreczky, PRD 87, 094505 (2013)

160 180 200 220 240 260 280

140

120

T [MeV

300

and renormalization

scheme (continuum)

- $\frac{dS_Q}{dT} > 0$ for $T < T_c$: the number of bound states of bound states including a static quark increases faster than HRG predictions.
- Large number of additional states or strong thermal modification of (low-lying) states are needed already substantially below T_c.

- $\frac{dS_Q}{dT} < 0$ for $T > T_c$: the static quark interacts with the medium only inside its Debye screening radius, $r \sim 1/m_D \xrightarrow{T \to \infty} 0$.
- Deconfinement and **onset of screening** are clearly defined via $S_Q(T_S) = 0$ in the QCD crossover scenario. MPL A31 no.35, 1630040 (2016)
- The peak is broader and lower for smaller m_{sea} or larger N_f .

	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	
		0000		
pNRQCD and the vac	uum-like regime			

Static energy and singlet free energy (I) - discretization effects

• $pNRQCD: V_{S}(T=0) - F_{S}(T>0)$ up to $\mathcal{O}(g^{6})$ M. Berwein et al., arXiv:1704.07266

- Smooth r dependence due to cancellations in $V_S F_S$ for r/a < 3.
- Strong N_{τ} dependence for rT > 0.15, but $N_{\tau} \ge 12 \sim \text{continuum limit.}$
- $V_S F_S \sim 0.02 T$ for $rT \lesssim 0.1$ & T > 300 MeV, mild N_τ dependence.
- T independent for small r, then sudden onset of medium effects.

	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	
		0000		
pNRQCD and the vacu	um-like regime			

Static energy and singlet free energy (II) – weak coupling

- pNRQCD: $V_S(T=0)-F_S(T>0)$ up to $\mathcal{O}(\alpha_s^3)$ M. Berwein et al., arXiv:1704.07266
- r independent term at $\propto \alpha_s^3$ allowed, can explain difference at small r?
- Constant term removed in r derivative \Rightarrow eff. coupling $\alpha_{Q\bar{Q}}[V_S F_S]$.
- pNRQCD prediction works for $V_5 F_5$ in the range $rT \lesssim 0.25$.

Color octet contribution in the Polyakov loop correlator (I)

- pNRQCD: C_P is given in terms of **potentials** V_S and V_A at T = 0 and of the *adjoint Polyakov loop* L_A at T > 0 N. Brambilla et al., PRD 82 (2010) $C_P(r, T) = e^{-F_Q\bar{Q}(r,T)} = \frac{1}{9}e^{-V_S/T} + \frac{8}{9}L_A e^{-V_A/T} + \mathcal{O}(g^6)$ for $rT \ll 1$.
- *Gauge-invariant* decomposition of *C_P* into **color singlet and octet** is defined assuming *weak coupling* test if it works for lattice as well.

• Color octet contribution: define $e^{-F_O/T} \sim \frac{9}{8} \left(e^{-F_{Q\bar{Q}}(r,T)} - \frac{1}{9} e^{-V_S/T} \right)$

• As F_O rapidly decreases for higher T, the **octet** becomes important.

Color octet contribution in the Polyakov loop correlator (II)

- Low T = 172 MeV: color singlet V_S is enough for reconstructing C_P (no sensitivity to color octet due to large statistical errors).
- High T = 666 MeV: cancellation between **color singlet and octet** leads to $1/r^2$ behavior in $F_{Q\bar{Q}}$. We use pNRQCD, i.e. $\frac{1}{9}e^{-V_S/T} + \frac{8}{9}L_A e^{-V_A/T}$.
- We include **Casimir scaling violation**: $8V_A + V_S = 3\frac{\alpha_s^3}{r} [\frac{\pi^2}{4} 3] + \mathcal{O}(\alpha_s^4)$.
- $F_{Q\bar{Q}}$ for $rT \lesssim 0.4$ can be understood in terms of **vacuum physics** only.

 \Rightarrow Weakly-coupled EQCD is reasonable in electric screening regime of F_5 .

• For rT>0.8: asymptotic screening is inherently non-perturbative.

• Singlet and octet cancel at LO in $F_{Q\bar{Q}}(r,T) = -\frac{\alpha_s^2}{9} \frac{e^{-2m_D}}{r^2} + C_F \alpha_s m_D.$ • $F_{Q\bar{Q}}^{sub} = -\frac{\alpha_s^2}{9} \frac{e^{-2m_D}}{r^2} (1 + \alpha_s [\delta Z_1(\mu) + rT f_1(rm_D)])$ S. Nadkarni, PRD 33 (1986)

- $F_{Q\bar{Q}}^{\rm sub}$ on the lattice is close (~ 10%) to EQCD@NLO up to $r \sim 1/m_D$.
- $\Rightarrow \textbf{Weakly-coupled EQCD} \text{ is reasonable in the electric screening regime} \\ \text{ of } F_{Q\bar{Q}}, \text{ but non-perturbative } (chromo-magnetic) \text{ effects are stronger }.$

Overview	Polyakov loop correlators	The vacuum-like regime	The electric screening regime	Summary
				•
Summary				

- We study color screening and deconfinement using the renormalized Polyakov loop correlator and related observables.
- \bullet We identify in the entropy $S_Q = -\frac{dF_Q}{dT}$ crossover behavior at $T \sim T_c.$
- We extract $T_s = 153^{+6.5}_{-5}$ MeV from the entropy, in agreement with $T_{\chi} = 160(6)$ MeV (chiral susceptibilities, O(2) scaling fits, $\frac{m_l}{m_r} = \frac{1}{20}$).
- Continuum limit of static quark correlators in $N_f=2+1$ QCD up to $T\sim 1.9\,{\rm GeV}$ and down to $r\sim 0.01\,{\rm fm}.$
- Color-singlet correlators are vacuum-like up to $rT \ll 0.3$, exhibit color-electric screening for $rm_D \sim 1 \Leftrightarrow 0.3 \lesssim rT \lesssim 0.6$ compatible with weak coupling and change to asymptotic screening for $rT \gg 0.7$.
- The Polyakov loop correlator C_P has a substantial color adjoint contribution for $T \gtrsim 200$ MeV. For $rT \lesssim 0.4$ weakly-coupled *pNRQCD* describes C_P well in terms of T = 0 potentials and the adjoint Polyakov loop L_A .
- C_P has a color-electric screening regime $rm_D \sim 1$. Non-perturbative effects (i.e. the chromo-magnetic sector) are much larger.

- 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
- $pNRQCD: V_{5}(T=0) F_{5}(T>0)$ up to $\mathcal{O}(g^{6})$ M. Berwein et al., arXiv:1704.07266
- Strong N_{τ} dependence for rT > 0.15, but $N_{\tau} \ge 12 \sim$ continuum limit.
- $V_S F_S \sim 0.02 T$ for $rT \lesssim 0.1$ & T > 300 MeV, mild N_τ dependence.
- We estimate the systematic uncertainty of continuum extrapolation by using subsets of data and different assumptions about scaling behavior.