Two-particle correlations in azimuthal angle and pseudorapidity in ⁷Be+⁹Be collisions at SPS energies

Bartosz Maksiak for the NA61/SHINE Collaboration

Faculty of Physics Warsaw University of Technology

9.08.2017

Bartosz Maksiak (NA61/SHINE) (WUT)

 $\Delta \eta \Delta \phi$ in BeBe

9.08.2017 1 / 22

Sar

Introduction

Two-particle correlations - definitions

Correlations are calculated by finding the difference in pseudo-rapidity and azimuthal angle between two particles in the same event.

 $\begin{array}{ll} \Delta\eta = |\eta_1 - \eta_2| & \ \ \, _{\eta \ transformed \ from \ LAB \ to \ CMS \ assuming \ pion \ mass} \\ \Delta\phi = |\phi_1 - \phi_2| \\ \text{The azimuthal angle is folded (to improve statistics):} \\ \text{if } \Delta\phi > \pi \ \text{then } \Delta\phi \ \text{becomes } \Delta\phi = 2\pi - \Delta\phi. \end{array}$

Correlation function

$$\begin{split} C^{raw}(\Delta\eta,\Delta\phi) &= \frac{N_{balis}^{pairs}}{N_{signal}^{pairs}} \frac{S(\Delta\eta,\Delta\phi)}{B(\Delta\eta,\Delta\phi)};\\ S(\Delta\eta,\Delta\phi) &= \frac{d^2 N^{signal}}{d\Delta\eta d\Delta\phi}; \quad B(\Delta\eta,\Delta\phi) = \frac{d^2 N^{bkg}}{d\Delta\eta d\Delta\phi} \end{split}$$

Signal and background distributions are calculated and normalized in restricted $\Delta \eta$ region: $0 < \Delta \eta < 3$. In order to make correlation functions more readable, they are mirrored around $(\Delta \eta, \Delta \phi) = (0, 0)$ point.

Event and track cuts were chosen to select the 5% most violent collisions with particles produced in strong and EM processes within the NA61/SHINE acceptance.

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - の へ ()

Introduction

Two-particle correlations

Two-particle correlations in $\Delta \eta$, $\Delta \phi$

- Studied extensively at RHIC and LHC.
- This method allows to disentangle different sources of correlations:
 - jets,
 - flow,
 - resonance decays,
 - quantum statistics effects,
 - conservation laws.

Motivation

- To study two-particle correlations in a fixed-target experiment at energies lower than LHC and where CP can be located.
- To check differences in correlation structures in various systems (p+p already done).

Source: Eur.Phys.J. C77 (2017) no.2, 59

NA61/SHINE experiment

- Fixed target experiment
- Located in the North Area of the CERN SPS accelerator
- Large acceptance (\approx 50% at $p_T < 2.5 \text{ GeV/c}$)
- High momentum resolution: $\frac{\sigma(p)}{p^2} \approx 10^{-4} \text{ [GeV/c]}^{-1}$ (at full 9 Tm magnetic field)
- Good particle identification:
 - $\sigma(TOF) \approx 60 \div 120 \text{ ps},$ $\sigma(dE/dx) \approx 0.04$
 - $\frac{\sigma(dE/dx)}{\langle dE/dx \rangle} \approx 0.04$,
 - $\sigma(m_{inv}) \approx 5$ MeV.
- Event selection based on forward energy (projectile spectators) measured by PSD

nan

4 / 22

Be+Be@75 GeV/c

Results

DQC

イロト イヨト イヨト イヨト

Results Real data results

all

2

0

Be+Be: energy dependence, all charged

Two main structures visible:

- Maximum at ٠ $(\Delta \eta, \Delta \phi) = (0, \pi)$ probably resonance decays and momentum conservation.
- Enhancement at (0,0) probably Coulomb and quantum statistics effects.

→ Ξ → < Ξ</p>

- T

Results Real data results

Be+Be: energy dependence, unlike-sign

- $(P_{1}^{(1)})_{1,0}^{(1)}$
 - Maximum at $(\Delta\eta, \Delta\phi) = (0, \pi) -$ probably resonance decays and momentum conservation.
 - A hill at (0, 0) in unlike-sign is probably due to Coulomb attraction (products of γ conversion were rejected during analysis).

 500

Results Real data results

Be+Be: energy dependence, positively charged

Results Real data results

Be+Be: energy dependence, negatively charged

Be+Be: charge dependence

- Peak around $(\Delta \eta, \Delta \phi) = (0, 0)$ strong also in like-sign pairs. Especially in negatively charged.
- Its height in negatively charged can be explained as a result of Bose-Einstein statistics (produced particles are mostly π⁻).
- It is lower in positively charged pairs because of Bose-Einstein and Fermi-Dirac statistics interplay (correlation due to bosons: π⁺ and anti-correlation due to fermions: protons).

 Sac

Data vs. EPOS comparison

DQC

イロト イロト イヨト イヨト

Data vs. EPOS - unlike-sign

EPOS reproduces data qualitatively well except of Coulomb peak at $(\Delta \eta, \Delta \phi) = (0, 0).$

Bartosz Maksiak (NA61/SHINE) (WUT)

Sac

Results Data vs. EPOS

Data vs. EPOS - negatively charged

EPOS does not reproduce peak at (0,0) due to lack of implementation of quantum statistics.

Bartosz Maksiak (NA61/SHINE) (WUT)

Sar

Results Data vs. EPOS

Data vs. EPOS – charge dependence

NA61/SHINE data

EPOS with full acceptance

Back to back correlations are qualitatively reproduced by EPOS but Bose-Einstein peak not.

nac

Be+Be vs. p+p comparison

DQC

イロト イヨト イヨト イヨト

Be+Be 30A GeV/c vs. p+p 31 GeV/c

Be+Be

Note vertical scale ranges $p+p: 0.5 \div 1.6$, $Be+Be: 0.9 \div 1.1$

Bartosz Maksiak (NA61/SHINE) (WUT)

Be+Be 75A GeV/c vs. p+p 80 GeV/c

Be+Be

Note vertical scale ranges $p+p: 0.5 \div 1.6$, $Be+Be: 0.9 \div 1.1$

Bartosz Maksiak (NA61/SHINE) (WUT)

DQC

Be+Be 150A GeV/c vs. p+p 158 GeV/c

Be+Be

Peak at (0,0) is better visible in (0,0).

DQC

< ロト < 回 > < 回 > < 回 >

Be+Be 75A GeV/c in p+p vertical scale

Be+Be

ク < (~ 19 / 22

Reminder from p+p: Data/model (EPOS and UrQMD)

158 GeV/c, +-

158 GeV/c, ++

Bartosz Maksiak (NA61/SHINE) (WUT)

Summary

Summary

- The structures extracted from data show:
 - Enhancement at $\Delta \eta \approx 0$ and $\Delta \phi \approx \pi$: Resonance decays and momentum conservation. Significant in unlike-sign and lower in like-sign.
 - Peak around $(\Delta \eta, \Delta \phi) = (0, 0)$
 - The highest in negatively charged pairs Bose-Einstein statistics effect. Majority of contribution comes from negative pions (bosons).
 - Lower in positively charged pairs Bose-Einstein and Fermi-Dirac statistics interplay. Correlation from positive pions (bosons) but also anticorrelations from protons (fermions).
 - Small in unlike-sign pairs Coulomb attraction.
- The EPOS model reproduces data quite well qualitatively with exception of (0,0) enhancement due to no implementation of quantum statistics effects and Coulomb interactions.
- Be+Be correlations are generally weaker than in smaller system of p+p. The structures however are similar in results of both systems.
- In Be+Be the enhancement around $(\Delta \eta, \Delta \phi) = (0, 0)$ is more prominent than in p+p (sharper Bose-Einstein correlation peak due to larger system).

イロト イポト イヨト イヨト

Thank you for your attention

The project: Study of two-particle correlations in azimuthal angle and pseudorapidity in Beryllium-Beryllium collisions at the energies of the SPS accelerator is being executed with support of National Science Centre, Poland.

Project number: 2015/19/N/ST2/01689

Bartosz Maksiak (NA61/SHINE) (WUT)

イロト イヨト イヨト イヨト